Ma H S, Du T, Jiang X P, et al. Inverse-designed silicon-based on-chip power splitters[J]. Opto-Electron Eng, 2023, 50(7): 230086. doi: 10.12086/oee.2023.230086
Citation: Ma H S, Du T, Jiang X P, et al. Inverse-designed silicon-based on-chip power splitters[J]. Opto-Electron Eng, 2023, 50(7): 230086. doi: 10.12086/oee.2023.230086

Inverse-designed silicon-based on-chip power splitters

    Fund Project: Project supported by the National Natural Science Foundation of China (60907003, 61805278, 12272407, 62275269, 62275271), the National Key R&D Program of China (2022YFF0706005), the China Postdoctoral Science Foundation (2018M633704), the Foundation of NUDT (JC13-02-13, ZK17-03-01), the Hunan Provincial Natural Science Foundation of China (13JJ3001), and the Program for New Century Excellent Talents in University (NCET-12-0142).
More Information
  • The silicon-based on-chip power splitter, an important component of the photonic integrated circuits, has much wider scope of applications such as feedback circuits, tap-port power monitoring, and optical quantization. The design methods of the nanophotonic devices can be roughly divided into the forward design and inverse design methods. This review article outlines the differences and connections between the forward design and inverse design methods, and classifies the inverse design algorithms. In addition, the review article summarizes the representative inverse-designed silicon-based on-chip power splitters in recent years, including multichannel power splitters, arbitrary-split-ratio power splitters, multimode power splitters, broadband power splitters, and multifunction power splitters. Finally, the summary and outlook are made on the development trend of the inverse design algorithms and the inverse-designed power splitters.
  • 加载中
  • [1] Chen Y, Cheng Y K, Zhu R B, et al. Nanoscale all-optical logic devices[J]. Sci China Phys Mech Astron, 2019, 62(4): 44201. doi: 10.1007/s11433-018-9289-3

    CrossRef Google Scholar

    [2] Reed G T, Mashanovich G, Gardes F Y, et al. Silicon optical modulators[J]. Nat Photonics, 2010, 4(8): 518−526. doi: 10.1038/nphoton.2010.179

    CrossRef Google Scholar

    [3] Subbaraman H, Xu X C, Hosseini A, et al. Recent advances in silicon-based passive and active optical interconnects[J]. Opt Express, 2015, 23(3): 2487−2511. doi: 10.1364/OE.23.002487

    CrossRef Google Scholar

    [4] Soref R A, Lorenzo J P. Single-crystal silicon: a new material for 1.3 and 1.6 μm integrated-optical Components[J]. Electron Lett, 1985, 21(21): 953−955. doi: 10.1049/el:19850673

    CrossRef Google Scholar

    [5] Soref R A, Bennett B R. Electrooptical effects in silicon[J]. IEEE J Quantum Electron, 1987, 23(1): 123−129. doi: 10.1109/JQE.1987.1073206

    CrossRef Google Scholar

    [6] Soref R A, Bennett B R. Kramers–Kronig analysis of electro-optical switching in silicon[J]. Proc SPIE, 1987, 704: 32−37. doi: 10.1117/12.937193

    CrossRef Google Scholar

    [7] Hochberg M, Baehr-Jones T. Towards fabless silicon photonics[J]. Nat Photonics, 2010, 4(8): 492−494. doi: 10.1038/nphoton.2010.172

    CrossRef Google Scholar

    [8] Stojanović V, Ram R J, Popović M, et al. Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited][J]. Opt Express, 2018, 26(10): 13106. doi: 10.1364/OE.26.013106

    CrossRef Google Scholar

    [9] Dong P, Chen Y K, Duan G H, et al. Silicon photonic devices and integrated circuits[J]. Nanophotonics, 2014, 3(4–5): 215−228. doi: 10.1515/nanoph-2013-0023

    CrossRef Google Scholar

    [10] Zalevsky Z. Integrated micro- and nanophotonic dynamic devices: a review[J]. J Nanophoton, 2007, 1(1): 012504. doi: 10.1117/1.2795715

    CrossRef Google Scholar

    [11] Wang J, Long Y. On-chip silicon photonic signaling and processing: a review[J]. Sci Bull, 2018, 63(19): 1267−1310. doi: 10.1016/j.scib.2018.05.038

    CrossRef Google Scholar

    [12] Xu Q F, Fattal D, Beausoleil R G. Silicon microring resonators with 1.5-μm radius[J]. Opt Express, 2008, 16(6): 4309−4315. doi: 10.1364/OE.16.004309

    CrossRef Google Scholar

    [13] Chen P X, Chen S T, Guan X W, et al. High-order microring resonators with bent couplers for a box-like filter response[J]. Opt Lett, 2014, 39(21): 6304−6307. doi: 10.1364/OL.39.006304

    CrossRef Google Scholar

    [14] Stern B, Zhu X L, Chen C P, et al. On-chip mode-division multiplexing switch[J]. Optica, 2015, 2(6): 530−535. doi: 10.1364/OPTICA.2.000530

    CrossRef Google Scholar

    [15] Xu Q F, Schmidt B, Pradhan S, et al. Micrometre-scale silicon electro-optic modulator[J]. Nature, 2005, 435(19): 325−327. doi: 10.1038/nature03569

    CrossRef Google Scholar

    [16] Bogaerts W, De Heyn P, van Vaerenbergh T, et al. Silicon microring resonators[J]. Laser Photonics Rev, 2012, 6(1): 47−73. doi: 10.1002/lpor.201100017

    CrossRef Google Scholar

    [17] Ji Y, Chung Y, Sprinzak D, et al. An electronic Mach-Zehnder interferometer[J]. Nature, 2003, 422(6930): 415−418. doi: 10.1038/nature01503

    CrossRef Google Scholar

    [18] Shen Y C, Harris N C, Skirlo S, et al. Deep learning with coherent nanophotonic circuits[J]. Nat Photonics, 2017, 11(7): 441−446. doi: 10.1038/nphoton.2017.93

    CrossRef Google Scholar

    [19] Harris N C, Steinbrecher G R, Prabhu M, et al. Quantum transport simulations in a programmable nanophotonic processor[J]. Nat Photonics, 2017, 11(7): 447−452. doi: 10.1038/nphoton.2017.95

    CrossRef Google Scholar

    [20] Pérez D, Gasulla I, Crudgington L, et al. Multipurpose silicon photonics signal processor core[J]. Nat Commun, 2017, 8(1): 636. doi: 10.1038/s41467-017-00714-1

    CrossRef Google Scholar

    [21] Xie Y W, Hong S H, Yan H, et al. Low-loss chip-scale programmable silicon photonic processor[J]. Opto-Electron Adv, 2023, 6(3): 220030. doi: 10.29026/oea.2023.220030

    CrossRef Google Scholar

    [22] Xiao Z, Luo X S, Lim P H, et al. Ultra-compact low loss polarization insensitive silicon waveguide splitter[J]. Opt Express, 2013, 21(14): 16331−16336. doi: 10.1364/OE.21.016331

    CrossRef Google Scholar

    [23] Uematsu T, Ishizaka Y, Kawaguchi Y, et al. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission[J]. J Lightwave Technol, 2012, 30(15): 2421−2426. doi: 10.1109/JLT.2012.2199961

    CrossRef Google Scholar

    [24] Li Y M, Li C, Li C B, et al. Compact two-mode (de) multiplexer based on symmetric Y-junction and multimode interference waveguides[J]. Opt Express, 2014, 22(5): 5781−5786. doi: 10.1364/OE.22.005781

    CrossRef Google Scholar

    [25] Han L S, Liang S, Zhu H L, et al. Two-mode de/multiplexer based on multimode interference couplers with a tilted joint as phase shifter[J]. Opt Lett, 2015, 40(4): 518−521. doi: 10.1364/OL.40.000518

    CrossRef Google Scholar

    [26] Li C L, Liu D J, Dai D X. Multimode silicon photonics[J]. Nanophotonics, 2019, 8(2): 227−247. doi: 10.1515/nanoph-2018-0161

    CrossRef Google Scholar

    [27] Ding Y H, Xu J, Da Ros F, et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer[J]. Opt Express, 2013, 21(8): 10376−10382. doi: 10.1364/OE.21.010376

    CrossRef Google Scholar

    [28] Mohammed Z, Paredes B, Rasras M. Compact and broadband silicon TE-pass polarizer based on tapered directional coupler[J]. Opt Lett, 2022, 47(14): 3399−3402. doi: 10.1364/OL.457260

    CrossRef Google Scholar

    [29] Wang J, He S L, Dai D X. On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing[J]. Laser Photonics Rev, 2014, 8(2): L18−L22. doi: 10.1002/lpor.201300157

    CrossRef Google Scholar

    [30] Dai D X, Li C L, Wang S P, et al. 10-channel mode (de)multiplexer with dual polarizations[J]. Laser Photonics Rev, 2018, 12(1): 1700109. doi: 10.1002/lpor.201700109

    CrossRef Google Scholar

    [31] Greenberg M, Orenstein M. Multimode add-drop multiplexing by adiabatic linearly tapered coupling[J]. Opt Express, 2005, 13(23): 9381−9387. doi: 10.1364/OPEX.13.009381

    CrossRef Google Scholar

    [32] Dai D X, Bowers J E. Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires[J]. Opt Express, 2011, 19(11): 10940−10949. doi: 10.1364/OE.19.010940

    CrossRef Google Scholar

    [33] Dai D X, Wu H. Realization of a compact polarization splitter-rotator on silicon[J]. Opt Lett, 2016, 41(10): 2346−2349. doi: 10.1364/OL.41.002346

    CrossRef Google Scholar

    [34] Sacher W D, Barwicz T, Taylor B J F, et al. Polarization rotator-splitters in standard active silicon photonics platforms[J]. Opt Express, 2014, 22(4): 3777−3786. doi: 10.1364/OE.22.003777

    CrossRef Google Scholar

    [35] Huang J, Ma H S, Chen D B, et al. Digital nanophotonics: the highway to the integration of subwavelength-scale photonics: ultra-compact, multi-function nanophotonic design based on computational inverse design[J]. Nanophotonics, 2021, 10(3): 1011−1030. doi: 10.1515/NANOPH-2020-0494

    CrossRef Google Scholar

    [36] Lu J, Vučković J. Nanophotonic computational design[J]. Opt Express, 2013, 21(11): 13351−13367. doi: 10.1364/OE.21.013351

    CrossRef Google Scholar

    [37] Yao K, Unni R, Zheng Y B. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale[J]. Nanophotonics, 2019, 8(3): 339−366. doi: 10.1515/nanoph-2018-0183

    CrossRef Google Scholar

    [38] Ma L F, Li J, Liu Z H, et al. Intelligent algorithms: new avenues for designing nanophotonic devices[J]. Chin Opt Lett, 2021, 19(1): 011301. doi: 10.3788/COL202119.011301

    CrossRef Google Scholar

    [39] Qi H X, Du Z C, Hu X Y, et al. High performance integrated photonic circuit based on inverse design method[J]. Opto-Electron Adv, 2022, 5(10): 210061. doi: 10.29026/oea.2022.210061

    CrossRef Google Scholar

    [40] Jiang J Q, Chen M K, Fan J A. Deep neural networks for the evaluation and design of photonic devices[J]. Nat Rev Mater, 2021, 6(8): 679−700. doi: 10.1038/s41578-020-00260-1

    CrossRef Google Scholar

    [41] So S, Badloe T, Noh J, et al. Deep learning enabled inverse design in nanophotonics[J]. Nanophotonics, 2020, 9(5): 1041−1057. doi: 10.1515/nanoph-2019-0474

    CrossRef Google Scholar

    [42] Ma T G, Tobah M, Wang H Z, et al. Benchmarking deep learning-based models on nanophotonic inverse design problems[J]. Opto-Electron Sci, 2022, 1(1): 210012. doi: 10.29026/oes.2022.210012

    CrossRef Google Scholar

    [43] Wang N, Yan W, Qu Y R, et al. Intelligent designs in nanophotonics: from optimization towards inverse creation[J]. PhotoniX, 2021, 2(1): 22. doi: 10.1186/s43074-021-00044-y

    CrossRef Google Scholar

    [44] Huang J, Yang J B, Chen D B, et al. Implementation of on-chip multi-channel focusing wavelength demultiplexer with regularized digital metamaterials[J]. Nanophotonics, 2020, 9(1): 159−166. doi: 10.1515/nanoph-2019-0368

    CrossRef Google Scholar

    [45] Liu Z H, Liu X H, Xiao Z Y, et al. Integrated nanophotonic wavelength router based on an intelligent algorithm[J]. Optica, 2019, 6(10): 1367−1373. doi: 10.1364/OPTICA.6.001367

    CrossRef Google Scholar

    [46] Khoram E, Qian X P, Yuan M, et al. Controlling the minimal feature sizes in adjoint optimization of nanophotonic devices using b-spline surfaces[J]. Opt Express, 2020, 28(5): 7060−7069. doi: 10.1364/OE.384438

    CrossRef Google Scholar

    [47] Han J M, Huang J, Wu J G, et al. Inverse designed tunable four-channel wavelength demultiplexer[J]. Opt Commun, 2020, 465: 125606. doi: 10.1016/j.optcom.2020.125606

    CrossRef Google Scholar

    [48] Shen B, Wang P, Polson R, et al. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint[J]. Nat Photonics, 2017, 9(6): 378−382. doi: 10.1038/nphoton.2015.80

    CrossRef Google Scholar

    [49] Chang W J, Xu S Y, Cheng M F, et al. Inverse design of a single-step-etched ultracompact silicon polarization rotator[J]. Opt Express, 2020, 28(19): 28343−28351. doi: 10.1364/OE.399052

    CrossRef Google Scholar

    [50] Ma H S, Du T, Zhang Z J, et al. Inverse design of an air-cladding and fully-etched silicon polarization rotator based on a taper-based mode hybridization[J]. Opt Commun, 2023, 526: 128912. doi: 10.1016/j.optcom.2022.128912

    CrossRef Google Scholar

    [51] Lu C C, Liu Z H, Wu Y, et al. Nanophotonic polarization routers based on an intelligent algorithm[J]. Adv Opt Mater, 2020, 8(10): 1902018. doi: 10.1002/adom.201902018

    CrossRef Google Scholar

    [52] Ma H S, Luo M Y, He J, et al. Inverse design of nonvolatile reconfigurable mode generator and optical circulator based on a novel concept of a fully-digitized module[J]. J Lightwave Technol, 2022, 40(24): 7869−7878. doi: 10.1109/JLT.2022.3206430

    CrossRef Google Scholar

    [53] Ren Y M, Zhang L X, Wang W Q, et al. Genetic-algorithm-based deep neural networks for highly efficient photonic device design[J]. Photonics Res, 2021, 9(6): B247−B252. doi: 10.1364/PRJ.416294

    CrossRef Google Scholar

    [54] Zhou H L, Wang Y L, Gao X Y, et al. Dielectric metasurfaces enabled ultradensely integrated multidimensional optical system[J]. Laser Photonics Rev, 2022, 16(4): 2100521. doi: 10.1002/LPOR.202100521

    CrossRef Google Scholar

    [55] Xie H C, Liu Y J, Wang S, et al. Highly compact and efficient four-mode multiplexer based on pixelated waveguides[J]. IEEE Photonics Technol Lett, 2020, 32(3): 166−169. doi: 10.1109/LPT.2020.2964308

    CrossRef Google Scholar

    [56] Han H L, Li H, Zhang X P, et al. High performance ultra-compact SOI waveguide crossing[J]. Opt Express, 2018, 26(20): 25602−25610. doi: 10.1364/OE.26.025602

    CrossRef Google Scholar

    [57] Lu L L Z, Zhang M M, Zhou F Y, et al. Inverse-designed ultra-compact star-crossings based on PhC-like subwavelength structures for optical intercross connect[J]. Opt Express, 2017, 25(15): 18355−18364. doi: 10.1364/OE.25.018355

    CrossRef Google Scholar

    [58] Liu Y J, Xu K, Wang S, et al. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration[J]. Nature Communications, 2019, 10(1): 3263. doi: 10.1038/s41467-019-11196-8

    CrossRef Google Scholar

    [59] Chang W J, Lu L L Z, Ren X S, et al. Ultracompact dual-mode waveguide crossing based on subwavelength multimode-interference couplers[J]. Photonics Res, 2018, 6(7): 660−665. doi: 10.1364/PRJ.6.000660

    CrossRef Google Scholar

    [60] Ma H S, Huang J, Zhang K W, et al. Arbitrary-direction, multichannel and ultra-compact power splitters by inverse design method[J]. Opt Commun, 2020, 462: 125329. doi: 10.1016/j.optcom.2020.125329

    CrossRef Google Scholar

    [61] Lu L, Liu D M, Zhou F Y, et al. Inverse-designed single-step-etched colorless 3 dB couplers based on RIE-lag-insensitive PhC-like subwavelength structures[J]. Opt Lett, 2016, 41(21): 5051−5054. doi: 10.1364/OL.41.005051

    CrossRef Google Scholar

    [62] Kim J, Kim J Y, Yoon J, et al. Experimental demonstration of inverse-designed silicon integrated photonic power splitters[J]. Nanophotonics, 2022, 11(20): 4581−4590. doi: 10.1515/nanoph-2022-0443

    CrossRef Google Scholar

    [63] Xu K, Liu L, Wen X, et al. Integrated photonic power divider with arbitrary power ratios[J]. Opt Lett, 2017, 42(4): 855−858. doi: 10.1364/OL.42.000855

    CrossRef Google Scholar

    [64] Gamet J, Pandraud G. Ultralow-loss 1 X 8 splitter based on field matching Y junction[J]. IEEE Photonics Technol Lett, 2004, 16(9): 2060−2062. doi: 10.1109/LPT.2004.833071

    CrossRef Google Scholar

    [65] Tao S H, Fang Q, Song J F, et al. Cascade wide-angle Y-junction 1 × 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator[J]. Opt Express, 2008, 16(26): 21456−21461. doi: 10.1364/OE.16.021456

    CrossRef Google Scholar

    [66] Luo Y C, Yu Y, Ye M Y, et al. Integrated dual-mode 3 dB power coupler based on tapered directional coupler[J]. Sci Rep, 2016, 6: 23516. doi: 10.1038/srep23516

    CrossRef Google Scholar

    [67] Huang W P. Coupled-mode theory for optical waveguides: an overview[J]. J Opt Soc Am A-Opt Image Sci Vis, 1994, 11(3): 963−983. doi: 10.1364/JOSAA.11.000963

    CrossRef Google Scholar

    [68] Yao R K, Li H X, Zhang B H, et al. Compact and low-insertion-loss 1×N power splitter in silicon photonics[J]. J Lightwave Technol, 2021, 39(19): 6253−6259. doi: 10.1109/JLT.2021.3098346

    CrossRef Google Scholar

    [69] Sheng Z, Wang Z Q, Qiu C, et al. A compact and low-Loss MMI coupler fabricated with CMOS technology[J]. IEEE Photonics J, 2012, 4(6): 2272−2277. doi: 10.1109/JPHOT.2012.2230320

    CrossRef Google Scholar

    [70] Xie H C, Liu Y J, Wang Y H, et al. An ultra-compact 3-dB power splitter for three modes based on pixelated meta-structure[J]. IEEE Photonics Technol Lett, 2020, 32(6): 341−344. doi: 10.1109/LPT.2020.2975128

    CrossRef Google Scholar

    [71] Wang Z C, Peng Z, Zhang Y Q, et al. 93-THz ultra-broadband and ultra-low loss Y-junction photonic power splitter with phased inverse design[J]. Opt Express, 2023, 31(10): 15904−15916. doi: 10.1364/OE.489550

    CrossRef Google Scholar

    [72] Yuan H, Wu J G, Zhang J P, et al. Non-volatile programmable ultra-small photonic arbitrary power splitters[J]. Nanomaterials, 2022, 12(4): 669. doi: 10.3390/nano12040669

    CrossRef Google Scholar

    [73] Jiang X P, Yuan H, Chen D B, et al. Metasurface based on inverse design for maximizing solar spectral absorption[J]. Adv Opt Mater, 2021, 9(19): 2100575. doi: 10.1002/adom.202100575

    CrossRef Google Scholar

    [74] Yu Z J, Cui H R, Sun X K. Genetically optimized on-chip wideband ultracompact reflectors and Fabry–Perot cavities[J]. Photonics Res, 2017, 5(6): B15−B19. doi: 10.1364/PRJ.5.000B15

    CrossRef Google Scholar

    [75] Zhang Y, Yang S Y, Lim A E J, et al. A compact and low loss Y-junction for submicron silicon waveguide[J]. Opt Express, 2013, 21(1): 1310. doi: 10.1364/OE.21.001310

    CrossRef Google Scholar

    [76] Goudarzi K, Lee M. Inverse design of a binary waveguide crossing by the particle swarm optimization algorithm[J]. Results Phys, 2022, 34: 105268. doi: 10.1016/j.rinp.2022.105268

    CrossRef Google Scholar

    [77] Liang W, Chen W W, Wang P J, et al. Non-volatile polarization-insensitive 1 × 2 silicon optical switch using phase-change materials[J]. Opt Commun, 2021, 479: 126407. doi: 10.1016/j.optcom.2020.126407

    CrossRef Google Scholar

    [78] Peng Z, Feng J B, Du T, et al. Series of ultra-low loss and ultra-compact multichannel silicon waveguide crossing[J]. Opt Express, 2022, 30(15): 27366−27380. doi: 10.1364/OE.462479

    CrossRef Google Scholar

    [79] Lalau-Keraly C M, Bhargava S, Miller O D, et al. Adjoint shape optimization applied to electromagnetic design[J]. Opt Express, 2013, 21(18): 21693−21701. doi: 10.1364/OE.21.021693

    CrossRef Google Scholar

    [80] Wang K Y, Ren X S, Chang W J, et al. Inverse design of digital nanophotonic devices using the adjoint method[J]. Photonics Res, 2020, 8(4): 528−533. doi: 10.1364/PRJ.383887

    CrossRef Google Scholar

    [81] Huang J, Yang J B, Chen D B, et al. Ultra-compact broadband polarization beam splitter with strong expansibility[J]. Photonics Res, 2018, 6(6): 574−578. doi: 10.1364/PRJ.6.000574

    CrossRef Google Scholar

    [82] Michaels A, Yablonovitch E. Leveraging continuous material averaging for inverse electromagnetic design[J]. Opt Express, 2018, 26(24): 31717−31737. doi: 10.1364/OE.26.031717

    CrossRef Google Scholar

    [83] Lebbe N, Glière A, Hassan K. High-efficiency and broadband photonic polarization rotator based on multilevel shape optimization[J]. Opt Lett, 2019, 44(8): 1960−1963. doi: 10.1364/OL.44.001960

    CrossRef Google Scholar

    [84] Bendsøe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method[J]. Comput Methods Appl Mech Eng, 1988, 71(2): 197−224. doi: 10.1016/0045-7825(88)90086-2

    CrossRef Google Scholar

    [85] Wu C M, Yu H S, Lee S, et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network[J]. Nat Commun, 2021, 12(1): 96. doi: 10.1038/s41467-020-20365-z

    CrossRef Google Scholar

    [86] Xu Y H, Ma H S, Xie T, et al. Ultra-compact power splitters with low loss in arbitrary direction based on inverse design method[J]. Photonics, 2021, 8(11): 516. doi: 10.3390/photonics8110516

    CrossRef Google Scholar

    [87] Meng C, Qiu J F, Tian Y, et al. A broadband compact 1×3 power splitter designed with inverse design method[C]//Proceedings of the 15th International Conference on Optical Communications and Networks (ICOCN), 2016. https://doi.org/10.1109/icocn.2016.7875589.

    Google Scholar

    [88] Fujisawa T, Saitoh K. Bayesian direct-binary-search algorithm for the efficient design of mosaic-based power splitters[J]. OSA Continuum, 2021, 4(4): 1258−1270. doi: 10.1364/OSAC.422116

    CrossRef Google Scholar

    [89] Tahersima M H, Kojima K, Koike-Akino T, et al. Deep neural network inverse design of integrated photonic power splitters[J]. Sci Rep, 2019, 9(1): 1368. doi: 10.1038/s41598-018-37952-2

    CrossRef Google Scholar

    [90] Chang W J, Lu L L Z, Liu D M, et al. An ultra-compact colorless dual-mode 3 dB power splitter based on axisymmetrical subwavelength structure[C]//CLEO: Science and Innovations 2018, 2018: JW2A. 47. https://doi.org/10.1364/CLEO_AT.2018.JW2A.47.

    Google Scholar

    [91] Guo Z Z, Xiao J B. Silicon-based Ultracompact TE-Pass/TM-Stop power divider using subwavelength gratings assisted with segmented hybrid plasmonic horizontal slot waveguides[J]. J Lightwave Technol, 2017, 35(19): 4329−4336. doi: 10.1109/JLT.2017.2740975

    CrossRef Google Scholar

    [92] Chen Y F, Zhang J, Zhu M, et al. Ultra-compact and broadband all-silicon TM-pass power splitter using subwavelength holey-structured metamaterial waveguides[J]. Opt Express, 2022, 30(25): 44604−44616. doi: 10.1364/OE.477109

    CrossRef Google Scholar

    [93] Liu Y J, Wang Z, Liu Y L, et al. Ultra-compact mode-division multiplexed photonic integrated circuit for dual polarizations[J]. J Lightwave Technol, 2021, 39(18): 5925−5932. doi: 10.1109/JLT.2021.3092941

    CrossRef Google Scholar

    [94] Chen W W, Lin J, Li H X, et al. Broadband multimode 3 dB optical power splitter using tapered couplers[J]. Optics Express, 2022, 30(26): 46236−46247. doi: 10.1364/OE.471397

    CrossRef Google Scholar

    [95] Xie H C, Liu Y J, Sun W Z, et al. Inversely designed 1×4 power splitter with arbitrary ratios at 2-μm spectral band[J]. IEEE Photonics J, 2018, 10(4): 2700506. doi: 10.1109/jphot.2018.2863122

    CrossRef Google Scholar

    [96] Piggott A Y, Petykiewicz J, Su L, et al. Fabrication-constrained inverse design of a broadband 3-way power splitter[Z]. arXiv: 1612.03222, 2017. https://doi.org/10.48550/arXiv.1612.03222.

    Google Scholar

    [97] Xu J F, Liu Y J, Guo X Y, et al. Inverse design of a dual-mode 3-dB optical power splitter with a 445 nm bandwidth[J]. Opt Express, 2022, 30(15): 26266−26274. doi: 10.1364/OE.463274

    CrossRef Google Scholar

    [98] Tang Y H, Kojima K, Koike-Akino T, et al. Generative deep learning model for a multi-level Nano-optic broadband power splitter[C]// 2020 Optical Fiber Communications Conference and Exhibition (OFC), 2020: Th1A. 1. https://doi.org/10.1364/OFC.2020.Th1A.1.

    Google Scholar

    [99] Piggott A Y, Lu J, Babinec T M, et al. Inverse design and implementation of a wavelength demultiplexing grating coupler[J]. Sci Rep, 2015, 4: 7210. doi: 10.1038/srep07210

    CrossRef Google Scholar

    [100] Ma H S, Huang J, Zhang K W, et al. Inverse-designed arbitrary-input and ultra-compact 1 × N power splitters based on high symmetric structure[J]. Sci Rep, 2020, 10: 11757. doi: 10.1038/s41598-020-68746-0

    CrossRef Google Scholar

    [101] Ma H S, Huang J, Yang J B, et al. Ultra-compact and efficient 1 × 2 mode converters based on rotatable direct-binary-search algorithm[J]. Opt Express, 2020, 28(11): 17010−17019. doi: 10.1364/OE.392145

    CrossRef Google Scholar

    [102] Yuan H, Huang J, Wang Z H, et al. An ultra-compact dual-channel multimode wavelength demultiplexer based on inverse design[J]. Results Phys, 2021, 27: 104489. doi: 10.1016/j.rinp.2021.104489

    CrossRef Google Scholar

    [103] Chen H X, Jia H, Wang T, et al. Broadband nonvolatile tunable mode-order converter based on silicon and optical phase change materials hybrid meta-structure[J]. J Lightwave Technol, 2020, 38(7): 1874−1879. doi: 10.1109/JLT.2020.2968565

    CrossRef Google Scholar

    [104] Yuan H, Wang Z C, Peng Z, et al. Ultra-compact and nonvolatile nanophotonic neural networks[J]. Adv Opt Mater, 2023. doi: 10.1002/adom.202300215

    CrossRef Google Scholar

    [105] Su Y X, Liu D M, Zhang M M. Sb2Se3-assisted reconfigurable broadband Y-junction[J]. Opt Express, 2022, 30(22): 40379−40388. doi: 10.1364/OE.473157

    CrossRef Google Scholar

    [106] Chang W J, Lu L L Z, Ren X S, et al. Ultra-compact mode (de) multiplexer based on subwavelength asymmetric Y-junction[J]. Opt Express, 2018, 26(7): 8162−8170. doi: 10.1364/OE.26.008162

    CrossRef Google Scholar

    [107] Piggott A Y, Petykiewicz J, Su L, et al. Fabrication-constrained nanophotonic inverse design[J]. Sci Rep, 2017, 7(1): 1786. doi: 10.1038/s41598-017-01939-2

    CrossRef Google Scholar

    [108] Liang H B, Soref R, Mu J W, et al. Simulations of silicon-on-Insulator channel-waveguide electrooptical 2 × 2 switches and 1 × 1 modulators using a Ge2Sb2Te5 self-holding layer[J]. J Lightwave Technol, 2015, 33(9): 1805−1813. doi: 10.1109/JLT.2015.2393293

    CrossRef Google Scholar

    [109] Xu P P, Zheng J J, Doylend J K, et al. Low-loss and broadband nonvolatile phase-change directional coupler switches[J]. ACS Photonics, 2019, 6(2): 553−557. doi: 10.1021/acsphotonics.8b01628

    CrossRef Google Scholar

  • The photonic integrated circuits (PICs) have been widely accepted as a viable alternative to support futuristic data communication networks. Specifically, silicon photonics offer a more promising and attractive platform to address the growing demands for optical communications due to its unique combination of low fabrication costs, low power consumption, compact footprint, and compatibility with mature complementary metal oxide semiconductor processes. The silicon-based on-chip nanophotonic devices are becoming fundamental building blocks of the complex PICs. The device-design methods can be roughly divided into the forward design and inverse design methods. The forward design method, a mechanism-orientation method, relying on the intuition, experience, and physical effect, usually finds the good device performance by tuning small sets of the characteristic parameters. While remarkable success has been accomplished using the forward design method, the trial-and-error procedure of this method becomes computationally costly and time-inefficient due to the continuously increasing complexity of the nanophotonic devices. In addition, limited by the small parameter search space of the forward-designed nanophotonic device, the device generally occupies a large footprint and has a limited performance. Driven by the increasing demands for the high-density PICs in the practical applications, great progress has been made in the research of the inverse design method. The inverse design method, an objective-orientation method, has been proposed to overcome the shortcomings of the forward design method. The nanophotonic device with the compact footprint and low loss can be designed automatically by the inverse design method. The inverse design method provides a new avenue for the realization of photonic chips. The silicon-based on-chip power splitter has much wider scope of applications such as feedback circuits, tap-port power monitoring, and optical quantization. As a result, the power splitter has been attracting more and more attention in recent years. Although the forward-designed power splitters have good performances, their large footprints limit their further applications in the high-density and large-scale PICs. Inverse-designed silicon-based on-chip power splitters featuring compact footprint, low loss, multiple channels, and flexible functions, has become the key building block for realizing the high-density optical system. In this review, we outline the differences and connections between the forward design and inverse design methods, and classify the inverse design algorithms. In addition, we summarize the representative inverse-designed silicon-based on-chip power splitters in recent years, including multichannel power splitters, arbitrary-split-ratio power splitters, multimode power splitters, broadband power splitters, and multifunction power splitters. Finally, the summary and outlook are made on the development trend of the inverse design algorithms and the inverse-designed power splitters.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint