Chen Y Z, Pan W K, Jin X Y, et al. Far-field radiation manipulations of on-chip optical near-fields[J]. Opto-Electron Eng, 2023, 50(8): 230173. doi: 10.12086/oee.2023.230173
Citation: Chen Y Z, Pan W K, Jin X Y, et al. Far-field radiation manipulations of on-chip optical near-fields[J]. Opto-Electron Eng, 2023, 50(8): 230173. doi: 10.12086/oee.2023.230173

Far-field radiation manipulations of on-chip optical near-fields

    Fund Project: Project supported by National Key Research and Development Program of China (2020YFA0710100, 2022YFA1404700), National Natural Science Foundation of China (12221004, 62192771, 62005197), and Shanghai Science and Technology Committee (20JC1414601)
More Information
  • Surface wave (SW), as a kind of information or energy transportation platform, can find important applications in on-chip optical devices and systems. However, the efficient and free control from near-field SW to far-field propagation wave still suffers from fundamental challenges in the field of on-chip photonics. This paper starts with an introduction of the basic principles for far-field radiation. Then it reviews the approaches to control the multiple parameters (e.g., phase, amplitude, and polarization state) of the SW’s radiation field based on the metasurface, as well as the complex far-field wavefront manipulation of the surface wave, such as the directional radiation, far-field focusing, special beam excitation, and holographic imaging. Finally, the main challenges and future developments of far-field radiation control of SWs are summarized.
  • 加载中
  • [1] Atabaki A H, Moazeni S, Pavanello F, et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip[J]. Nature, 2018, 556(7701): 349−354. doi: 10.1038/s41586-018-0028-z

    CrossRef Google Scholar

    [2] Barnes W L, Dereux A, Ebbesen T W. Surface Plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824−830. doi: 10.1038/nature01937

    CrossRef Google Scholar

    [3] Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency Plasmons in metallic Mesostructures[J]. Phys Rev Lett, 1996, 76(25): 4773−4776. doi: 10.1103/PhysRevLett.76.4773

    CrossRef Google Scholar

    [4] Shi J J, Li Y, Kang M, et al. Efficient second harmonic generation in a hybrid plasmonic waveguide by mode interactions[J]. Nano Lett, 2019, 19(6): 3838−3845. doi: 10.1021/acs.nanolett.9b01004

    CrossRef Google Scholar

    [5] Anker J N, Hall W P, Lyandres O, et al. Biosensing with plasmonic nanosensors[J]. Nat Mater, 2008, 7(6): 442−453. doi: 10.1038/nmat2162

    CrossRef Google Scholar

    [6] Zhang X, Liu Z W. Superlenses to overcome the diffraction limit[J]. Nat Mater, 2008, 7(6): 435−441. doi: 10.1038/nmat2141

    CrossRef Google Scholar

    [7] Zhang Y Q, Min C J, Dou X J, et al. Plasmonic tweezers: for nanoscale optical trapping and beyond[J]. Light Sci Appl, 2021, 10(1): 59. doi: 10.1038/s41377-021-00474-0

    CrossRef Google Scholar

    [8] Chen J, Li T, Wang S M, et al. Multiplexed holograms by surface Plasmon propagation and polarized scattering[J]. Nano Lett, 2017, 17(8): 5051−5055. doi: 10.1021/acs.nanolett.7b02295

    CrossRef Google Scholar

    [9] Sun J, Timurdogan E, Yaacobi A, et al. Large-scale nanophotonic phased array[J]. Nature, 2013, 493(7431): 195−199. doi: 10.1038/nature11727

    CrossRef Google Scholar

    [10] Jackson D R, Caloz C, Itoh T. Leaky-wave antennas[J]. Proc IEEE, 2012, 100(7): 2194−2206. doi: 10.1109/JPROC.2012.2187410

    CrossRef Google Scholar

    [11] Monticone F, Alù A. Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies[J]. Proc IEEE, 2015, 103(5): 793−821. doi: 10.1109/JPROC.2015.2399419

    CrossRef Google Scholar

    [12] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [13] Sun S L, He Q, Hao J M, et al. Electromagnetic metasurfaces: physics and applications[J]. Adv Opt Photonics, 2019, 11(2): 380. doi: 10.1364/AOP.11.000380

    CrossRef Google Scholar

    [14] Meng Y, Chen Y Z, Lu L H, et al. Optical meta-waveguides for integrated photonics and beyond[J]. Light Sci Appl, 2021, 10(1): 235. doi: 10.1038/s41377-021-00655-x

    CrossRef Google Scholar

    [15] Guan F X, Sun S L, Xiao S Y, et al. Scatterings from surface Plasmons to propagating waves at Plasmonic discontinuities[J]. Sci Bull, 2019, 64(12): 802−807. doi: 10.1016/j.scib.2019.05.003

    CrossRef Google Scholar

    [16] Guan F X, Sun S L, Ma S J, et al. Transmission/reflection behaviors of surface Plasmons at an interface between two Plasmonic systems[J]. J Phys Condens Matter, 2018, 30(11): 114002. doi: 10.1088/1361-648X/aaad2a

    CrossRef Google Scholar

    [17] 管福鑫, 董少华, 何琼, 等. 表面等离极化激元的散射及波前调控[J]. 物理学报, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614

    CrossRef Google Scholar

    Guan F X, Dong S H, He Q, et al. Scatterings and wavefront manipulations of surface Plasmon polaritons[J]. Acta Phys Sin, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614

    CrossRef Google Scholar

    [18] Pan W K, Wang Z, Chen Y Z, et al. High-efficiency generation of far-field spin-polarized wavefronts via designer surface wave metasurfaces[J]. Nanophotonics, 2022, 11(9): 2025−2036. doi: 10.1515/nanoph-2022-0006

    CrossRef Google Scholar

    [19] Lezec H J, Degiron A, Devaux E, et al. Beaming light from a subwavelength aperture[J]. Science, 2002, 297(5582): 820−822. doi: 10.1126/science.1071895

    CrossRef Google Scholar

    [20] Yu N F, Fan J, Wang Q J, et al. Small-divergence semiconductor lasers by plasmonic collimation[J]. Nat Photonics, 2008, 2(9): 564−570. doi: 10.1038/nphoton.2008.152

    CrossRef Google Scholar

    [21] Jun Y C, Huang K C Y, Brongersma M L. Plasmonic beaming and active control over fluorescent emission[J]. Nat Commun, 2011, 2(1): 283. doi: 10.1038/ncomms1286

    CrossRef Google Scholar

    [22] Martín-Moreno L, García-Vidal F J, Lezec H J, et al. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations[J]. Phys Rev Lett, 2003, 90(16): 167401. doi: 10.1103/PhysRevLett.90.167401

    CrossRef Google Scholar

    [23] Kim S, Lim Y, Kim H, et al. Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings[J]. Appl Phys Lett, 2008, 92(1): 013103. doi: 10.1063/1.2828716

    CrossRef Google Scholar

    [24] Tang X M, Li L, Li T, et al. Converting surface Plasmon to spatial Airy beam by graded grating on metal surface[J]. Opt Lett, 2013, 38(10): 1733−1735. doi: 10.1364/OL.38.001733

    CrossRef Google Scholar

    [25] Hao F H, Wang R, Wang J. Design and characterization of a micron-focusing plasmonic device[J]. Opt Express, 2010, 18(15): 15741−15746. doi: 10.1364/OE.18.015741

    CrossRef Google Scholar

    [26] Guan C Y, Ding M, Shi J H, et al. Compact all-fiber plasmonic Airy-like beam generator[J]. Opt Lett, 2014, 39(5): 1113−1116. doi: 10.1364/OL.39.001113

    CrossRef Google Scholar

    [27] Shi H F, Du C L, Luo X G. Focal length modulation based on a metallic slit surrounded with grooves in curved depths[J]. Appl Phys Lett, 2007, 91(9): 093111. doi: 10.1063/1.2776875

    CrossRef Google Scholar

    [28] Kumar M S, Piao X, Koo S, et al. Out of plane mode conversion and manipulation of Surface Plasmon Polariton waves[J]. Opt Express, 2010, 18(9): 8800−8805. doi: 10.1364/OE.18.008800

    CrossRef Google Scholar

    [29] Sun S L, He Q, Xiao S Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nat Mater, 2012, 11(5): 426−431. doi: 10.1038/nmat3292

    CrossRef Google Scholar

    [30] Xu J J, Zhang H C, Zhang Q, et al. Efficient conversion of surface-Plasmon-like modes to spatial radiated modes[J]. Appl Phys Lett, 2015, 106(2): 021102. doi: 10.1063/1.4905580

    CrossRef Google Scholar

    [31] Kianinejad A, Chen Z N, Qiu C W. A single-layered spoof-Plasmon-mode leaky wave antenna with consistent gain[J]. IEEE Trans Antennas Propag, 2017, 65(2): 681−687. doi: 10.1109/TAP.2016.2633161

    CrossRef Google Scholar

    [32] Wang D P, Wang G M, Cai T, et al. Planar spoof surface Plasmon Polariton antenna by using transmissive phase gradient metasurface[J]. Ann Phys, 2020, 532(6): 2000008. doi: 10.1002/andp.202000008

    CrossRef Google Scholar

    [33] Zhu H, Yin X, Chen L, et al. Directional beaming of light from a subwavelength metal slit with phase-gradient metasurfaces[J]. Sci Rep, 2017, 7(1): 12098. doi: 10.1038/s41598-017-09726-9

    CrossRef Google Scholar

    [34] Guo X X, Ding Y M, Chen X, et al. Molding free-space light with guided wave–driven metasurfaces[J]. Sci Adv, 2020, 6(29): eabb4142. doi: 10.1126/sciadv.abb4142

    CrossRef Google Scholar

    [35] 李涛, 陈绩, 祝世宁. 表面等离激元的传播操控: 从波束调制到近场全息[J]. 激光与光电子学进展, 2017, 54(5): 050002. doi: 10.3788/LOP54.050002

    CrossRef Google Scholar

    Li T, Chen J, Zhu S N. Manipulating surface Plasmon propagation: from beam modulation to near-field holography[J]. Laser Optoelectron Prog, 2017, 54(5): 050002. doi: 10.3788/LOP54.050002

    CrossRef Google Scholar

    [36] Li M, Hagberg M, Bengtsson J, et al. Optical waveguide fan-out elements using dislocated gratings for both outcoupling and phase shifting[J]. IEEE Photonics Technol Lett, 1996, 8(9): 1199−1201. doi: 10.1109/68.531835

    CrossRef Google Scholar

    [37] Chen Y H, Huang L, Gan L, et al. Wavefront shaping of infrared light through a subwavelength hole[J]. Light Sci Appl, 2012, 1(8): e26. doi: 10.1038/lsa.2012.26

    CrossRef Google Scholar

    [38] Chen Y H, Fu J X, Li Z Y. Surface wave holography on designing subwavelength metallic structures[J]. Opt Express, 2011, 19(24): 23908−23920. doi: 10.1364/OE.19.023908

    CrossRef Google Scholar

    [39] Huang Z Q, Marks D L, Smith D R. Out-of-plane computer-generated multicolor waveguide holography[J]. Optica, 2019, 6(2): 119−124. doi: 10.1364/OPTICA.6.000119

    CrossRef Google Scholar

    [40] Zheng S, Zhao Z Y, Zhang W F. Versatile generation and manipulation of phase-structured light beams using on-chip subwavelength holographic surface gratings[J]. Nanophotonics, 2023, 12(1): 55−70. doi: 10.1515/nanoph-2022-0513

    CrossRef Google Scholar

    [41] Dolev I, Epstein I, Arie A. Surface-Plasmon holographic beam shaping[J]. Phys Rev Lett, 2012, 109(20): 203903. doi: 10.1103/PhysRevLett.109.203903

    CrossRef Google Scholar

    [42] Ding Y M, Chen X, Duan Y, et al. Metasurface-dressed two-dimensional on-chip waveguide for free-space light field manipulation[J]. ACS Photonics, 2022, 9(2): 398−404. doi: 10.1021/acsphotonics.1c01577

    CrossRef Google Scholar

    [43] Fang B, Wang Z Z, Gao S L, et al. Manipulating guided wave radiation with integrated geometric metasurface[J]. Nanophotonics, 2022, 11(9): 1923−1930. doi: 10.1515/nanoph-2021-0466

    CrossRef Google Scholar

    [44] Xi K L, Fang B, Ding L, et al. Terahertz airy beam generated by Pancharatnam-Berry phases in guided wave-driven metasurfaces[J]. Opt Express, 2022, 30(10): 16699−16711. doi: 10.1364/OE.456699

    CrossRef Google Scholar

    [45] Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings[J]. Opt Lett, 2002, 27(13): 1141−1143. doi: 10.1364/OL.27.001141

    CrossRef Google Scholar

    [46] Guo W L, Wang G M, Hou H S, et al. Multi-functional coding metasurface for dual-band independent electromagnetic wave control[J]. Opt Express, 2019, 27(14): 19196−19211. doi: 10.1364/OE.27.019196

    CrossRef Google Scholar

    [47] Chen S Q, Liu W W, Li Z C, et al. Metasurface‐empowered optical multiplexing and multifunction[J]. Adv Mater, 2020, 32(3): 1805912. doi: 10.1002/adma.201805912

    CrossRef Google Scholar

    [48] Zhang L, Wu R Y, Bai G D, et al. Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves[J]. Adv Funct Mater, 2018, 28(33): 1802205. doi: 10.1002/adfm.201802205

    CrossRef Google Scholar

    [49] Wu P C, Zhu W M, Shen Z X, et al. Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface[J]. Adv Opt Mater, 2017, 5(7): 1600938. doi: 10.1002/adom.201600938

    CrossRef Google Scholar

    [50] Spägele C, Tamagnone M, Kazakov D, et al. Multifunctional wide-angle optics and lasing based on supercell metasurfaces[J]. Nat Commun, 2021, 12(1): 3787. doi: 10.1038/s41467-021-24071-2

    CrossRef Google Scholar

    [51] Zhou N, Zheng S, Cao X P, et al. Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6 × 3.6 μm2 footprint[J]. Sci Adv, 2019, 5(5): eaau9593. doi: 10.1126/sciadv.aau9593

    CrossRef Google Scholar

    [52] Ha Y L, Guo Y H, Pu M B, et al. Monolithic-integrated multiplexed devices based on metasurface-driven guided waves[J]. Adv Theory Simul, 2021, 4(2): 2000239. doi: 10.1002/adts.202000239

    CrossRef Google Scholar

    [53] Ha Y L, Guo Y H, Pu M B, et al. Minimized two- and four-step varifocal lens based on silicon photonic integrated nanoapertures[J]. Opt Express, 2020, 28(6): 7943−7952. doi: 10.1364/OE.386418

    CrossRef Google Scholar

    [54] 杨睿, 于千茜, 潘一苇, 等. 基于片上超表面的多路方向复用全息术[J]. 光电工程, 2022, 49(10): 220177. doi: 10.12086/oee.2022.220177

    CrossRef Google Scholar

    Yang R, Yu Q Q, Pan Y W, et al. Directional-multiplexing holography by on-chip metasurface[J]. Opto-Electron Eng, 2022, 49(10): 220177. doi: 10.12086/oee.2022.220177

    CrossRef Google Scholar

    [55] Liu Y, Shi Y Y, Wang Z J, et al. On-chip integrated metasystem with inverse-design wavelength Demultiplexing for augmented reality[J]. ACS Photonics, 2023, 10(5): 1268−1274. doi: 10.1021/acsphotonics.2c01823

    CrossRef Google Scholar

    [56] Fang B, Shu F Z, Wang Z Z, et al. On-chip non-uniform geometric metasurface for multi-channel wavefront manipulations[J]. Opt Lett, 2023, 48(11): 3119−3122. doi: 10.1364/OL.488475

    CrossRef Google Scholar

    [57] Shi Y Y, Wan C W, Dai C J, et al. Augmented reality enabled by on-chip meta-holography multiplexing[J]. Laser Photonics Rev, 2022, 16(6): 2100638. doi: 10.1002/lpor.202100638

    CrossRef Google Scholar

    [58] Yang R, Wan S, Shi Y Y, et al. Immersive tuning the guided waves for multifunctional on-chip metaoptics[J]. Laser Photonics Rev, 2022, 16(8): 2200127. doi: 10.1002/lpor.202200127

    CrossRef Google Scholar

    [59] Shi Y Y, Wan C W, Dai C J, et al. On-chip meta-optics for semi-transparent screen display in sync with AR projection[J]. Optica, 2022, 9(6): 670−676. doi: 10.1364/OPTICA.456463

    CrossRef Google Scholar

    [60] Zhang C L, Min C J, Du L P, et al. Perfect optical vortex enhanced surface Plasmon excitation for plasmonic structured illumination microscopy imaging[J]. Appl Phys Lett, 2016, 108(20): 201601. doi: 10.1063/1.4948249

    CrossRef Google Scholar

    [61] Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Phys Rev Lett, 2003, 91(23): 233901. doi: 10.1103/PhysRevLett.91.233901

    CrossRef Google Scholar

    [62] D’Ambrosio V, Nagali E, Walborn S P, et al. Complete experimental toolbox for alignment-free quantum communication[J]. Nat Commun, 2012, 3(1): 961. doi: 10.1038/ncomms1951

    CrossRef Google Scholar

    [63] Parigi V, D’Ambrosio V, Arnold C, et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory[J]. Nat Commun, 2015, 6(1): 7706. doi: 10.1038/ncomms8706

    CrossRef Google Scholar

    [64] Li L, Li T, Tang X M, et al. Plasmonic polarization generator in well-routed beaming[J]. Light Sci Appl, 2015, 4(9): e330. doi: 10.1038/lsa.2015.103

    CrossRef Google Scholar

    [65] Ji J T, Wang Z Z, Sun J C, et al. Metasurface-enabled on-chip manipulation of higher-order Poincaré sphere beams[J]. Nano Lett, 2023, 23(7): 2750−2757. doi: 10.1021/acs.nanolett.3c00021

    CrossRef Google Scholar

    [66] Zhang Y B, Li Z C, Liu W W, et al. On-chip multidimensional manipulation of far-field radiation with guided wave-driven metasurfaces[J]. Laser Photonics Rev, 2023, 17(9): 2300109. doi: 10.1002/lpor.202300109

    CrossRef Google Scholar

    [67] Huang H Q, Overvig A C, Xu Y, et al. Leaky-wave metasurfaces for integrated photonics[J]. Nat Nanotechnol, 2023, 18(6): 580−588. doi: 10.1038/s41565-023-01360-z

    CrossRef Google Scholar

    [68] Xu G Y, Overvig A, Kasahara Y, et al. Arbitrary aperture synthesis with nonlocal leaky-wave metasurface antennas[J]. Nat Commun, 2023, 14(1): 4380. doi: 10.1038/s41467-023-39818-2

    CrossRef Google Scholar

    [69] Luo X G, Ishihara T. Surface Plasmon resonant interference nanolithography technique[J]. Appl Phys Lett, 2004, 84(23): 4780−4782. doi: 10.1063/1.1760221

    CrossRef Google Scholar

    [70] Guo Y H, Pu M B, Zhao Z Y, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022−2029. doi: 10.1021/acsphotonics.6b00564

    CrossRef Google Scholar

    [71] Guo Y H, Pu M B, Li X, et al. Chip-integrated geometric metasurface as a novel platform for directional coupling and polarization sorting by spin-orbit interaction[J]. IEEE J Sel Top Quantum Electron, 2018, 24(6): 4700107. doi: 10.1109/jstqe.2018.2814744

    CrossRef Google Scholar

    [72] Pan W K, Wang Z, Chen Y Z, et al. Efficiently controlling near-field wavefronts via designer metasurfaces[J]. ACS Photonics, 2023, 10(7): 2423−2431. doi: 10.1021/acsphotonics.2c02009

    CrossRef Google Scholar

  • Surface waves (SWs), including surface plasmon polaritons (SPPs) and their equivalent counterparts such as spoof SPPs and guided SWs, are a kind of eigen electromagnetic modes localized at the surface of the metal or artificial structure. As the information or energy carrier, SWs can find numerous applications in integration-optics. On the other hand, achieving freely tailored far-field radiations from SWs has also attracted much attention from science and technology. However, due to the momentum mismatch issue between SWs and free-space propagating waves (PWs), a long-standing issue is to find appropriate approaches to efficiently link these different electromagnetic modes.

    One early representative device for radiation control of SWs is the leaky wave antenna (LWA), which can help people realize the directional radiation and the beam scanning of microwave radar signals. The travelling waves inside a waveguide of the LWA can be gradually radiated to the desired direction after suffering from some periodic Bragg modulations. Besides, people have also proposed to fabricate periodic textures surrounding a small aperture in a metal film to collimate the transmission light beam emerges from the aperture. Based on a similar concept, more intriguing effects of SW-PW radiation are also achieved, including far-field focusing, Airy beam, vortex beam generation, and so on. However, these Bragg devices still suffer from the issues of low efficiency, large size, and lack of degrees of freedom.

    Recently, the two-dimensional metasurfaces, i.e., a kind of ultrathin metamaterial constructed by planar meta-atoms with the predetermined electromagnetic wave properties, have been proposed as the high-efficiency, high-integration, and multi-function platforms for freely modulating the near- to far- field radiations. Excited by the impinging SWs, a series of carefully designed meta-atoms can serve as the sub-sources and radiate the far-field PWs with freely tailored amplitudes, phases, as well as polarizations. Based on the interference effect, such metasurfaces can thus construct the arbitrary scattering far-field patterns in deep subwavelength scale, including the directional far-field radiation, focusing, holograms, vortex/vectorial beam generations, and so on. Moreover, new degrees of freedom, such as the incident directions of SWs and the far-field polarizations of radiated PWs, can be further utilized to implement more functionalities in the single meta-device. Such meta-devices, featured by mini-size, easy-integration, and high-performance, are highly desired in future integration-optics applications, e.g., leaky antenna, virtual reality imaging, and micro projector.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint