Citation: | Ye S S, Huang H B, Chen S Y, et al. 2.8 μm passively Q-switched mode-locked fiber laser using TiCN as saturable absorber[J]. Opto-Electron Eng, 2023, 50(7): 230107. doi: 10.12086/oee.2023.230107 |
[1] | Edwards G S. Mechanisms for soft-tissue ablation and the development of alternative medical lasers based on investigations with mid-infrared free-electron lasers[J]. Laser Photon Rev, 2009, 3(6): 545−555. doi: 10.1002/lpor.200810063 |
[2] | Mackanos M A, Simanovskii D M, Schriver K E, et al. Pulse-duration-dependent mid-infrared laser ablation for biological applications[J]. IEEE J Sel Top Quantum Electron, 2012, 18(4): 1514−1522. doi: 10.1109/JSTQE.2012.2188501 |
[3] | Zhu X S, Zhu G W, Wei C, et al. Pulsed fluoride fiber lasers at 3 μm [Invited][J]. J Opt Soc Am B, 2017, 34(3): A15−A28. doi: 10.1364/JOSAB.34.000A15 |
[4] | Frayssinous C, Fortin V, Bérubé J P, et al. Resonant polymer ablation using a compact 3.44 μm fiber laser[J]. J Mater Process Technol, 2018, 252: 813−820. doi: 10.1016/j.jmatprotec.2017.10.051 |
[5] | Hodgkinson J, Tatam R P. Optical gas sensing: a review[J]. Meas Sci Technol, 2013, 24(1): 012004. doi: 10.1088/0957-0233/24/1/012004 |
[6] | Vainio M, Merimaa M, Halonen L. Frequency-comb-referenced molecular spectroscopy in the mid-infrared region[J]. Opt Lett, 2011, 36(21): 4122−4124. doi: 10.1364/OL.36.004122 |
[7] | Baranwal N, Mahulikar S P. Review of Infrared signature suppression systems using optical blocking method[J]. Def Technol, 2019, 15(3): 432−439. doi: 10.1016/j.dt.2018.12.002 |
[8] | Tokita S, Murakami M, Shimizu S, et al. 12 W Q-switched Er: ZBLAN fiber laser at 2.8 µm[J]. Opt Lett, 2011, 36(15): 2812−2814. doi: 10.1364/OL.36.002812 |
[9] | Li J F, Hu T, Jackson S D. Dual wavelength Q-switched cascade laser[J]. Opt Lett, 2012, 37(12): 2208−2210. doi: 10.1364/OL.37.002208 |
[10] | Frerichs C, Tauermann T. Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 µm[J]. Electron Lett, 1994, 30(9): 706−707. doi: 10.1049/el:19940502 |
[11] | Tang P H, Qin Z P, Liu J, et al. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 µm[J]. Opt Lett, 2015, 40(21): 4855−4858. doi: 10.1364/OL.40.004855 |
[12] | Wang J T, Wei J C, Liu W J, et al. 2.8 µm passively Q-switched Er: ZBLAN fiber laser with an Sb saturable absorber mirror[J]. Appl Opt, 2020, 59(29): 9165−9168. doi: 10.1364/AO.402227 |
[13] | Paradis P, Boilard T, Fortin V, et al. Dysprosium-doped silica fiber as saturable absorber for mid-infrared pulsed all-fiber lasers[J]. Opt Express, 2022, 30(3): 3367−3378. doi: 10.1364/OE.448060 |
[14] | Bharathan G, Xu L Y, Jiang X T, et al. MXene and PtSe2 saturable absorbers for all-fibre ultrafast mid-infrared lasers[J]. Opt Mater Express, 2021, 11(7): 1898−1906. doi: 10.1364/OME.426862 |
[15] | Woodward R I, Kelleher E J R. 2D saturable absorbers for fibre lasers[J]. Appl Sci, 2015, 5(4): 1440−1456. doi: 10.3390/app5041440 |
[16] | Wei C, Zhu X S, Norwood R A, et al. Passively Q-switched 2.8-µm nanosecond fiber laser[J]. IEEE Photon Technol Lett, 2012, 24(19): 1741−1744. doi: 10.1109/LPT.2012.2215021 |
[17] | Qin Z P, Hai T, Xie G Q, et al. Black phosphorus Q-switched and mode-locked mid-infrared Er: ZBLAN fiber laser at 3.5 µm wavelength[J]. Opt Express, 2018, 26(7): 8224−8231. doi: 10.1364/OE.26.008224 |
[18] | Lü Y J, Wei C, Zhang H, et al. Wideband tunable passively Q-switched fiber laser at 2.8 µm using a broadband carbon nanotube saturable absorber[J]. Photon Res, 2019, 7(1): 14−18. doi: 10.1364/PRJ.7.000014 |
[19] | Li Q R, Wei C, Chi H, et al. Au nanocages saturable absorber for 3-µm mid-infrared pulsed fiber laser with a wide wavelength tuning range[J]. Opt Express, 2019, 27(21): 30350−30359. doi: 10.1364/OE.27.030350 |
[20] | Luo H Y, Li S Q, Wu X D, et al. Unlocking the ultrafast potential of gold nanowires for mode-locking in the mid-infrared region[J]. Opt Lett, 2021, 46(7): 1562−1565. doi: 10.1364/OL.419060 |
[21] | Qin Z P, Xie G Q, Zhang H, et al. Black phosphorus as saturable absorber for the Q-switched Er: ZBLAN fiber laser at 2.8 µm[J]. Opt Express, 2015, 23(19): 24713−24718. doi: 10.1364/OE.23.024713 |
[22] | Shakaty A A, Hmood J K, Mahdi B R, et al. Passively mode-locked erbium-doped fiber laser based on a nanodiamond saturable absorber[J]. Appl Opt, 2022, 61(14): 4047−4054. doi: 10.1364/AO.453751 |
[23] | Zhu G W, Zhu X S, Wang F Q, et al. Graphene mode-locked fiber laser at 2.8 µm[J]. IEEE Photon Technol Lett, 2016, 28(1): 7−10. doi: 10.1109/LPT.2015.2478836 |
[24] | Li J F, Luo H Y, Wang L L, et al. 3-μm mid-infrared pulse generation using topological insulator as the saturable absorber[J]. Opt Lett, 2015, 40(15): 3659−3662. doi: 10.1364/OL.40.003659 |
[25] | Chen Y, Jiang G B, Chen S Q, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J]. Opt Express, 2015, 23(10): 12823−12833. doi: 10.1364/OE.23.012823 |
[26] | Qin Z P, Xie G Q, Ma J G, et al. 2.8 µm all-fiber Q-switched and mode-locked lasers with black phosphorus[J]. Photon Res, 2018, 6(11): 1074−1078. doi: 10.1364/PRJ.6.001074 |
[27] | Set S Y, Yaguchi H, Tanaka Y, et al. Ultrafast fiber pulsed lasers incorporating carbon nanotubes[J]. IEEE J Sel Top Quantum Electron, 2004, 10(1): 137−146. doi: 10.1109/JSTQE.2003.822912 |
[28] | Wei C, Luo H Y, Zhang H, et al. Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber[J]. Laser Phys Lett, 2016, 13(10): 105108. doi: 10.1088/1612-2011/13/10/105108 |
[29] | Naguib M, Mochalin V N, Barsoum M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Adv Mater, 2014, 26(7): 992−1005. doi: 10.1002/adma.201304138 |
[30] | Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Adv Mater, 2011, 23(37): 4248−4253. doi: 10.1002/adma.201102306 |
[31] | Okubo M, Sugahara A, Kajiyama S, et al. MXene as a charge storage host[J]. Acc Chem Res, 2018, 51(3): 591−599. doi: 10.1021/acs.accounts.7b00481 |
[32] | Wang X F, Kajiyama S, Iinuma H, et al. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors[J]. Nat Commun, 2015, 6(1): 6544. doi: 10.1038/ncomms7544 |
[33] | Ran J R, Gao G P, Li F T, et al. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production[J]. Nat Commun, 2017, 8(1): 13907. doi: 10.1038/ncomms13907 |
[34] | Dong Y C, Chertopalov S, Maleski K, et al. Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes[J]. Adv Mater, 2018, 30(10): 1705714. doi: 10.1002/adma.201705714 |
[35] | Jiang X T, Liu S X, Liang W Y, et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH)[J]. Laser Photon Rev, 2018, 12(2): 1700229. doi: 10.1002/lpor.201700229 |
[36] | Izui H, Hattori K, Komiya Y. Dry sliding wear resistance characterization of titanium matrix composites reinforced with titanium carbonitrides[J]. Mech Eng J, 2020, 7(5): 20−00029. doi: 10.1299/mej.20-00029 |
[37] | Akinribide O J, Obadele B A, Akinwamide S O, et al. Sintering of binderless TiN and TiCN-based cermet for toughness applications: processing techniques and mechanical properties: a review[J]. Ceram Int, 2019, 45(17): 21077−21090. doi: 10.1016/j.ceramint.2019.07.191 |
[38] | Zhou Y L, Wang N, Qu X H, et al. Arc-discharge synthesis of nitrogen-doped C embedded TiCN nanocubes with tunable dielectric/magnetic properties for electromagnetic absorbing applications[J]. Nanoscale, 2019, 11(42): 19994−20005. doi: 10.1039/C9NR07111C |
[39] | Peyqambarian M, Azadi M, Ahangarani S. An evaluation of the effects of the N2/Ar gas flux ratio on various characteristics of TiC0.3N0.7 nano-structure coatings on the cold work tool steel by pulsed DC-PACVD[J]. Surf Coat Technol, 2019, 366: 366−374. doi: 10.1016/j.surfcoat.2019.03.066 |
[40] | Ma X H, Liu S Q, Dai W W, et al. Application of TiCN on passively harmonic mode-locked ultrashort pulse generation at 2µm[J]. Opt Laser Technol, 2022, 150: 107986. doi: 10.1016/j.optlastec.2022.107986 |
[41] | Boyd R W. Nonlinear Optics[M]. 4th ed. New York: Academic Press, 2020. |
[42] | Hönninger C, Paschotta R, Morier-Genoud F, et al. Q-switching stability limits of continuous-wave passive mode locking[J]. J Opt Soc Am B, 1999, 16(1): 46−56. doi: 10.1364/JOSAB.16.000046 |
Mid-infrared laser around 3 μm waveband is widely used in biomedicine, material processing, spectroscopy and atmospheric remote sensing because its wavelength covers the absorption peaks of water molecules and many important gas molecules in the atmosphere. In order to construct compact fiber lasers, passive methods using saturable absorbers play an important role in the generation of mid-infrared pulsed lasing. Compared with traditional saturable absorbers, two-dimensional materials exhibit excellent optical properties, including high optical nonlinearity, ultrafast carrier dynamics and broadband saturation absorption, so the application of two-dimensional materials as saturable absorbers in mid-infrared pulsed lasers has attracted more and more attention. Titanium carbonitride (TiCN) belongs to titanium matrix composite material, which has high melting point, good thermal stability, good chemical stability and excellent electrical and thermal conductivity. Recently, TiCN has been demonstrated to function as a saturable absorber in the 2 μm waveband to achieve high-order harmonic mode-locking.
In this paper, a 2.8 μm passively Q-switched mode-locked erbium-doped fluoride fiber laser based on material saturable absorption is reported. By depositing TiCN particles directly onto the cavity mirror as the saturable absorber and using the vertical cleaved end of the fluoride fiber as an output coupler, the 2.8 μm pulsed fiber laser with a low laser threshold and a compact cavity structure is realized. When the pump power reaches 330 mW, the Q-switched mode-locked pulses begin to appear. With the continuous increase of pump power, the repetition frequency of the Q-switched mode-locked pulse envelope keeps monotonically increasing, while the pulse width shows a monotonically decreasing trend. Specifically, when the pump power increases from 330 mW to 500 mW, the repetition frequency of the Q-switched mode-locked pulse envelope increases from 14.34 kHz to 32.57 kHz, and the corresponding pulse width decreases from 10.51 μs to 5.40 μs. The mode-locked pulses inside the Q-switched pulse envelope appears stably and the repetition frequency does not show any change with the increase of pump power. The fundamental frequency of the mode-locked pulses is 28.6 MHz, and the central wavelength of the spectrum is 2778 nm. When the pump power is 650 mW, the maximum average output power of the laser reaches 25.83 mW, and the corresponding slope efficiency is about 7.2%. The results show that TiCN can be used as a stable saturable absorbent material for generating laser pulses in the mid-infrared waveband. It can be solved by using rare-earth ion doped fiber with higher gain and further optimizing the preparation process and deposition method of saturable absorber, which is expected to achieve the better mode-locked pulse characteristics.
(a) TEM image of TiCN; (b) Lattice fringes of TiCN under an HRTEM
Experimental setup of the passively QSML Er3+-doped fluoride fiber laser using TiCN as the saturable absorber
Oscilloscope traces of the QSML pulse trains measured under different pump power. (a) Pump power of 320 mW; (b) Pump power of 330 mW; (c) Pump power of 420 mW; (d) Pump power of 500 mW
(a) The repetition frequency and pulse duration of QSML pulse envelope as a function of pump power; (b) The average output power as a function of pump power
(a-b) Oscilloscope traces of the mode-locked pulse trains under different pump power; (c) The spectrum of the QSML pulses under the pump power of 500 mW; (c) The radio-frequency spectrum of the QSML pulses under the pump power of 500 mW