Zhu J Q, Wu S Y, Song S C, et al. Femtosecond laser printing of vanadium dioxide based optical meta-structures with tunable spectra engineering [J]. Opto-Electron Eng, 2023, 50(7): 230095. doi: 10.12086/oee.2023.230095
Citation: Zhu J Q, Wu S Y, Song S C, et al. Femtosecond laser printing of vanadium dioxide based optical meta-structures with tunable spectra engineering [J]. Opto-Electron Eng, 2023, 50(7): 230095. doi: 10.12086/oee.2023.230095

Femtosecond laser printing of vanadium dioxide based optical meta-structures with tunable spectra engineering

    Fund Project: Project supported by the National Key Research and Development Program of China (2022YFB2804304), and National Natural Science Foundation of China (62005104, 62275108)
More Information
  • Over the past few years, the field of micro-/nano- photonics has witnessed a surge in research focused on developing innovative optical devices that offer dynamic spectra engineering. Among the materials showing promise in this area, vanadium dioxide (VO2) can actively manipulate its refractive index via a phase transition process, enabling the dynamic manipulation of spectra. In this work, a photosensitive polymer nanocomposite with tunable effective refractive index is prepared by incorporating VO2 nanocrystals into methacrylate monomers, which takes advantages of the phase change characteristics of VO2 and the photopolymerization properties of the monomer. In addition, with the aid of the state-of-the-art femtosecond laser processing technology, highly precise two-dimensional and three-dimensional micro-/nano- optical structures embedded with the phase change capabilities outlined by VO2 are achieved. Fascinatingly, the spectra measurements via Fourier transform infrared spectrometer reveal that when subjected to the critical phase transition temperatures, the printed micro-/nano- structures will undergo a thermally induced phase transition of the VO2 nanocrystals embedded within them. Consequently, there is a discernible alteration in the effective refractive index of the optically functionalized structure, inspiring the dynamic manipulation of the short-band spectra.
  • 加载中
  • [1] 李佳群, 闫剑锋, 李欣, 等. 透明介质材料的超快激光微纳加工研究进展[J]. 中国激光, 2021, 48(2): 0202019. doi: 10.3788/CJL202148.0202019

    CrossRef Google Scholar

    Li J Q, Yan J F, Li X, et al. Research advancement on ultrafast laser microprocessing of transparent dielectrics[J]. Chin J Lasers, 2021, 48(2): 0202019. doi: 10.3788/CJL202148.0202019

    CrossRef Google Scholar

    [2] Capel A J, Rimington R P, Lewis M P, et al. 3D printing for chemical, pharmaceutical and biological applications[J]. Nat Rev Chem, 2018, 2(12): 422−436. doi: 10.1038/s41570-018-0058-y

    CrossRef Google Scholar

    [3] Kiefer P, Hahn V, Nardi M, et al. Sensitive photoresists for rapid multiphoton 3D laser micro‐and nanoprinting[J]. Adv Opt Mater, 2020, 8(19): 2000895. doi: 10.1002/adom.202000895

    CrossRef Google Scholar

    [4] Mayer F, Ryklin D, Wacker I, et al. 3D two‐photon microprinting of nanoporous architectures[J]. Adv Mater, 2020, 32(32): 2002044. doi: 10.1002/adma.202002044

    CrossRef Google Scholar

    [5] Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697−698. doi: 10.1038/35089130

    CrossRef Google Scholar

    [6] Lay C L, Koh C S L, Lee Y H, et al. Two-photon-assisted polymerization and reduction: emerging formulations and applications[J]. ACS Appl Mater Interfaces, 2020, 12(9): 10061−10079. doi: 10.1021/acsami.9b20911

    CrossRef Google Scholar

    [7] Hua J G, Liang S Y, Chen Q D, et al. Free‐form micro‐optics out of crystals: femtosecond laser 3D sculpturing[J]. Adv Funct Mater, 2022, 32(26): 2200255. doi: 10.1002/adfm.202200255

    CrossRef Google Scholar

    [8] Corrielli G, Crespi A, Osellame R. Femtosecond laser micromachining for integrated quantum photonics[J]. Nanophotonics, 2021, 10(15): 3789−3812. doi: 10.1515/nanoph-2021-0419

    CrossRef Google Scholar

    [9] Ovsianikov A, Ostendorf A, Chichkov B N. Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine[J]. Appl Surf Sci, 2007, 253(15): 6599−6602. doi: 10.1016/j.apsusc.2007.01.058

    CrossRef Google Scholar

    [10] Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947): 1513−1515. doi: 10.1126/science.1177031

    CrossRef Google Scholar

    [11] Jiang M L, Song S C, Li Y J, et al. 3D high precision laser printing of a flat nanofocalizer for subwavelength light spot array[J]. Opt Lett, 2021, 46(2): 356−359. doi: 10.1364/OL.413302

    CrossRef Google Scholar

    [12] Turner M D, Schröder-Turk G E, Gu M. Fabrication and characterization of three-dimensional biomimetic chiral composites[J]. Opt Express, 2011, 19(10): 10001−10008. doi: 10.1364/OE.19.010001

    CrossRef Google Scholar

    [13] McMillen B, Zhang B T, Chen K P, et al. Ultrafast laser fabrication of low-loss waveguides in chalcogenide glass with 0.65 dB/cm loss[J]. Opt Lett, 2012, 37(9): 1418−1420. doi: 10.1364/OL.37.001418

    CrossRef Google Scholar

    [14] Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nat Commun, 2013, 4: 2061. doi: 10.1038/ncomms3061

    CrossRef Google Scholar

    [15] Yee D W, Lifson M L, Edwards B W, et al. Additive manufacturing of 3D‐architected multifunctional metal oxides[J]. Adv Mater, 2019, 31(33): 1901345. doi: 10.1002/adma.201901345

    CrossRef Google Scholar

    [16] Liu Y J, Wang H, Ho J, et al. Structural color three-dimensional printing by shrinking photonic crystals[J]. Nat Commun, 2019, 10(1): 4340. doi: 10.1038/s41467-019-12360-w

    CrossRef Google Scholar

    [17] Saha S K, Wang D E, Nguyen V H, et al. Scalable submicrometer additive manufacturing[J]. Science, 2019, 366(6461): 105−109. doi: 10.1126/science.aax8760

    CrossRef Google Scholar

    [18] Kelly B E, Bhattacharya I, Heidari H, et al. Volumetric additive manufacturing via tomographic reconstruction[J]. Science, 2019, 363(6431): 1075−1079. doi: 10.1126/science.aau7114

    CrossRef Google Scholar

    [19] Jia Y C, Wang S X, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application[J]. Opto-Electron Adv, 2020, 3(10): 190042. doi: 10.29026/oea.2020.190042

    CrossRef Google Scholar

    [20] 姜美玲, 张明偲, 李向平, 等. 超分辨光存储研究进展[J]. 光电工程, 2019, 46(3): 180649. doi: 10.12086/oee.2019.180649

    CrossRef Google Scholar

    Jiang M L, Zhang M S, Li X P, et al. Research progress of super-resolution optical data storage[J]. Opto-Electron Eng, 2019, 46(3): 180649. doi: 10.12086/oee.2019.180649

    CrossRef Google Scholar

    [21] Vyatskikh A, Ng R C, Edwards B, et al. Additive manufacturing of high-refractive-index, nanoarchitected titanium dioxide for 3D dielectric photonic crystals[J]. Nano Lett, 2020, 20(5): 3513−3520. doi: 10.1021/acs.nanolett.0c00454

    CrossRef Google Scholar

    [22] Frölich A, Fischer J, Zebrowski T, et al. Titania woodpiles with complete three-dimensional photonic bandgaps in the visible[J]. Adv Mater, 2013, 25(26): 3588−3592. doi: 10.1002/adma.201300896

    CrossRef Google Scholar

    [23] Hossain M M, Gu M. Broadband optical absorptions in inversed woodpile metallic photonic crystals[J]. Opt Mater Express, 2012, 2(8): 996−1002. doi: 10.1364/OME.2.000996

    CrossRef Google Scholar

    [24] Vyatskikh A, Delalande S, Kudo A, et al. Additive manufacturing of 3D nano-architected metals[J]. Nat Commun, 2018, 9(1): 593. doi: 10.1038/s41467-018-03071-9

    CrossRef Google Scholar

    [25] Wen H J, Song S C, Xie F, et al. Great chiral fluorescence from the optical duality of silver nanostructures enabled by 3D laser printing[J]. Mater Horiz, 2020, 7(12): 3201−3208. doi: 10.1039/D0MH01207F

    CrossRef Google Scholar

    [26] Xu B B, Xia H, Niu L G, et al. Flexible nanowiring of metal on nonplanar substrates by femtosecond‐laser‐induced electroless plating[J]. Small, 2010, 6(16): 1762−1766. doi: 10.1002/smll.201000511

    CrossRef Google Scholar

    [27] Xiong W, Liu Y, Jiang L J, et al. Laser‐directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication[J]. Adv Mater, 2016, 28(10): 2002−2009. doi: 10.1002/adma.201505516

    CrossRef Google Scholar

    [28] Long J, Xiong W, Wei C Y R, et al. Directional assembly of ZnO nanowires via three-dimensional laser direct writing[J]. Nano Lett, 2020, 20(7): 5159−5166. doi: 10.1021/acs.nanolett.0c01378

    CrossRef Google Scholar

    [29] Xia H, Wang J, Tian Y, et al. Ferrofluids for fabrication of remotely controllable micro‐nanomachines by two‐photon polymerization[J]. Adv Mater, 2010, 22(29): 3204−3207. doi: 10.1002/adma.201000542

    CrossRef Google Scholar

    [30] 谢常青, 朱效立, 牛洁斌, 等. 微纳金属光学结构制备技术及应用[J]. 光学学报, 2011, 31(9): 0900128. doi: 10.3788/AOS201131.0900128

    CrossRef Google Scholar

    Xie C Q, Zhu X L, Niu J B, et al. Micro-and nano-metal structures fabrication technology and applications[J]. Acta Opt Sin, 2011, 31(9): 0900128. doi: 10.3788/AOS201131.0900128

    CrossRef Google Scholar

    [31] Fang W, Lei J, Zhang P D, et al. Multilevel phase supercritical lens fabricated by synergistic optical lithography[J]. Nanophotonics, 2020, 9(6): 1469−1477. doi: 10.1515/nanoph-2020-0064

    CrossRef Google Scholar

    [32] Golubev V G, Kurdyukov D A, Pevtsov A B, et al. Hysteresis of the photonic band gap in VO2 photonic crystal in the semiconductor-metal phase transition[J]. Semiconductors, 2002, 36(9): 1043−1047. doi: 10.1134/1.1507288

    CrossRef Google Scholar

    [33] Peter A P, Martens K, Rampelberg G, et al. Metal‐insulator transition in ALD VO2 ultrathin films and nanoparticles: morphological control[J]. Adv Funct Mater, 2015, 25(5): 679−686. doi: 10.1002/adfm.201402687

    CrossRef Google Scholar

    [34] Ke Y J, Wang S C, Liu G, et al. Vanadium dioxide: the multistimuli responsive material and its applications[J]. Small, 2018, 14(39): 1802025. doi: 10.1002/smll.201802025

    CrossRef Google Scholar

    [35] Hallman K A, Miller K J, Baydin A, et al. Sub‐picosecond response time of a hybrid VO2: silicon waveguide at 1550 nm[J]. Adv Opt Mater, 2021, 9(4): 2001721. doi: 10.1002/ADOM.202001721

    CrossRef Google Scholar

    [36] Wang H, Yang Y, Wang L P. Wavelength-tunable infrared metamaterial by tailoring magnetic resonance condition with VO2 phase transition[J]. J Appl Phys, 2014, 116(12): 123503. doi: 10.1063/1.4896525

    CrossRef Google Scholar

    [37] Han C R, Parrott E P J, Humbert G, et al. Broadband modulation of terahertz waves through electrically driven hybrid bowtie antenna-VO2 devices[J]. Sci Rep, 2017, 7(1): 12725. doi: 10.1038/s41598-017-13085-w

    CrossRef Google Scholar

    [38] Liu L, Kang L, Mayer T S, et al. Hybrid metamaterials for electrically triggered multifunctional control[J]. Nat Commun, 2016, 7: 13236. doi: 10.1038/ncomms13236

    CrossRef Google Scholar

    [39] Wang R, Yang W Y, Gao S, et al. Direct-writing of vanadium dioxide/polydimethylsiloxane three-dimensional photonic crystals with thermally tunable terahertz properties[J]. J Mater Chem C, 2019, 7(27): 8185−8191. doi: 10.1039/C8TC05759A

    CrossRef Google Scholar

    [40] Zhang Y B, Wu P H, Zhou Z G, et al. Study on temperature adjustable terahertz metamaterial absorber based on vanadium dioxide[J]. IEEE Access, 2020, 8: 85154−85161. doi: 10.1109/access.2020.2992700

    CrossRef Google Scholar

    [41] Hashemi M R M, Yang S H, Wang T Y, et al. Electronically-controlled beam-steering through vanadium dioxide metasurfaces[J]. Sci Rep, 2016, 6: 35439. doi: 10.1038/srep35439

    CrossRef Google Scholar

    [42] Driscoll T, Palit S, Qazilbash M M, et al. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide[J]. Appl Phys Lett, 2008, 93(2): 024101. doi: 10.1063/1.2956675

    CrossRef Google Scholar

    [43] Taylor S, Yang Y, Wang L P. Vanadium dioxide based Fabry-Perot emitter for dynamic radiative cooling applications[J]. J Quant Spectrosc Radiat Transfer, 2017, 197: 76−83. doi: 10.1016/j.jqsrt.2017.01.014

    CrossRef Google Scholar

    [44] Kim M K, Lee D S, Yang Y H, et al. Switchable diurnal radiative cooling by doped VO2[J]. Opto-Electron Adv, 2021, 4(5): 200006. doi: 10.29026/oea.2021.200006

    CrossRef Google Scholar

    [45] Long L S, Taylor S, Wang L P. Enhanced infrared emission by thermally switching the excitation of magnetic polariton with scalable microstructured VO2 metasurfaces[J]. ACS Photonics, 2020, 7(8): 2219−2227. doi: 10.1021/acsphotonics.0c00760

    CrossRef Google Scholar

    [46] Premkumar P A, Toeller M, Radu I P, et al. Process study and characterization of VO2 thin films synthesized by ALD using TEMAV and O3 precursors[J]. ECS J Solid State Sci Technol, 2012, 1(4): P169−P174. doi: 10.1149/2.009204jss

    CrossRef Google Scholar

    [47] Ji R, Hua Y N, Chen K, et al. A switchable metalens based on active tri-layer metasurface[J]. Plasmonics, 2019, 14(1): 165−171. doi: 10.1007/s11468-018-0789-0

    CrossRef Google Scholar

    [48] Yan D X, Meng M, Li J S, et al. Vanadium dioxide-assisted broadband absorption and linear-to-circular polarization conversion based on a single metasurface design for the terahertz wave[J]. Opt Express, 2020, 28(20): 29843−29854. doi: 10.1364/OE.404829

    CrossRef Google Scholar

    [49] Ding F, Zhong S M, Bozhevolnyi S I. Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies[J]. Adv Opt Mater, 2018, 6(9): 1701204. doi: 10.1002/adom.201701204

    CrossRef Google Scholar

    [50] Liu C, Wang S C, Zhou Y, et al. Index-tunable anti-reflection coatings: Maximizing solar modulation ability for vanadium dioxide-based smart thermochromic glazing[J]. J Alloys Compd, 2018, 731: 1197−1207. doi: 10.1016/j.jallcom.2017.10.045

    CrossRef Google Scholar

    [51] 杨港, 郭迎辉, 蒲明博, 等. 基于相关性选择的微型计算光谱探测技术[J]. 光电工程, 2022, 49(10): 220130. doi: 10.12086/oee.2022.220130

    CrossRef Google Scholar

    Yang G, Guo Y H, Pu M B, et al. Miniature computational spectral detection technology based on correlation value selection[J]. Opto-Electron Eng, 2022, 49(10): 220130. doi: 10.12086/oee.2022.220130

    CrossRef Google Scholar

    [52] 王宝利, 朱振峰. 无机纳米粉体的团聚与表面改性[J]. 陶瓷学报, 2006, 27(1): 135−138. doi: 10.3969/j.issn.1000-2278.2006.01.028

    CrossRef Google Scholar

    Wang B L, Zhu Z F. Accumulation and surface modification of inorganic nano-particles[J]. J Ceram, 2006, 27(1): 135−138. doi: 10.3969/j.issn.1000-2278.2006.01.028

    CrossRef Google Scholar

    [53] Werdehausen D, Staude I, Burger S, et al. Design rules for customizable optical materials based on nanocomposites[J]. Opt Mater Express, 2018, 8(11): 3456−3469. doi: 10.1364/OME.8.003456

    CrossRef Google Scholar

    [54] Song S C, Li Y J, Yao Z F, et al. 3D laser nanoprinting of optically functionalized structures with effective-refractive-index tailorable TiO2 nanoparticle-doped photoresin[J]. Nanomaterials, 2021, 12(1): 55. doi: 10.3390/nano12010055

    CrossRef Google Scholar

    [55] 夏小兰, 曾宪智, 宋世超, 等. 基于柱矢量光调控的纵向超分辨率准球形多焦点阵列[J]. 光电工程, 2022, 49(11): 220109. doi: 10.12086/oee.2022.220109

    CrossRef Google Scholar

    Xia X L, Zeng X Z, Song S C, et al. Longitudinal super-resolution spherical multi-focus array based on column vector light modulation[J]. Opto-Electron Eng, 2022, 49(11): 220109. doi: 10.12086/oee.2022.220109

    CrossRef Google Scholar

    [56] 曹耀宇, 谢飞, 张鹏达, 等. 双光束超分辨激光直写纳米加工技术[J]. 光电工程, 2017, 44(12): 1133−1145. doi: 10.3969/j.issn.1003-501X.2017.12.001

    CrossRef Google Scholar

    Cao Y Y, Xie F, Zhang P D, et al. Dual‐beam super‐resolution direct laser writing nanofabrication technology[J]. Opto-Electron Eng, 2017, 44(12): 1133−1145. doi: 10.3969/j.issn.1003-501X.2017.12.001

    CrossRef Google Scholar

    [57] 张心正, 夏峰, 许京军. 激光超衍射加工机理与研究进展[J]. 物理学报, 2017, 66(14): 144207. doi: 10.7498/aps.66.144207

    CrossRef Google Scholar

    Zhang X Z, Xia F, Xu J J. The mechanisms and research progress of laser fabrication technologies beyond diffraction limit[J]. Acta Phys Sin, 2017, 66(14): 144207. doi: 10.7498/aps.66.144207

    CrossRef Google Scholar

    [58] Yu H Y, Ding H B, Zhang Q, et al. Three-dimensional direct laser writing of PEGda hydrogel microstructures with low threshold power using a green laser beam[J]. Light Adv Manuf, 2021, 2(1): 31−38. doi: 10.37188/lam.2021.003

    CrossRef Google Scholar

    [59] Gao W, Chao H, Zheng Y C, et al. Ionic carbazole-based water-soluble two-photon photoinitiator and the fabrication of biocompatible 3D hydrogel scaffold[J]. ACS Appl Mater Interfaces, 2021, 13(24): 27796−27805. doi: 10.1021/acsami.1c02227

    CrossRef Google Scholar

  • Optically functionalized meta-structures exhibit salient advantages in controlling and manipulating light-matter interactions at the micro-/nano- scale. These structures could enable a wide range of processes such as spectral engineering, phase manipulation, polarization control, filtering, modulation, optical angular momentum generation, and polarization conversion. The spectral properties of these artificial meta-structures emerge from optical resonances, which strongly relies on the size, shape, and arrangement of the metallic or dielectric meta-structures. By tailoring these parameters, it is possible to efficiently manipulate the spectra and achieve tunable spectra, especially in the near-infrared and visible range. Integrating or embedding materials or structures with tunable optical properties could be a better approach to overcome the limitation of being stuck in a fixed morphological nanostructure. As a Mott transition material, vanadium dioxide (VO2) can directly change its refractive index due to the insulating-metallic transition (IMT) at ~68 °C, which has been proved by applying temperature, electrical fields, or light triggers in the visible, infrared, and other spectral regions. By utilizing the meta-structure of vanadium dioxide, the regulation of the effective refractive index of micro-/nano- optical devices can be realized. However, the traditional electron beam lithography and focused ion beam machining are more suitable for the fabrication of 2D meta-structures, which greatly limits the device design and the spectra engineering. Compared with these processing technologies, femtosecond laser direct writing technology that utilizes focused high-intensity photon beam for processing and has the advantages such as freeform fabrication, non-conductive substrate and non-contact, is expected to meet the requirements of micro-/nano- fabrication of the VO2-based meta-structures.

    In this paper, we demonstrate a feasible approach for fabricating meta-structures with flexibly manipulated effective refractive indices by incorporating VO2 nanoparticles in a matrix of acrylate resin. This approach involves tailoring the phase transition of VO2-based photosensitized nanocomposites. Through the implementation of this effective-refractive-index tailorable photosensitized nanocomposite, the direct printing of meta-structures can be achieved in a single attempt without the post-heat treatment. Therefore, it avoids the undesired structural shrinking and poor adhesion between the sample and the substrate that may occur in the traditional VO2 deposition methods like atomic layered deposition. By cross-linking polymerization reaction of the photosensitized nanocomposites, the VO2 nanocrystals are embedded into the potopolymerized structures. As a result, the optical response of the as-fabricated meat-structures could be dynamically tunable through the thermotropic phase transition of the VO2 nanocrystals in the nanocomposites. In addition, the broadband amplitude modulation of ~33% is observed in the three-dimensional hierarchical meta-structures. This strategy holds immense promise for future versatile utilization of the nanocrystal-based photosensitive nanocomposites to achieve numerous functionalities in meta-structures via femtosecond laser printing technique.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint