Wan Y Q, Liu W J, Lin R Y, et al. Research progress and applications of spectral imaging based on metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230139. doi: 10.12086/oee.2023.230139
Citation: Wan Y Q, Liu W J, Lin R Y, et al. Research progress and applications of spectral imaging based on metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230139. doi: 10.12086/oee.2023.230139

Research progress and applications of spectral imaging based on metasurfaces

    Fund Project: Project supported by the National Natural Science Foundation of China (11834007)
More Information
  • As a technology that combines spectral information with spatial information, spectral imaging has been widely concerned in scientific research and engineering applications. The optical field can be modulated efficiently by designing and optimizing the metasurfaces with subwavelength scale features. This article reviews the research progress of spectral imaging based on metasurfaces in recent years. Compared with traditional spectrometers, the compact spectrometers based on metasurfaces have the advantages of smaller volume and simpler optical path, and have greater application potential in small devices. According to different imaging mechanisms, spectral imaging based on metasurfaces can be divided into superdispersion, narrowband filter and broadband filter. The research progress of each imaging mechanism is introduced in detail, and then the application in practical scenarios is summarized. Finally, the development direction and application prospect of spectral imaging of metasurfaces are prospected.
  • 加载中
  • [1] Gowen A A, O'Donnell C P, Cullen P J, et al. Hyperspectral imaging - an emerging process analytical tool for food quality and safety control[J]. Trends Food Sci Technol, 2007, 18(12): 590−598. doi: 10.1016/j.jpgs.2007.06.001

    CrossRef Google Scholar

    [2] Delalieux S, Auwerkerken A, Verstraeten W W, et al. Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves[J]. Remote Sens, 2009, 1(4): 858−874. doi: 10.3390/rs1040858

    CrossRef Google Scholar

    [3] Kong L H, Yi D R, Sprigle S H, et al. Single sensor that outputs narrowband multispectral images[J]. J Biomed Opt, 2010, 15(1): 010502. doi: 10.1117/1.3277669

    CrossRef Google Scholar

    [4] Qi H R, Kong L H, Wang C, et al. A hand-held mosaicked multispectral imaging device for early stage pressure ulcer detection[J]. J Med Syst, 2011, 35(5): 895−904. doi: 10.1007/s10916-010-9508-x

    CrossRef Google Scholar

    [5] Khorasaninejad M, Chen W T, Zhu A Y, et al. Multispectral chiral imaging with a metalens[J]. Nano Lett, 2016, 16(7): 4595−4600. doi: 10.1021/acs.nanolett.6b01897

    CrossRef Google Scholar

    [6] Avrutsky I, Chaganti K, Salakhutdinov I, et al. Concept of a miniature optical spectrometer using integrated optical and micro-optical components[J]. Appl Opt, 2006, 45(30): 7811−7817. doi: 10.1364/AO.45.007811

    CrossRef Google Scholar

    [7] Lin H A, Huang C S. Linear variable filter based on a gradient grating period guided-mode resonance filter[J]. IEEE Photonics Technol Lett, 2016, 28(9): 1042−1045. doi: 10.1109/LPT.2016.2524655

    CrossRef Google Scholar

    [8] Le Coarer E, Blaize S, Benech P, et al. Wavelength-scale stationary-wave integrated Fourier-transform spectrometry[J]. Nat Photonics, 2007, 1(8): 473−478. doi: 10.1038/nphoton.2007.138

    CrossRef Google Scholar

    [9] Kita D M, Miranda B, Favela D, et al. High-performance and scalable on-chip digital Fourier transform spectroscopy[J]. Nat Commun, 2018, 9(1): 4405. doi: 10.1038/s41467-018-06773-2

    CrossRef Google Scholar

    [10] Vasiliev A, Malik A, Muneeb M, et al. On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators[J]. ACS Sens, 2016, 1(11): 1301−1307. doi: 10.1021/acssensors.6b00428

    CrossRef Google Scholar

    [11] Nitkowski A, Chen L, Lipson M. Cavity-enhanced on-chip absorption spectroscopy using microring resonators[J]. Opt Express, 2008, 16(16): 11930−11936. doi: 10.1364/OE.16.011930

    CrossRef Google Scholar

    [12] Hartmann W, Varytis P, Gehring H, et al. Waveguide-integrated broadband spectrometer based on tailored disorder[J]. Adv Opt Mater, 2020, 8(6): 1901602. doi: 10.1002/adom.201901602

    CrossRef Google Scholar

    [13] Falcone F, Lopetegi T, Laso M A G, et al. Babinet principle applied to the design of metasurfaces and metamaterials[J]. Phys Rev Lett, 2004, 93(19): 197401. doi: 10.1103/PhysRevLett.93.197401

    CrossRef Google Scholar

    [14] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [15] Dai J Y, Zhao J, Cheng Q, et al. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface[J]. Light Sci Appl, 2018, 7: 90. doi: 10.1038/s41377-018-0092-z

    CrossRef Google Scholar

    [16] Yuan Q, Ge Q, Chen L S, et al. Recent advanced applications of metasurfaces in multi-dimensions[J]. Nanophotonics, 2023, 12(13): 2295−2315. doi: 10.1515/nanoph-2022-0803

    CrossRef Google Scholar

    [17] 杨睿, 于千茜, 潘一苇, 等. 基于片上超表面的多路方向复用全息术[J]. 光电工程, 2022, 49(10): 220177. doi: 10.12086/oee.2022.220177

    CrossRef Google Scholar

    Yang R, Yu Q Q, Pan Y W, et al. Directional-multiplexing holography by on-chip metasurface[J]. Opto-Electron Eng, 2022, 49(10): 220177. doi: 10.12086/oee.2022.220177

    CrossRef Google Scholar

    [18] Wang S M, Wu P C, Su V C, et al. Broadband achromatic optical metasurface devices[J]. Nat Commun, 2017, 8(1): 187. doi: 10.1038/s41467-017-00166-7

    CrossRef Google Scholar

    [19] Wang S M, Wu P C, Su V C, et al. A broadband achromatic metalens in the visible[J]. Nat Nanotechnol, 2018, 13(3): 227−232. doi: 10.1038/s41565-017-0052-4

    CrossRef Google Scholar

    [20] Liu H C, Yang B, Guo Q H, et al. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram[J]. Sci Adv, 2017, 3(9): e1701477. doi: 10.1126/sciadv.1701477

    CrossRef Google Scholar

    [21] Yang Y H, Jing L Q, Zheng B, et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase[J]. Adv Mater, 2016, 28(32): 6866−6871. doi: 10.1002/adma.201600625

    CrossRef Google Scholar

    [22] Su V C, Chu C H, Sun G, et al. Advances in optical metasurfaces: fabrication and applications [invited][J]. Opt Express, 2018, 26(10): 13148−13182. doi: 10.1364/OE.26.013148

    CrossRef Google Scholar

    [23] Chen W T, Zhu A Y, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nat Nanotechnol, 2018, 13(3): 220−226. doi: 10.1038/s41565-017-0034-6

    CrossRef Google Scholar

    [24] Li K, Guo Y H, Pu M B, et al. Dispersion controlling meta-lens at visible frequency[J]. Opt Express, 2017, 25(18): 21419−21427. doi: 10.1364/OE.25.021419

    CrossRef Google Scholar

    [25] Xie T, Zhang F, Pu M B, et al. Integrated multispectral real-time imaging system based on metasurfaces[J]. Opt Express, 2020, 28(24): 36445−36454. doi: 10.1364/OE.411353

    CrossRef Google Scholar

    [26] Nishiwaki S, Nakamura T, Hiramoto M, et al. Efficient colour splitters for high-pixel-density image sensors[J]. Nat Photonics, 2013, 7(3): 240−246. doi: 10.1038/nphoton.2012.345

    CrossRef Google Scholar

    [27] Li Z Y, Palacios E, Butun S, et al. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting[J]. Nano Lett, 2015, 15(3): 1615−1621. doi: 10.1021/nl5041572

    CrossRef Google Scholar

    [28] Khorasaninejad M, Chen W T, Oh J, et al. Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy[J]. Nano Lett, 2016, 16(6): 3732−3737. doi: 10.1021/acs.nanolett.6b01097

    CrossRef Google Scholar

    [29] Zhu A Y, Chen W T, Khorasaninejad M, et al. Ultra-compact visible chiral spectrometer with meta-lenses[J]. APL Photonics, 2017, 2(3): 036103. doi: 10.1063/1.4974259

    CrossRef Google Scholar

    [30] Zhu A Y, Chen W T, Sisler J, et al. Compact aberration‐corrected spectrometers in the visible using dispersion‐tailored metasurfaces[J]. Adv Opt Mater, 2019, 7(14): 1801144. doi: 10.1002/adom.201801144

    CrossRef Google Scholar

    [31] Zhou Y, Chen R, Ma Y G. Characteristic analysis of compact spectrometer based on off-axis meta-lens[J]. Appl Sci, 2018, 8(3): 321. doi: 10.3390/app8030321

    CrossRef Google Scholar

    [32] Mohan A, Oberoi D. 4D data cubes from radio-interferometric spectroscopic snapshot imaging[J]. Sol Phys, 2017, 292(11): 168. doi: 10.1007/s11207-017-1193-1

    CrossRef Google Scholar

    [33] Gómez-Sánchez A, Marro M, Marsal M, et al. 3D and 4D image fusion: coping with differences in spectroscopic modes among hyperspectral images[J]. Anal Chem, 2020, 92(14): 9591−9602. doi: 10.1021/acs.analchem.0c00780

    CrossRef Google Scholar

    [34] Faraji-Dana M, Arbabi E, Arbabi A, et al. Compact folded metasurface spectrometer[J]. Nat Commun, 2018, 9(1): 4196. doi: 10.1038/s41467-018-06495-5

    CrossRef Google Scholar

    [35] Faraji-Dana M, Arbabi E, Kwon H, et al. Hyperspectral imager with folded metasurface optics[J]. ACS Photonics, 2019, 6(8): 2161−2167. doi: 10.1021/acsphotonics.9b00744

    CrossRef Google Scholar

    [36] Hua X, Wang Y J, Wang S M, et al. Ultra-compact snapshot spectral light-field imaging[J]. Nat Commun, 2022, 13(1): 2732. doi: 10.1038/s41467-022-30439-9

    CrossRef Google Scholar

    [37] Billuart J, Héron S, Loiseaux B, et al. Towards a metasurface adapted to hyperspectral imaging applications: from subwavelength design to definition of optical properties[J]. Opt Express, 2021, 29(21): 32764−32777. doi: 10.1364/OE.432969

    CrossRef Google Scholar

    [38] Chen Y F, Zhao R Z, He H Y, et al. Spectrum dispersion element based on the metasurface with parabolic phase[J]. Opt Express, 2022, 30(18): 32670−32679. doi: 10.1364/OE.469004

    CrossRef Google Scholar

    [39] Gao H, Fan X H, Wang Y X, et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction[J]. Opto-Electron Sci, 2023, 2(3): 220026. doi: 10.29026/oes.2023.220026

    CrossRef Google Scholar

    [40] Zhu J C, Zhou J K, Shen W M. Polarisation‐independent diffraction grating based on dielectric metasurface[J]. Electron Lett, 2019, 55(13): 756−759. doi: 10.1049/el.2019.1203

    CrossRef Google Scholar

    [41] Eichenholz J M, Barnett N, Juang Y, et al. Real-time megapixel multispectral bioimaging[J]. Proc SPIE, 2010, 7568: 75681L. doi: 10.1117/12.842563

    CrossRef Google Scholar

    [42] Wang S W, Chen X S, Lu W, et al. Integrated optical filter arrays fabricated by using the combinatorial etching technique[J]. Opt Lett, 2006, 31(3): 332−334. doi: 10.1364/OL.31.000332

    CrossRef Google Scholar

    [43] Wang S W, Li M, Xia C S, et al. 128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique[J]. Appl Phys B, 2007, 88(2): 281−284. doi: 10.1007/s00340-007-2726-3

    CrossRef Google Scholar

    [44] Wang S W, Xia C S, Chen X S, et al. Concept of a high-resolution miniature spectrometer using an integrated filter array[J]. Opt Lett, 2007, 32(6): 632−634. doi: 10.1364/OL.32.000632

    CrossRef Google Scholar

    [45] Xu T, Wu Y K, Luo X G, et al. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging[J]. Nat Commun, 2010, 1: 59. doi: 10.1038/ncomms1058

    CrossRef Google Scholar

    [46] Horie Y, Arbabi A, Arbabi E, et al. Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures[J]. Opt Express, 2016, 24(11): 11677−11682. doi: 10.1364/OE.24.011677

    CrossRef Google Scholar

    [47] McClung A, Samudrala S, Torfeh M, et al. Snapshot spectral imaging with parallel metasystems[J]. Sci Adv, 2020, 6(38): eabc7646. doi: 10.1126/sciadv.abc7646

    CrossRef Google Scholar

    [48] Jang W Y, Ku Z, Jeon J, et al. Experimental demonstration of adaptive infrared multispectral imaging using plasmonic filter array[J]. Sci Rep, 2016, 6: 34876. doi: 10.1038/srep34876

    CrossRef Google Scholar

    [49] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667−669. doi: 10.1038/35570

    CrossRef Google Scholar

    [50] Najiminaini M, Vasefi F, Kaminska B, et al. Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays[J]. Opt Express, 2010, 18(21): 22255−22270. doi: 10.1364/OE.18.022255

    CrossRef Google Scholar

    [51] Gan X T, Pervez N, Kymissis I, et al. A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array[J]. Appl Phys Lett, 2012, 100(23): 231104. doi: 10.1063/1.4724177

    CrossRef Google Scholar

    [52] Najiminaini M, Vasefi F, Kaminska B, et al. Nanohole-array-based device for 2D snapshot multispectral imaging[J]. Sci Rep, 2013, 3: 2589. doi: 10.1038/srep02589

    CrossRef Google Scholar

    [53] Kaplan A F, Xu T, Jay Guo L. High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography[J]. Appl Phys Lett, 2011, 99(14): 143111. doi: 10.1063/1.3647633

    CrossRef Google Scholar

    [54] Lee K, Choi H J, Son J, et al. THz near-field spectral encoding imaging using a rainbow metasurface[J]. Sci Rep, 2015, 5: 14403. doi: 10.1038/srep14403

    CrossRef Google Scholar

    [55] McCrindle I J H, Grant J P, Gouveia L C P, et al. Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material[J]. Phys Status Solidi (A), 2015, 212(8): 1625−1633. doi: 10.1002/pssa.201431943

    CrossRef Google Scholar

    [56] Lee J, Park Y, Kim H, et al. Compact meta-spectral image sensor for mobile applications[J]. Nanophotonics, 2022, 11(11): 2563−2569. doi: 10.1515/nanoph-2021-0706

    CrossRef Google Scholar

    [57] Chen Q, Das D, Chitnis D, et al. A CMOS image sensor integrated with plasmonic colour filters[J]. Plasmonics, 2012, 7(4): 695−699. doi: 10.1007/s11468-012-9360-6

    CrossRef Google Scholar

    [58] Miao L D, Qi H R. The design and evaluation of a generic method for generating mosaicked multispectral filter arrays[J]. IEEE Trans Image Process, 2006, 15(9): 2780−2791. doi: 10.1109/TIP.2006.877315

    CrossRef Google Scholar

    [59] Miao L D, Qi H R, Ramanath R, et al. Binary tree-based generic demosaicking algorithm for multispectral filter arrays[J]. IEEE Trans Image Process, 2006, 15(11): 3550−3558. doi: 10.1109/TIP.2006.877476

    CrossRef Google Scholar

    [60] Jang W Y, Hayat M M, Tyo J S, et al. Demonstration of bias-controlled algorithmic tuning of quantum dots in a well (DWELL) MidIR detectors[J]. IEEE J Quantum Electron, 2009, 45(6): 674−683. doi: 10.1109/JQE.2009.2013150

    CrossRef Google Scholar

    [61] Grant J, McCrindle I J H, Li C, et al. Multispectral metamaterial absorber[J]. Opt Lett, 2014, 39(5): 1227−1230. doi: 10.1364/OL.39.001227

    CrossRef Google Scholar

    [62] Chang A S P, Morton K J, Tan H, et al. Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography[J]. IEEE Photonics Technol Lett, 2007, 19(19): 1457−1459. doi: 10.1109/LPT.2007.903719

    CrossRef Google Scholar

    [63] Dao T D, Ishii S, Yokoyama T, et al. Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors[J]. ACS Photonics, 2016, 3(7): 1271−1278. doi: 10.1021/acsphotonics.6b00249

    CrossRef Google Scholar

    [64] Mauser K W, Kim S, Mitrovic S, et al. Resonant thermoelectric nanophotonics[J]. Nat Nanotechnol, 2017, 12(8): 770−775. doi: 10.1038/nnano.2017.87

    CrossRef Google Scholar

    [65] Wen S, Jin C Q, Yang Y M. Multilayer Huygens’ metasurface absorber toward snapshot multispectral imaging[J]. J Opt, 2021, 23(4): 044001. doi: 10.1088/2040-8986/abe7fa

    CrossRef Google Scholar

    [66] Yesilkoy F, Arvelo E R, Jahani Y, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nat Photonics, 2019, 13(6): 390−396. doi: 10.1038/s41566-019-0394-6

    CrossRef Google Scholar

    [67] Wang S S, Magnusson R. Theory and applications of guided-mode resonance filters[J]. Appl Opt, 1993, 32(14): 2606−2613. doi: 10.1364/AO.32.002606

    CrossRef Google Scholar

    [68] Tittl A, Leitis A, Liu M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393): 1105−1109. doi: 10.1126/science.aas9768

    CrossRef Google Scholar

    [69] Yao M D, Xiong Z W, Wang L Z, et al. Spectral- depth imaging with deep learning based reconstruction[J]. Opt Express, 2019, 27(26): 38312−38325. doi: 10.1364/OE.27.038312

    CrossRef Google Scholar

    [70] Wang Z J, Chen B, Lu R Y, et al. FusionNet: an unsupervised convolutional variational network for hyperspectral and multispectral image fusion[J]. IEEE Trans Image Process, 2020, 29: 7565−7577. doi: 10.1109/TIP.2020.3004261

    CrossRef Google Scholar

    [71] Chen Y Y, Zhu Y L, Britton W A, et al. Inverse design of ultracompact multi-focal optical devices by diffractive neural networks[J]. Opt Lett, 2022, 47(11): 2842−2845. doi: 10.1364/OL.460186

    CrossRef Google Scholar

    [72] Chang C C, Lee H N. On the estimation of target spectrum for filter-array based spectrometers[J]. Opt Express, 2008, 16(2): 1056−1061. doi: 10.1364/OE.16.001056

    CrossRef Google Scholar

    [73] Morawski R Z, Miekina A. Improving absorbance spectrum reconstruction via spectral data decomposition and pseudo-baseline optimization[J]. IEEE Trans Instrum Meas, 2009, 58(3): 691−697. doi: 10.1109/TIM.2008.2003328

    CrossRef Google Scholar

    [74] Chen Q, Chitnis D, Walls K, et al. CMOS photodetectors integrated with plasmonic color filters[J]. IEEE Photonics Technol Lett, 2012, 24(3): 197−199. doi: 10.1109/LPT.2011.2176333

    CrossRef Google Scholar

    [75] Yoon Y T, Lee S S, Lee B S. Nano-patterned visible wavelength filter integrated with an image sensor exploiting a 90-nm CMOS process[J]. Photonics Nanostruct - Fundam Appl, 2012, 10(1): 54−59. doi: 10.1016/j.photonics.2011.07.002

    CrossRef Google Scholar

    [76] Wang Z, Yi S, Chen A, et al. Single-shot on-chip spectral sensors based on photonic crystal slabs[J]. Nat Commun, 2019, 10(1): 1020. doi: 10.1038/s41467-019-08994-5

    CrossRef Google Scholar

    [77] Yang J W, Cui K Y, Cai X S, et al. Ultraspectral imaging based on metasurfaces with freeform shaped meta‐atoms[J]. Laser Photonics Rev, 2022, 16(7): 2100663. doi: 10.1002/lpor.202100663

    CrossRef Google Scholar

    [78] Wu X L, Gao D H, Chen Q, et al. Multispectral imaging via nanostructured random broadband filtering[J]. Opt Express, 2020, 28(4): 4859−4875. doi: 10.1364/OE.381609

    CrossRef Google Scholar

    [79] Rao S J, Huang Y D, Cui K Y, et al. Anti-spoofing face recognition using a metasurface-based snapshot hyperspectral image sensor[J]. Optica, 2022, 9(11): 1253−1259. doi: 10.1364/OPTICA.469653

    CrossRef Google Scholar

    [80] Wu Z P, Zhang Z Q, Xu Y J, et al. Random color filters based on an all-dielectric metasurface for compact hyperspectral imaging[J]. Opt Lett, 2022, 47(17): 4548−4551. doi: 10.1364/OL.469097

    CrossRef Google Scholar

    [81] Xiong J, Cai X S, Cui K Y, et al. Dynamic brain spectrum acquired by a real-time ultraspectral imaging chip with reconfigurable metasurfaces[J]. Optica, 2022, 9(5): 461−468. doi: 10.1364/OPTICA.440013

    CrossRef Google Scholar

    [82] Kurokawa U, Choi B I, Chang C C. Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization[J]. IEEE Sens J, 2011, 11(7): 1556−1563. doi: 10.1109/JSEN.2010.2103054

    CrossRef Google Scholar

    [83] Song H Y, Ma Y G, Han Y B, et al. Deep‐learned broadband encoding stochastic filters for computational spectroscopic instruments[J]. Adv Theory Simul, 2021, 4(3): 2000299. doi: 10.1002/adts.202000299

    CrossRef Google Scholar

    [84] Redding B, Liew S F, Sarma R, et al. Compact spectrometer based on a disordered photonic chip[J]. Nat Photonics, 2013, 7(9): 746−751. doi: 10.1038/nphoton.2013.190

    CrossRef Google Scholar

    [85] Wang Z, Yu Z F. Spectral analysis based on compressive sensing in nanophotonic structures[J]. Opt Express, 2014, 22(21): 25608−25614. doi: 10.1364/OE.22.025608

    CrossRef Google Scholar

    [86] Shaltout A M, Kim J, Boltasseva A, et al. Ultrathin and multicolour optical cavities with embedded metasurfaces[J]. Nat Commun, 2018, 9(1): 2673. doi: 10.1038/s41467-018-05034-6

    CrossRef Google Scholar

    [87] Yang T, Xu C, Ho H P, et al. Miniature spectrometer based on diffraction in a dispersive hole array[J]. Opt Lett, 2015, 40(13): 3217−3220. doi: 10.1364/OL.40.003217

    CrossRef Google Scholar

    [88] Liu D L, Li Z H. New nano-structure spectrometer by introducing gold nano-pillars for spectral reconstruction ability improvement[J]. Opt Commun, 2022, 502: 127419. doi: 10.1016/j.optcom.2021.127419

    CrossRef Google Scholar

    [89] Stewart J W, Akselrod G M, Smith D R, et al. Toward multispectral imaging with colloidal metasurface pixels[J]. Adv Mater, 2017, 29(6): 1602971. doi: 10.1002/adma.201602971

    CrossRef Google Scholar

    [90] Craig B, Shrestha V R, Meng J J, et al. Experimental demonstration of infrared spectral reconstruction using plasmonic metasurfaces[J]. Opt Lett, 2018, 43(18): 4481−4484. doi: 10.1364/OL.43.004481

    CrossRef Google Scholar

    [91] Xiao Y, Wei S, Xu J J, et al. Superconducting single-photon spectrometer with 3D-printed photonic-crystal filters[J]. ACS Photonics, 2022, 9(10): 3450−3456. doi: 10.1021/acsphotonics.2c01097

    CrossRef Google Scholar

    [92] Pelzman C, Cho S Y. Multispectral and polarimetric photodetection using a plasmonic metasurface[J]. J Appl Phys, 2018, 123(4): 043107. doi: 10.1063/1.5011167

    CrossRef Google Scholar

    [93] Pelzman C, Cho S Y. Plasmonic metasurface for simultaneous detection of polarization and spectrum[J]. Opt Lett, 2016, 41(6): 1213−1216. doi: 10.1364/OL.41.001213

    CrossRef Google Scholar

    [94] Yang J W, Cui K Y, Huang Y D, et al. Angle-insensitive spectral imaging based on topology-optimized plasmonic metasurfaces[Z]. arXiv: 2212.07813, 2022. https://arxiv.org/abs/2212.07813.

    Google Scholar

    [95] Liu T R, Fiore A. Designing open channels in random scattering media for on-chip spectrometers[J]. Optica, 2020, 7(8): 934−939. doi: 10.1364/OPTICA.391612

    CrossRef Google Scholar

    [96] Ma T G, Tobah M, Wang H Z, et al. Benchmarking deep learning-based models on nanophotonic inverse design problems[J]. Opto-Electron Sci, 2022, 1(1): 210012. doi: 10.29026/oes.2022.210012

    CrossRef Google Scholar

    [97] Zhao Q, Kang L, Du B, et al. Electrically tunable negative permeability metamaterials based on nematic liquid crystals[J]. Appl Phys Lett, 2007, 90(1): 011112. doi: 10.1063/1.2430485

    CrossRef Google Scholar

    [98] Song S C, Chen Q, Jin L, et al. Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber[J]. Nanoscale, 2013, 5(20): 9615−9619. doi: 10.1039/c3nr03505k

    CrossRef Google Scholar

    [99] Ebermann M, Neumann N, Hiller K, et al. Tunable MEMS Fabry-Pérot filters for infrared microspectrometers: a review[J]. Proc SPIE, 2016, 9760: 97600H. doi: 10.1117/12.2209288

    CrossRef Google Scholar

    [100] Cao T, Wei C W, Simpson R E, et al. Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies[J]. Sci Rep, 2014, 4: 3955. doi: 10.1038/srep03955

    CrossRef Google Scholar

    [101] Guo Z Y, Yang X, Shen F, et al. Active-tuning and polarization-independent absorber and sensor in the infrared region based on the phase change material of Ge2Sb2Te5 (GST)[J]. Sci Rep, 2018, 8(1): 12433. doi: 10.1038/s41598-018-30550-2

    CrossRef Google Scholar

    [102] Julian M N, Williams C, Borg S, et al. Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging[J]. Optica, 2020, 7(7): 746−754. doi: 10.1364/OPTICA.392878

    CrossRef Google Scholar

    [103] Tao C N, Zhu H Z, Zhang Y S, et al. Shortwave infrared single-pixel spectral imaging based on a GSST phase-change metasurface[J]. Opt Express, 2022, 30(19): 33697−33707. doi: 10.1364/OE.467994

    CrossRef Google Scholar

    [104] Aspnes D E. Local-field effects and effective-medium theory: a microscopic perspective[J]. Am J Phys, 1982, 50(8): 704−709. doi: 10.1119/1.12734

    CrossRef Google Scholar

    [105] Lee Y, Park M K, Kim S, et al. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator[J]. ACS Photonics, 2017, 4(8): 1954−1966. doi: 10.1021/acsphotonics.7b00249

    CrossRef Google Scholar

    [106] Shrestha V R, Craig B, Meng J J, et al. Mid- to long-wave infrared computational spectroscopy with a graphene metasurface modulator[J]. Sci Rep, 2020, 10(1): 5377. doi: 10.1038/s41598-020-61998-w

    CrossRef Google Scholar

    [107] Duempelmann L, Gallinet B, Novotny L. Multispectral imaging with tunable plasmonic filters[J]. ACS Photonics, 2017, 4(2): 236−241. doi: 10.1021/acsphotonics.6b01003

    CrossRef Google Scholar

    [108] Huang L Q, Luo R C, Liu X, et al. Spectral imaging with deep learning[J]. Light Sci Appl, 2022, 11(1): 61. doi: 10.1038/s41377-022-00743-6

    CrossRef Google Scholar

    [109] Hansen P C. Analysis of discrete ill-posed problems by means of the L-curve[J]. SIAM Rev, 1992, 34(4): 561−580. doi: 10.1137/1034115

    CrossRef Google Scholar

    [110] Golub G H, Heath M, Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter[J]. Technometrics, 1979, 21(2): 215−223. doi: 10.1080/00401706.1979.10489751

    CrossRef Google Scholar

    [111] August Y, Stern A. Compressive sensing spectrometry based on liquid crystal devices[J]. Opt Lett, 2013, 38(23): 4996−4999. doi: 10.1364/OL.38.004996

    CrossRef Google Scholar

    [112] Jiang Y Y, Li G M, Ge H Y, et al. Adaptive compressed sensing algorithm for terahertz spectral image reconstruction based on residual learning[J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 2022, 281: 121586. doi: 10.1016/j.saa.2022.121586

    CrossRef Google Scholar

    [113] Zhang W Y, Song H Y, He X, et al. Deeply learned broadband encoding stochastic hyperspectral imaging[J]. Light Sci Appl, 2021, 10(1): 108. doi: 10.1038/s41377-021-00545-2

    CrossRef Google Scholar

    [114] Connolly P W R, Valli J, Shah Y D, et al. Simultaneous multi-spectral, single-photon fluorescence imaging using a plasmonic colour filter array[J]. J Biophotonics, 2021, 14(7): e202000505. doi: 10.1002/jbio.202000505

    CrossRef Google Scholar

    [115] Meng J J, Weston L, Balendhran S, et al. Compact chemical identifier based on plasmonic metasurface integrated with microbolometer array[J]. Laser Photonics Rev, 2022, 16(4): 2100436. doi: 10.1002/lpor.202100436

    CrossRef Google Scholar

    [116] Kim G, Kim Y, Yun J, et al. Metasurface-driven full-space structured light for three-dimensional imaging[J]. Nat Commun, 2022, 13(1): 5920. doi: 10.1038/s41467-022-32117-2

    CrossRef Google Scholar

    [117] Yoon G, Lee D, Nam K T, et al. "Crypto-display" in dual-mode metasurfaces by simultaneous control of phase and spectral responses[J]. ACS Nano, 2018, 12(7): 6421−6428. doi: 10.1021/acsnano.8b01344

    CrossRef Google Scholar

    [118] Xu Z J, Li N X, Dong Y, et al. Metasurface-based subtractive color filter fabricated on a 12-inch glass wafer using a CMOS platform[J]. Photonics Res, 2021, 9(1): 13−20. doi: 10.1364/PRJ.404124

    CrossRef Google Scholar

    [119] Park H, Crozier K B. Multispectral imaging with vertical silicon nanowires[J]. Sci Rep, 2013, 3: 2460. doi: 10.1038/srep02460

    CrossRef Google Scholar

  • As the inherent characteristics of substances, spectra can be well used to identify the chemical composition of substances. Spectral imaging is a technology that combines spectral information with spatial information, having a wide range of applications in the fields of material analysis, food safety, medical diagnosis and biological imaging. However, traditional spectrometers are usually composed of prisms, gratings and other splitter devices. Limited by the diffraction effect, their spectral resolution is inversely proportional to the optical path. Therefore, they generally have the disadvantages of large size, high cost and complex optical path, and their application in compact devices is limited. Although there have been Fourier transform spectrometer, micro ring resonator and other research related to reducing spectrometer volume, they still have some problems, such as not being able to deal with very irregular spectral signals, spectral resolution is limited by manufacturing technology, , which cannot solve the problem that the spectrometer is difficult to compact.

    The metasurface is a kind of large area nano-structured surface composed of subwavelength small units, characterized by strong plasticity, high flexibility, and easy integration. The optical properties of the metasurface are determined by its micro - nano structure. By designing and optimizing the resonance phase, transmission phase, and geometric phase, metasurfaces can be used to effectively modulate the optical parameters of light on the plane, such as amplitude, phase, and polarization. Due to the excellent electromagnetic properties exhibited by metasurfaces, they can achieve complex functions that are difficult to achieve in conventional refraction and diffraction optics. The spectral imaging technology based on metasurfaces is an emerging optical imaging technology, which can perform high resolution and high sensitivity spectral imaging within micro imaging systems, providing an opportunity for achieving compact spectrometers. In this paper, we firstly discuss the spectral imaging of metasurfaces based on superdispersion, narrowband filtering and broadband filtering. Narrowband filtering includes three filtering methods: transmission type, absorption type and reflection type filtering, while broadband filtering includes two key steps: obtaining randomly distributed spectral curves and using spectral reconstruction algorithm to reconstruct spectrum. Compared with traditional spectrometers, the spectral imaging of metasurfaces based on superdispersion can reduce the volume of optical components to a certain extent, but it is difficult to balance integration and resolution. Narrowband filtering can be used for snapshot spectral cameras, but it has low light utilization and high technological requirements. Broadband filtering has high light utilization and strong spectral resolution, but it relies on spectral reconstruction algorithms, so it requires high algorithm requirements.Then, the recent applications of the spectral imaging based on metasurfaces are introduced, such as biosensing, medical diagnostics, and face recognition. Finally, the development direction and application prospects of the spectral imaging based on metasurfaces are prospected.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint