Ye S S, Huang H B, Chen S Y, et al. 2.8 μm passively Q-switched mode-locked fiber laser using TiCN as saturable absorber[J]. Opto-Electron Eng, 2023, 50(7): 230107. doi: 10.12086/oee.2023.230107
Citation: Ye S S, Huang H B, Chen S Y, et al. 2.8 μm passively Q-switched mode-locked fiber laser using TiCN as saturable absorber[J]. Opto-Electron Eng, 2023, 50(7): 230107. doi: 10.12086/oee.2023.230107

2.8 μm passively Q-switched mode-locked fiber laser using TiCN as saturable absorber

    Fund Project: Project supported by the National Key R&D Program of China (2022YFB2903102),Anhui Provincial Key Research and Development Plan (202104a07020010),National Natural Science Foundation of China (61875052, 62105087, 62105088, 61905059, 12204141), Natural Science Foundation of Anhui Province (2108085QF282, 1908085QF273),and National Undergraduate Training Program for Innovation and Entrepreneurship (202110359079)
More Information
  • A 2.8 μm passively Q-switched mode-locked erbium-doped fluoride fiber laser based on material saturable absorption is reported in this paper. By depositing TiCN particles directly onto the cavity mirror as the saturable absorber and using the vertical cleaved end of the fluoride fiber as an output coupler, the 2.8 μm pulsed fiber lasing with a low laser threshold and a compact cavity structure is realized. When the pump power reaches 330 mW, the Q-switched mode-locked pulses begin to appear. With the increase of pump power, the repetition frequency of Q-switched pulse envelope increases from 14.34 to 32.57 kHz, and the pulse width decreases from 10.51 to 5.40 μs. Under the pump power of 650 mW, the maximum average output power of 25.83 mW is obtained, and the slope efficiency is about 7.2%.
  • 加载中
  • [1] Edwards G S. Mechanisms for soft-tissue ablation and the development of alternative medical lasers based on investigations with mid-infrared free-electron lasers[J]. Laser Photon Rev, 2009, 3(6): 545−555. doi: 10.1002/lpor.200810063

    CrossRef Google Scholar

    [2] Mackanos M A, Simanovskii D M, Schriver K E, et al. Pulse-duration-dependent mid-infrared laser ablation for biological applications[J]. IEEE J Sel Top Quantum Electron, 2012, 18(4): 1514−1522. doi: 10.1109/JSTQE.2012.2188501

    CrossRef Google Scholar

    [3] Zhu X S, Zhu G W, Wei C, et al. Pulsed fluoride fiber lasers at 3   μm [Invited][J]. J Opt Soc Am B, 2017, 34(3): A15−A28. doi: 10.1364/JOSAB.34.000A15

    CrossRef Google Scholar

    [4] Frayssinous C, Fortin V, Bérubé J P, et al. Resonant polymer ablation using a compact 3.44 μm fiber laser[J]. J Mater Process Technol, 2018, 252: 813−820. doi: 10.1016/j.jmatprotec.2017.10.051

    CrossRef Google Scholar

    [5] Hodgkinson J, Tatam R P. Optical gas sensing: a review[J]. Meas Sci Technol, 2013, 24(1): 012004. doi: 10.1088/0957-0233/24/1/012004

    CrossRef Google Scholar

    [6] Vainio M, Merimaa M, Halonen L. Frequency-comb-referenced molecular spectroscopy in the mid-infrared region[J]. Opt Lett, 2011, 36(21): 4122−4124. doi: 10.1364/OL.36.004122

    CrossRef Google Scholar

    [7] Baranwal N, Mahulikar S P. Review of Infrared signature suppression systems using optical blocking method[J]. Def Technol, 2019, 15(3): 432−439. doi: 10.1016/j.dt.2018.12.002

    CrossRef Google Scholar

    [8] Tokita S, Murakami M, Shimizu S, et al. 12 W Q-switched Er: ZBLAN fiber laser at 2.8 µm[J]. Opt Lett, 2011, 36(15): 2812−2814. doi: 10.1364/OL.36.002812

    CrossRef Google Scholar

    [9] Li J F, Hu T, Jackson S D. Dual wavelength Q-switched cascade laser[J]. Opt Lett, 2012, 37(12): 2208−2210. doi: 10.1364/OL.37.002208

    CrossRef Google Scholar

    [10] Frerichs C, Tauermann T. Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 µm[J]. Electron Lett, 1994, 30(9): 706−707. doi: 10.1049/el:19940502

    CrossRef Google Scholar

    [11] Tang P H, Qin Z P, Liu J, et al. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 µm[J]. Opt Lett, 2015, 40(21): 4855−4858. doi: 10.1364/OL.40.004855

    CrossRef Google Scholar

    [12] Wang J T, Wei J C, Liu W J, et al. 2.8 µm passively Q-switched Er: ZBLAN fiber laser with an Sb saturable absorber mirror[J]. Appl Opt, 2020, 59(29): 9165−9168. doi: 10.1364/AO.402227

    CrossRef Google Scholar

    [13] Paradis P, Boilard T, Fortin V, et al. Dysprosium-doped silica fiber as saturable absorber for mid-infrared pulsed all-fiber lasers[J]. Opt Express, 2022, 30(3): 3367−3378. doi: 10.1364/OE.448060

    CrossRef Google Scholar

    [14] Bharathan G, Xu L Y, Jiang X T, et al. MXene and PtSe2 saturable absorbers for all-fibre ultrafast mid-infrared lasers[J]. Opt Mater Express, 2021, 11(7): 1898−1906. doi: 10.1364/OME.426862

    CrossRef Google Scholar

    [15] Woodward R I, Kelleher E J R. 2D saturable absorbers for fibre lasers[J]. Appl Sci, 2015, 5(4): 1440−1456. doi: 10.3390/app5041440

    CrossRef Google Scholar

    [16] Wei C, Zhu X S, Norwood R A, et al. Passively Q-switched 2.8-µm nanosecond fiber laser[J]. IEEE Photon Technol Lett, 2012, 24(19): 1741−1744. doi: 10.1109/LPT.2012.2215021

    CrossRef Google Scholar

    [17] Qin Z P, Hai T, Xie G Q, et al. Black phosphorus Q-switched and mode-locked mid-infrared Er: ZBLAN fiber laser at 3.5 µm wavelength[J]. Opt Express, 2018, 26(7): 8224−8231. doi: 10.1364/OE.26.008224

    CrossRef Google Scholar

    [18] Lü Y J, Wei C, Zhang H, et al. Wideband tunable passively Q-switched fiber laser at 2.8 µm using a broadband carbon nanotube saturable absorber[J]. Photon Res, 2019, 7(1): 14−18. doi: 10.1364/PRJ.7.000014

    CrossRef Google Scholar

    [19] Li Q R, Wei C, Chi H, et al. Au nanocages saturable absorber for 3-µm mid-infrared pulsed fiber laser with a wide wavelength tuning range[J]. Opt Express, 2019, 27(21): 30350−30359. doi: 10.1364/OE.27.030350

    CrossRef Google Scholar

    [20] Luo H Y, Li S Q, Wu X D, et al. Unlocking the ultrafast potential of gold nanowires for mode-locking in the mid-infrared region[J]. Opt Lett, 2021, 46(7): 1562−1565. doi: 10.1364/OL.419060

    CrossRef Google Scholar

    [21] Qin Z P, Xie G Q, Zhang H, et al. Black phosphorus as saturable absorber for the Q-switched Er: ZBLAN fiber laser at 2.8 µm[J]. Opt Express, 2015, 23(19): 24713−24718. doi: 10.1364/OE.23.024713

    CrossRef Google Scholar

    [22] Shakaty A A, Hmood J K, Mahdi B R, et al. Passively mode-locked erbium-doped fiber laser based on a nanodiamond saturable absorber[J]. Appl Opt, 2022, 61(14): 4047−4054. doi: 10.1364/AO.453751

    CrossRef Google Scholar

    [23] Zhu G W, Zhu X S, Wang F Q, et al. Graphene mode-locked fiber laser at 2.8 µm[J]. IEEE Photon Technol Lett, 2016, 28(1): 7−10. doi: 10.1109/LPT.2015.2478836

    CrossRef Google Scholar

    [24] Li J F, Luo H Y, Wang L L, et al. 3-μm mid-infrared pulse generation using topological insulator as the saturable absorber[J]. Opt Lett, 2015, 40(15): 3659−3662. doi: 10.1364/OL.40.003659

    CrossRef Google Scholar

    [25] Chen Y, Jiang G B, Chen S Q, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J]. Opt Express, 2015, 23(10): 12823−12833. doi: 10.1364/OE.23.012823

    CrossRef Google Scholar

    [26] Qin Z P, Xie G Q, Ma J G, et al. 2.8 µm all-fiber Q-switched and mode-locked lasers with black phosphorus[J]. Photon Res, 2018, 6(11): 1074−1078. doi: 10.1364/PRJ.6.001074

    CrossRef Google Scholar

    [27] Set S Y, Yaguchi H, Tanaka Y, et al. Ultrafast fiber pulsed lasers incorporating carbon nanotubes[J]. IEEE J Sel Top Quantum Electron, 2004, 10(1): 137−146. doi: 10.1109/JSTQE.2003.822912

    CrossRef Google Scholar

    [28] Wei C, Luo H Y, Zhang H, et al. Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber[J]. Laser Phys Lett, 2016, 13(10): 105108. doi: 10.1088/1612-2011/13/10/105108

    CrossRef Google Scholar

    [29] Naguib M, Mochalin V N, Barsoum M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Adv Mater, 2014, 26(7): 992−1005. doi: 10.1002/adma.201304138

    CrossRef Google Scholar

    [30] Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Adv Mater, 2011, 23(37): 4248−4253. doi: 10.1002/adma.201102306

    CrossRef Google Scholar

    [31] Okubo M, Sugahara A, Kajiyama S, et al. MXene as a charge storage host[J]. Acc Chem Res, 2018, 51(3): 591−599. doi: 10.1021/acs.accounts.7b00481

    CrossRef Google Scholar

    [32] Wang X F, Kajiyama S, Iinuma H, et al. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors[J]. Nat Commun, 2015, 6(1): 6544. doi: 10.1038/ncomms7544

    CrossRef Google Scholar

    [33] Ran J R, Gao G P, Li F T, et al. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production[J]. Nat Commun, 2017, 8(1): 13907. doi: 10.1038/ncomms13907

    CrossRef Google Scholar

    [34] Dong Y C, Chertopalov S, Maleski K, et al. Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes[J]. Adv Mater, 2018, 30(10): 1705714. doi: 10.1002/adma.201705714

    CrossRef Google Scholar

    [35] Jiang X T, Liu S X, Liang W Y, et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH)[J]. Laser Photon Rev, 2018, 12(2): 1700229. doi: 10.1002/lpor.201700229

    CrossRef Google Scholar

    [36] Izui H, Hattori K, Komiya Y. Dry sliding wear resistance characterization of titanium matrix composites reinforced with titanium carbonitrides[J]. Mech Eng J, 2020, 7(5): 20−00029. doi: 10.1299/mej.20-00029

    CrossRef Google Scholar

    [37] Akinribide O J, Obadele B A, Akinwamide S O, et al. Sintering of binderless TiN and TiCN-based cermet for toughness applications: processing techniques and mechanical properties: a review[J]. Ceram Int, 2019, 45(17): 21077−21090. doi: 10.1016/j.ceramint.2019.07.191

    CrossRef Google Scholar

    [38] Zhou Y L, Wang N, Qu X H, et al. Arc-discharge synthesis of nitrogen-doped C embedded TiCN nanocubes with tunable dielectric/magnetic properties for electromagnetic absorbing applications[J]. Nanoscale, 2019, 11(42): 19994−20005. doi: 10.1039/C9NR07111C

    CrossRef Google Scholar

    [39] Peyqambarian M, Azadi M, Ahangarani S. An evaluation of the effects of the N2/Ar gas flux ratio on various characteristics of TiC0.3N0.7 nano-structure coatings on the cold work tool steel by pulsed DC-PACVD[J]. Surf Coat Technol, 2019, 366: 366−374. doi: 10.1016/j.surfcoat.2019.03.066

    CrossRef Google Scholar

    [40] Ma X H, Liu S Q, Dai W W, et al. Application of TiCN on passively harmonic mode-locked ultrashort pulse generation at 2µm[J]. Opt Laser Technol, 2022, 150: 107986. doi: 10.1016/j.optlastec.2022.107986

    CrossRef Google Scholar

    [41] Boyd R W. Nonlinear Optics[M]. 4th ed. New York: Academic Press, 2020.

    Google Scholar

    [42] Hönninger C, Paschotta R, Morier-Genoud F, et al. Q-switching stability limits of continuous-wave passive mode locking[J]. J Opt Soc Am B, 1999, 16(1): 46−56. doi: 10.1364/JOSAB.16.000046

    CrossRef Google Scholar

  • Mid-infrared laser around 3 μm waveband is widely used in biomedicine, material processing, spectroscopy and atmospheric remote sensing because its wavelength covers the absorption peaks of water molecules and many important gas molecules in the atmosphere. In order to construct compact fiber lasers, passive methods using saturable absorbers play an important role in the generation of mid-infrared pulsed lasing. Compared with traditional saturable absorbers, two-dimensional materials exhibit excellent optical properties, including high optical nonlinearity, ultrafast carrier dynamics and broadband saturation absorption, so the application of two-dimensional materials as saturable absorbers in mid-infrared pulsed lasers has attracted more and more attention. Titanium carbonitride (TiCN) belongs to titanium matrix composite material, which has high melting point, good thermal stability, good chemical stability and excellent electrical and thermal conductivity. Recently, TiCN has been demonstrated to function as a saturable absorber in the 2 μm waveband to achieve high-order harmonic mode-locking.

    In this paper, a 2.8 μm passively Q-switched mode-locked erbium-doped fluoride fiber laser based on material saturable absorption is reported. By depositing TiCN particles directly onto the cavity mirror as the saturable absorber and using the vertical cleaved end of the fluoride fiber as an output coupler, the 2.8 μm pulsed fiber laser with a low laser threshold and a compact cavity structure is realized. When the pump power reaches 330 mW, the Q-switched mode-locked pulses begin to appear. With the continuous increase of pump power, the repetition frequency of the Q-switched mode-locked pulse envelope keeps monotonically increasing, while the pulse width shows a monotonically decreasing trend. Specifically, when the pump power increases from 330 mW to 500 mW, the repetition frequency of the Q-switched mode-locked pulse envelope increases from 14.34 kHz to 32.57 kHz, and the corresponding pulse width decreases from 10.51 μs to 5.40 μs. The mode-locked pulses inside the Q-switched pulse envelope appears stably and the repetition frequency does not show any change with the increase of pump power. The fundamental frequency of the mode-locked pulses is 28.6 MHz, and the central wavelength of the spectrum is 2778 nm. When the pump power is 650 mW, the maximum average output power of the laser reaches 25.83 mW, and the corresponding slope efficiency is about 7.2%. The results show that TiCN can be used as a stable saturable absorbent material for generating laser pulses in the mid-infrared waveband. It can be solved by using rare-earth ion doped fiber with higher gain and further optimizing the preparation process and deposition method of saturable absorber, which is expected to achieve the better mode-locked pulse characteristics.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint