Citation: | Chen Y Z, Pan W K, Jin X Y, et al. Far-field radiation manipulations of on-chip optical near-fields[J]. Opto-Electron Eng, 2023, 50(8): 230173. doi: 10.12086/oee.2023.230173 |
[1] | Atabaki A H, Moazeni S, Pavanello F, et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip[J]. Nature, 2018, 556(7701): 349−354. doi: 10.1038/s41586-018-0028-z |
[2] | Barnes W L, Dereux A, Ebbesen T W. Surface Plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824−830. doi: 10.1038/nature01937 |
[3] | Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency Plasmons in metallic Mesostructures[J]. Phys Rev Lett, 1996, 76(25): 4773−4776. doi: 10.1103/PhysRevLett.76.4773 |
[4] | Shi J J, Li Y, Kang M, et al. Efficient second harmonic generation in a hybrid plasmonic waveguide by mode interactions[J]. Nano Lett, 2019, 19(6): 3838−3845. doi: 10.1021/acs.nanolett.9b01004 |
[5] | Anker J N, Hall W P, Lyandres O, et al. Biosensing with plasmonic nanosensors[J]. Nat Mater, 2008, 7(6): 442−453. doi: 10.1038/nmat2162 |
[6] | Zhang X, Liu Z W. Superlenses to overcome the diffraction limit[J]. Nat Mater, 2008, 7(6): 435−441. doi: 10.1038/nmat2141 |
[7] | Zhang Y Q, Min C J, Dou X J, et al. Plasmonic tweezers: for nanoscale optical trapping and beyond[J]. Light Sci Appl, 2021, 10(1): 59. doi: 10.1038/s41377-021-00474-0 |
[8] | Chen J, Li T, Wang S M, et al. Multiplexed holograms by surface Plasmon propagation and polarized scattering[J]. Nano Lett, 2017, 17(8): 5051−5055. doi: 10.1021/acs.nanolett.7b02295 |
[9] | Sun J, Timurdogan E, Yaacobi A, et al. Large-scale nanophotonic phased array[J]. Nature, 2013, 493(7431): 195−199. doi: 10.1038/nature11727 |
[10] | Jackson D R, Caloz C, Itoh T. Leaky-wave antennas[J]. Proc IEEE, 2012, 100(7): 2194−2206. doi: 10.1109/JPROC.2012.2187410 |
[11] | Monticone F, Alù A. Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies[J]. Proc IEEE, 2015, 103(5): 793−821. doi: 10.1109/JPROC.2015.2399419 |
[12] | Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713 |
[13] | Sun S L, He Q, Hao J M, et al. Electromagnetic metasurfaces: physics and applications[J]. Adv Opt Photonics, 2019, 11(2): 380. doi: 10.1364/AOP.11.000380 |
[14] | Meng Y, Chen Y Z, Lu L H, et al. Optical meta-waveguides for integrated photonics and beyond[J]. Light Sci Appl, 2021, 10(1): 235. doi: 10.1038/s41377-021-00655-x |
[15] | Guan F X, Sun S L, Xiao S Y, et al. Scatterings from surface Plasmons to propagating waves at Plasmonic discontinuities[J]. Sci Bull, 2019, 64(12): 802−807. doi: 10.1016/j.scib.2019.05.003 |
[16] | Guan F X, Sun S L, Ma S J, et al. Transmission/reflection behaviors of surface Plasmons at an interface between two Plasmonic systems[J]. J Phys Condens Matter, 2018, 30(11): 114002. doi: 10.1088/1361-648X/aaad2a |
[17] | 管福鑫, 董少华, 何琼, 等. 表面等离极化激元的散射及波前调控[J]. 物理学报, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614 Guan F X, Dong S H, He Q, et al. Scatterings and wavefront manipulations of surface Plasmon polaritons[J]. Acta Phys Sin, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614 |
[18] | Pan W K, Wang Z, Chen Y Z, et al. High-efficiency generation of far-field spin-polarized wavefronts via designer surface wave metasurfaces[J]. Nanophotonics, 2022, 11(9): 2025−2036. doi: 10.1515/nanoph-2022-0006 |
[19] | Lezec H J, Degiron A, Devaux E, et al. Beaming light from a subwavelength aperture[J]. Science, 2002, 297(5582): 820−822. doi: 10.1126/science.1071895 |
[20] | Yu N F, Fan J, Wang Q J, et al. Small-divergence semiconductor lasers by plasmonic collimation[J]. Nat Photonics, 2008, 2(9): 564−570. doi: 10.1038/nphoton.2008.152 |
[21] | Jun Y C, Huang K C Y, Brongersma M L. Plasmonic beaming and active control over fluorescent emission[J]. Nat Commun, 2011, 2(1): 283. doi: 10.1038/ncomms1286 |
[22] | Martín-Moreno L, García-Vidal F J, Lezec H J, et al. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations[J]. Phys Rev Lett, 2003, 90(16): 167401. doi: 10.1103/PhysRevLett.90.167401 |
[23] | Kim S, Lim Y, Kim H, et al. Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings[J]. Appl Phys Lett, 2008, 92(1): 013103. doi: 10.1063/1.2828716 |
[24] | Tang X M, Li L, Li T, et al. Converting surface Plasmon to spatial Airy beam by graded grating on metal surface[J]. Opt Lett, 2013, 38(10): 1733−1735. doi: 10.1364/OL.38.001733 |
[25] | Hao F H, Wang R, Wang J. Design and characterization of a micron-focusing plasmonic device[J]. Opt Express, 2010, 18(15): 15741−15746. doi: 10.1364/OE.18.015741 |
[26] | Guan C Y, Ding M, Shi J H, et al. Compact all-fiber plasmonic Airy-like beam generator[J]. Opt Lett, 2014, 39(5): 1113−1116. doi: 10.1364/OL.39.001113 |
[27] | Shi H F, Du C L, Luo X G. Focal length modulation based on a metallic slit surrounded with grooves in curved depths[J]. Appl Phys Lett, 2007, 91(9): 093111. doi: 10.1063/1.2776875 |
[28] | Kumar M S, Piao X, Koo S, et al. Out of plane mode conversion and manipulation of Surface Plasmon Polariton waves[J]. Opt Express, 2010, 18(9): 8800−8805. doi: 10.1364/OE.18.008800 |
[29] | Sun S L, He Q, Xiao S Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nat Mater, 2012, 11(5): 426−431. doi: 10.1038/nmat3292 |
[30] | Xu J J, Zhang H C, Zhang Q, et al. Efficient conversion of surface-Plasmon-like modes to spatial radiated modes[J]. Appl Phys Lett, 2015, 106(2): 021102. doi: 10.1063/1.4905580 |
[31] | Kianinejad A, Chen Z N, Qiu C W. A single-layered spoof-Plasmon-mode leaky wave antenna with consistent gain[J]. IEEE Trans Antennas Propag, 2017, 65(2): 681−687. doi: 10.1109/TAP.2016.2633161 |
[32] | Wang D P, Wang G M, Cai T, et al. Planar spoof surface Plasmon Polariton antenna by using transmissive phase gradient metasurface[J]. Ann Phys, 2020, 532(6): 2000008. doi: 10.1002/andp.202000008 |
[33] | Zhu H, Yin X, Chen L, et al. Directional beaming of light from a subwavelength metal slit with phase-gradient metasurfaces[J]. Sci Rep, 2017, 7(1): 12098. doi: 10.1038/s41598-017-09726-9 |
[34] | Guo X X, Ding Y M, Chen X, et al. Molding free-space light with guided wave–driven metasurfaces[J]. Sci Adv, 2020, 6(29): eabb4142. doi: 10.1126/sciadv.abb4142 |
[35] | 李涛, 陈绩, 祝世宁. 表面等离激元的传播操控: 从波束调制到近场全息[J]. 激光与光电子学进展, 2017, 54(5): 050002. doi: 10.3788/LOP54.050002 Li T, Chen J, Zhu S N. Manipulating surface Plasmon propagation: from beam modulation to near-field holography[J]. Laser Optoelectron Prog, 2017, 54(5): 050002. doi: 10.3788/LOP54.050002 |
[36] | Li M, Hagberg M, Bengtsson J, et al. Optical waveguide fan-out elements using dislocated gratings for both outcoupling and phase shifting[J]. IEEE Photonics Technol Lett, 1996, 8(9): 1199−1201. doi: 10.1109/68.531835 |
[37] | Chen Y H, Huang L, Gan L, et al. Wavefront shaping of infrared light through a subwavelength hole[J]. Light Sci Appl, 2012, 1(8): e26. doi: 10.1038/lsa.2012.26 |
[38] | Chen Y H, Fu J X, Li Z Y. Surface wave holography on designing subwavelength metallic structures[J]. Opt Express, 2011, 19(24): 23908−23920. doi: 10.1364/OE.19.023908 |
[39] | Huang Z Q, Marks D L, Smith D R. Out-of-plane computer-generated multicolor waveguide holography[J]. Optica, 2019, 6(2): 119−124. doi: 10.1364/OPTICA.6.000119 |
[40] | Zheng S, Zhao Z Y, Zhang W F. Versatile generation and manipulation of phase-structured light beams using on-chip subwavelength holographic surface gratings[J]. Nanophotonics, 2023, 12(1): 55−70. doi: 10.1515/nanoph-2022-0513 |
[41] | Dolev I, Epstein I, Arie A. Surface-Plasmon holographic beam shaping[J]. Phys Rev Lett, 2012, 109(20): 203903. doi: 10.1103/PhysRevLett.109.203903 |
[42] | Ding Y M, Chen X, Duan Y, et al. Metasurface-dressed two-dimensional on-chip waveguide for free-space light field manipulation[J]. ACS Photonics, 2022, 9(2): 398−404. doi: 10.1021/acsphotonics.1c01577 |
[43] | Fang B, Wang Z Z, Gao S L, et al. Manipulating guided wave radiation with integrated geometric metasurface[J]. Nanophotonics, 2022, 11(9): 1923−1930. doi: 10.1515/nanoph-2021-0466 |
[44] | Xi K L, Fang B, Ding L, et al. Terahertz airy beam generated by Pancharatnam-Berry phases in guided wave-driven metasurfaces[J]. Opt Express, 2022, 30(10): 16699−16711. doi: 10.1364/OE.456699 |
[45] | Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings[J]. Opt Lett, 2002, 27(13): 1141−1143. doi: 10.1364/OL.27.001141 |
[46] | Guo W L, Wang G M, Hou H S, et al. Multi-functional coding metasurface for dual-band independent electromagnetic wave control[J]. Opt Express, 2019, 27(14): 19196−19211. doi: 10.1364/OE.27.019196 |
[47] | Chen S Q, Liu W W, Li Z C, et al. Metasurface‐empowered optical multiplexing and multifunction[J]. Adv Mater, 2020, 32(3): 1805912. doi: 10.1002/adma.201805912 |
[48] | Zhang L, Wu R Y, Bai G D, et al. Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves[J]. Adv Funct Mater, 2018, 28(33): 1802205. doi: 10.1002/adfm.201802205 |
[49] | Wu P C, Zhu W M, Shen Z X, et al. Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface[J]. Adv Opt Mater, 2017, 5(7): 1600938. doi: 10.1002/adom.201600938 |
[50] | Spägele C, Tamagnone M, Kazakov D, et al. Multifunctional wide-angle optics and lasing based on supercell metasurfaces[J]. Nat Commun, 2021, 12(1): 3787. doi: 10.1038/s41467-021-24071-2 |
[51] | Zhou N, Zheng S, Cao X P, et al. Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6 × 3.6 μm2 footprint[J]. Sci Adv, 2019, 5(5): eaau9593. doi: 10.1126/sciadv.aau9593 |
[52] | Ha Y L, Guo Y H, Pu M B, et al. Monolithic-integrated multiplexed devices based on metasurface-driven guided waves[J]. Adv Theory Simul, 2021, 4(2): 2000239. doi: 10.1002/adts.202000239 |
[53] | Ha Y L, Guo Y H, Pu M B, et al. Minimized two- and four-step varifocal lens based on silicon photonic integrated nanoapertures[J]. Opt Express, 2020, 28(6): 7943−7952. doi: 10.1364/OE.386418 |
[54] | 杨睿, 于千茜, 潘一苇, 等. 基于片上超表面的多路方向复用全息术[J]. 光电工程, 2022, 49(10): 220177. doi: 10.12086/oee.2022.220177 Yang R, Yu Q Q, Pan Y W, et al. Directional-multiplexing holography by on-chip metasurface[J]. Opto-Electron Eng, 2022, 49(10): 220177. doi: 10.12086/oee.2022.220177 |
[55] | Liu Y, Shi Y Y, Wang Z J, et al. On-chip integrated metasystem with inverse-design wavelength Demultiplexing for augmented reality[J]. ACS Photonics, 2023, 10(5): 1268−1274. doi: 10.1021/acsphotonics.2c01823 |
[56] | Fang B, Shu F Z, Wang Z Z, et al. On-chip non-uniform geometric metasurface for multi-channel wavefront manipulations[J]. Opt Lett, 2023, 48(11): 3119−3122. doi: 10.1364/OL.488475 |
[57] | Shi Y Y, Wan C W, Dai C J, et al. Augmented reality enabled by on-chip meta-holography multiplexing[J]. Laser Photonics Rev, 2022, 16(6): 2100638. doi: 10.1002/lpor.202100638 |
[58] | Yang R, Wan S, Shi Y Y, et al. Immersive tuning the guided waves for multifunctional on-chip metaoptics[J]. Laser Photonics Rev, 2022, 16(8): 2200127. doi: 10.1002/lpor.202200127 |
[59] | Shi Y Y, Wan C W, Dai C J, et al. On-chip meta-optics for semi-transparent screen display in sync with AR projection[J]. Optica, 2022, 9(6): 670−676. doi: 10.1364/OPTICA.456463 |
[60] | Zhang C L, Min C J, Du L P, et al. Perfect optical vortex enhanced surface Plasmon excitation for plasmonic structured illumination microscopy imaging[J]. Appl Phys Lett, 2016, 108(20): 201601. doi: 10.1063/1.4948249 |
[61] | Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Phys Rev Lett, 2003, 91(23): 233901. doi: 10.1103/PhysRevLett.91.233901 |
[62] | D’Ambrosio V, Nagali E, Walborn S P, et al. Complete experimental toolbox for alignment-free quantum communication[J]. Nat Commun, 2012, 3(1): 961. doi: 10.1038/ncomms1951 |
[63] | Parigi V, D’Ambrosio V, Arnold C, et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory[J]. Nat Commun, 2015, 6(1): 7706. doi: 10.1038/ncomms8706 |
[64] | Li L, Li T, Tang X M, et al. Plasmonic polarization generator in well-routed beaming[J]. Light Sci Appl, 2015, 4(9): e330. doi: 10.1038/lsa.2015.103 |
[65] | Ji J T, Wang Z Z, Sun J C, et al. Metasurface-enabled on-chip manipulation of higher-order Poincaré sphere beams[J]. Nano Lett, 2023, 23(7): 2750−2757. doi: 10.1021/acs.nanolett.3c00021 |
[66] | Zhang Y B, Li Z C, Liu W W, et al. On-chip multidimensional manipulation of far-field radiation with guided wave-driven metasurfaces[J]. Laser Photonics Rev, 2023, 17(9): 2300109. doi: 10.1002/lpor.202300109 |
[67] | Huang H Q, Overvig A C, Xu Y, et al. Leaky-wave metasurfaces for integrated photonics[J]. Nat Nanotechnol, 2023, 18(6): 580−588. doi: 10.1038/s41565-023-01360-z |
[68] | Xu G Y, Overvig A, Kasahara Y, et al. Arbitrary aperture synthesis with nonlocal leaky-wave metasurface antennas[J]. Nat Commun, 2023, 14(1): 4380. doi: 10.1038/s41467-023-39818-2 |
[69] | Luo X G, Ishihara T. Surface Plasmon resonant interference nanolithography technique[J]. Appl Phys Lett, 2004, 84(23): 4780−4782. doi: 10.1063/1.1760221 |
[70] | Guo Y H, Pu M B, Zhao Z Y, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022−2029. doi: 10.1021/acsphotonics.6b00564 |
[71] | Guo Y H, Pu M B, Li X, et al. Chip-integrated geometric metasurface as a novel platform for directional coupling and polarization sorting by spin-orbit interaction[J]. IEEE J Sel Top Quantum Electron, 2018, 24(6): 4700107. doi: 10.1109/jstqe.2018.2814744 |
[72] | Pan W K, Wang Z, Chen Y Z, et al. Efficiently controlling near-field wavefronts via designer metasurfaces[J]. ACS Photonics, 2023, 10(7): 2423−2431. doi: 10.1021/acsphotonics.2c02009 |
Surface waves (SWs), including surface plasmon polaritons (SPPs) and their equivalent counterparts such as spoof SPPs and guided SWs, are a kind of eigen electromagnetic modes localized at the surface of the metal or artificial structure. As the information or energy carrier, SWs can find numerous applications in integration-optics. On the other hand, achieving freely tailored far-field radiations from SWs has also attracted much attention from science and technology. However, due to the momentum mismatch issue between SWs and free-space propagating waves (PWs), a long-standing issue is to find appropriate approaches to efficiently link these different electromagnetic modes.
One early representative device for radiation control of SWs is the leaky wave antenna (LWA), which can help people realize the directional radiation and the beam scanning of microwave radar signals. The travelling waves inside a waveguide of the LWA can be gradually radiated to the desired direction after suffering from some periodic Bragg modulations. Besides, people have also proposed to fabricate periodic textures surrounding a small aperture in a metal film to collimate the transmission light beam emerges from the aperture. Based on a similar concept, more intriguing effects of SW-PW radiation are also achieved, including far-field focusing, Airy beam, vortex beam generation, and so on. However, these Bragg devices still suffer from the issues of low efficiency, large size, and lack of degrees of freedom.
Recently, the two-dimensional metasurfaces, i.e., a kind of ultrathin metamaterial constructed by planar meta-atoms with the predetermined electromagnetic wave properties, have been proposed as the high-efficiency, high-integration, and multi-function platforms for freely modulating the near- to far- field radiations. Excited by the impinging SWs, a series of carefully designed meta-atoms can serve as the sub-sources and radiate the far-field PWs with freely tailored amplitudes, phases, as well as polarizations. Based on the interference effect, such metasurfaces can thus construct the arbitrary scattering far-field patterns in deep subwavelength scale, including the directional far-field radiation, focusing, holograms, vortex/vectorial beam generations, and so on. Moreover, new degrees of freedom, such as the incident directions of SWs and the far-field polarizations of radiated PWs, can be further utilized to implement more functionalities in the single meta-device. Such meta-devices, featured by mini-size, easy-integration, and high-performance, are highly desired in future integration-optics applications, e.g., leaky antenna, virtual reality imaging, and micro projector.
Different principles for far-field radiation manipulations of surface wave [18]. (a) Grating couplers; (b) Gradient phase metasurfaces
Far-field directional radiation of surface wave by grating coupler. (a) Directional radiation of the extraordinary optical transmission light by the "Bull's eye" grating[19]; (b) Far-field focusing of the surface wave via surface grating[23]; (c) Airy-beam radiation via metal-slit grating[24]
Far-field directional radiation of surface wave by metasurface. (a) Directional radiation of microwave spoof surface plasmon mode[30]; (b) Directional radiation of microwave spoof surface plasmon mode based on a transmissive metasurface[32]; (c) Directional radiation of near infrared dielectric waveguide mode [34]
Complex far-field wavefront manipulations of surface wave. (a) Holographic grating for Airy beam and vortex beam generation excited by surface plasmon[41]; (b) Resonant phase metasurface for far-field holography of the dielectric waveguide mode[42]; (c) Geometric phase metasurface for complex far-field wavefront control of surface plasmon[18]; (d) Multifunctional far-field holography of lithium niobate waveguide mode by a series of geometric phase metasurfaces[43]
Multifunctional far-field manipulation of surface wave. (a) Optical path multiplexing dual-functional far-field radiation by two-dimensional composite grating[51]; (b) Multifunctional far-field holography based on composite phase modulation[57]
Far-field vectorial optical field manipulation of surface wave. (a) Far-field focusing of far-fields with controllable polarization state[64]; (b) Arbitrary vectorial vortex beam generation[65]; (c) Far-fields radiation with adjustable polarization [66]; (d) Full-parameter controllable vectorial optical field radiation[67]