Wang J W, Li K, Cheng M, et al. Research progress and applications of dynamically tunable metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230141. doi: 10.12086/oee.2023.230141
Citation: Wang J W, Li K, Cheng M, et al. Research progress and applications of dynamically tunable metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230141. doi: 10.12086/oee.2023.230141

Research progress and applications of dynamically tunable metasurfaces

    Fund Project: Project supported by the National Natural Science Foundation of China (62075093, 62211530039), the Guangdong Innovative and Entrepreneurial Research Team Program (2017ZT07C071), the Shenzhen Science and Technology Innovation Commission (JCYJ20220818100413030), and the Shenzhen Development and Reform Commission (XMHT20220114005)
More Information
  • Metasurfaces can manipulate the physical parameters of electromagnetic waves, including polarization, amplitude, and phase. The development of micro-nanofabrication technology further promotes the application prospects of metasurfaces in fields such as display, imaging, sensing, anti-counterfeiting, and optical modulation. However, most metasurfaces lack dynamic modulation, which restricts their scope of application. In recent years, the research on dynamic metasurfaces has made some progress. This review mainly introduces several mechanisms for dynamic metasurfaces, including electrical, thermal, optical, mechanical, and chemical modulations, and summarizes the research progress in the dynamic metasurfaces. In addition, this review also outlines the applications of dynamic metasurfaces in fields such as imaging, display, and optical modulations, and highlights their significance and prospects. Finally, this review summarizes the main problems and future development directions of currently tunable metasurfaces.
  • 加载中
  • [1] Yu N F, Aieta F, Genevet P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Lett, 2012, 12(12): 6328−6333. doi: 10.1021/nl303445u

    CrossRef Google Scholar

    [2] Lee G Y, Yoon G, Lee S Y, et al. Complete amplitude and phase control of light using broadband holographic metasurfaces[J]. Nanoscale, 2018, 10(9): 4237−4245. doi: 10.1039/C7NR07154J

    CrossRef Google Scholar

    [3] Zhang K, Yuan Y Y, Zhang D W, et al. Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region[J]. Opt Express, 2018, 26(2): 1351−1360. doi: 10.1364/OE.26.001351

    CrossRef Google Scholar

    [4] Maguid E, Yulevich I, Yannai M, et al. Multifunctional interleaved geometric-phase dielectric metasurfaces[J]. Light Sci Appl, 2017, 6(8): e17027. doi: 10.1038/lsa.2017.27

    CrossRef Google Scholar

    [5] Almeida E, Shalem G, Prior Y. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces[J]. Nat Commun, 2016, 7(1): 10367. doi: 10.1038/ncomms10367

    CrossRef Google Scholar

    [6] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77−79. doi: 10.1126/science.1058847

    CrossRef Google Scholar

    [7] Chu H C, Li Q, Liu B B, et al. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials[J]. Light Sci Appl, 2018, 7: 50. doi: 10.1038/s41377-018-0052-7

    CrossRef Google Scholar

    [8] Liu Y J, Hao Q Z, Smalley J S T, et al. A frequency-addressed plasmonic switch based on dual-frequency liquid crystals[J]. Appl Phys Lett, 2010, 97(9): 091101. doi: 10.1063/1.3483156

    CrossRef Google Scholar

    [9] Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Opt Lett, 2022, 27(13): 1141−1143. doi: 10.1364/OL.27.001141

    CrossRef Google Scholar

    [10] Sun S L, He Q, Xiao S Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nat Mater, 2012, 11(5): 426−431. doi: 10.1038/nmat3292

    CrossRef Google Scholar

    [11] Sun S L, Yang K Y, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Lett, 2012, 12(12): 6223−6229. doi: 10.1021/nl3032668

    CrossRef Google Scholar

    [12] Xie X, Pu M B, Liu K P, et al. High-efficiency and tunable circular-polarization beam splitting with a liquid-filled all-metallic catenary meta-mirror[J]. Adv Mater Technol, 2019, 4(7): 1900334. doi: 10.1002/admt.201900334

    CrossRef Google Scholar

    [13] Hu M, Chen J Y, Li Z Y, et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications[J]. Chem Soc Rev, 2006, 35(11): 1084−1094. doi: 10.1039/b517615h

    CrossRef Google Scholar

    [14] Liu Y J, Si G Y, Leong E S P, et al. Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays[J]. Adv Mater, 2012, 24(23): OP131−OP135. doi: 10.1002/adma.201104440

    CrossRef Google Scholar

    [15] Chen Y G, Kao T S, Ng B, et al. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances[J]. Opt Express, 2013, 21(11): 13691−13698. doi: 10.1364/OE.21.013691

    CrossRef Google Scholar

    [16] Iyer P P, Butakov N A, Schuller J A. Reconfigurable semiconductor phased-array metasurfaces[J]. ACS Photonics, 2015, 2(8): 1077−1084. doi: 10.1021/acsphotonics.5b00132

    CrossRef Google Scholar

    [17] Komar A, Fang Z, Bohn J, et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals[J]. Appl Phys Lett, 2017, 110(7): 071109. doi: 10.1063/1.4976504

    CrossRef Google Scholar

    [18] Wu P C, Pala R A, Shirmanesh G K, et al. Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces[J]. Nat Commun, 2019, 10(1): 3654. doi: 10.1038/s41467-019-11598-8

    CrossRef Google Scholar

    [19] Zou C J, Komar A, Fasold S, et al. Electrically tunable transparent displays for visible light based on dielectric metasurfaces[J]. ACS Photonics, 2019, 6(6): 1533−1540. doi: 10.1021/acsphotonics.9b00301

    CrossRef Google Scholar

    [20] Yan C, Yang K Y, Martin O J F. Fano-resonance-assisted metasurface for color routing[J]. Light Sci Appl, 2017, 6(7): e17017. doi: 10.1038/lsa.2017.17

    CrossRef Google Scholar

    [21] Wang C T, Hou H H, Chang P C, et al. Full-color reflectance-tunable filter based on liquid crystal cladded guided-mode resonant grating[J]. Opt Express, 2016, 24(20): 22892−22898. doi: 10.1364/OE.24.022892

    CrossRef Google Scholar

    [22] Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 2015, 10(4): 308−312. doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [23] Berini P. Optical beam steering using tunable metasurfaces[J]. ACS Photonics, 2022, 9(7): 2204−2218. doi: 10.1021/acsphotonics.2c00439

    CrossRef Google Scholar

    [24] Chen M K, Wu Y F, Feng L, et al. Principles, functions, and applications of optical meta-lens[J]. Adv Opt Mater, 2021, 9(4): 2001414. doi: 10.1002/adom.202001414

    CrossRef Google Scholar

    [25] Decker M, Kremers C, Minovich A, et al. Electro-optical switching by liquid-crystal controlled metasurfaces[J]. Opt Express, 2013, 21(7): 8879−8885. doi: 10.1364/OE.21.008879

    CrossRef Google Scholar

    [26] Buchnev O, Podoliak N, Kaczmarek M, et al. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch[J]. Adv Opt Mater, 2015, 3(5): 674−679. doi: 10.1002/adom.201400494

    CrossRef Google Scholar

    [27] Wang D C, Zhang L C, Gu Y H, et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface[J]. Sci Rep, 2015, 5(1): 15020. doi: 10.1038/srep15020

    CrossRef Google Scholar

    [28] Colburn S, Zhan A, Majumdar A. Metasurface optics for full-color computational imaging[J]. Sci Adv, 2018, 4(2): eaar2114. doi: 10.1126/sciadv.aar2114

    CrossRef Google Scholar

    [29] Kim J, Jeon D, Seong J, et al. Photonic encryption platform via dual-band vectorial metaholograms in the ultraviolet and visible[J]. ACS Nano, 2022, 16(3): 3546−3553. doi: 10.1021/acsnano.1c10100

    CrossRef Google Scholar

    [30] Nemati A, Wang Q, Hong M H, et al. Tunable and reconfigurable metasurfaces and metadevices[J]. Opto-Electron Adv, 2018, 1(5): 180009. doi: 10.29026/oea.2018.180009

    CrossRef Google Scholar

    [31] Du K, Barkaoui H, Zhang X D, et al. Optical metasurfaces towards multifunctionality and tunability[J]. Nanophotonics, 2022, 11(9): 1761−1781. doi: 10.1515/nanoph-2021-0684

    CrossRef Google Scholar

    [32] Chen W T, Yang K Y, Wang C M, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Lett, 2014, 14(1): 225−230. doi: 10.1021/nl403811d

    CrossRef Google Scholar

    [33] Wen D D, Yue F Y, Li G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nat Commun, 2015, 6(1): 8241. doi: 10.1038/ncomms9241

    CrossRef Google Scholar

    [34] Li S Q, Wang Z, Dong S H, et al. Helicity-delinked manipulations on surface waves and propagating waves by metasurfaces[J]. Nanophotonics, 2020, 9(10): 3473−3481. doi: 10.1515/nanoph-2020-0200

    CrossRef Google Scholar

    [35] Chen Y Z, Zheng X Y, Zhang X Y, et al. Efficient meta-couplers squeezing propagating light into on-chip subwavelength devices in a controllable way[J]. Nano Lett, 2023, 23(8): 3326−3333. doi: 10.1021/acs.nanolett.3c00310

    CrossRef Google Scholar

    [36] Wang Z, Yao Y, Pan W K, et al. Bifunctional manipulation of Terahertz waves with high-efficiency transmissive dielectric metasurfaces[J]. Adv Sci, 2023, 10(4): 2205499. doi: 10.1002/advs.202205499

    CrossRef Google Scholar

    [37] Ali A, Mitra A, Aïssa B. Metamaterials and metasurfaces: A review from the perspectives of materials, mechanisms and advanced metadevices[J]. Nanomaterials, 2022, 12(6): 1027. doi: 10.3390/nano12061027

    CrossRef Google Scholar

    [38] Ou X N, Zeng T B, Zhang Y, et al. Tunable polarization-multiplexed achromatic dielectric metalens[J]. Nano Lett, 2022, 22(24): 10049−10056. doi: 10.1021/acs.nanolett.2c03798

    CrossRef Google Scholar

    [39] Wen Y F, Zhang Q, He Q, et al. Shortening focal length of 100-mm aperture flat lens based on improved Sagnac interferometer and bifacial liquid crystal[J]. Adv Opt Mater, 2023, 11(16): 2300127. doi: 10.1002/adom.202300127

    CrossRef Google Scholar

    [40] Sabri R, Forouzmand A, Mosallaei H. Genetically optimized dual-wavelength all-dielectric metasurface based on double-layer epsilon-near-zero indium-tin-oxide films[J]. J Appl Phys, 2020, 128(22): 223101. doi: 10.1063/5.0026825

    CrossRef Google Scholar

    [41] Cai Z Q, Liu Y M. Near-infrared reflection modulation through electrical tuning of hybrid graphene metasurfaces[J]. Adv Opt Mater, 2022, 10(6): 2102135. doi: 10.1002/adom.202102135

    CrossRef Google Scholar

    [42] Tian J Y, Adamo G, Liu H L, et al. Phase-change perovskite microlaser with tunable polarization vortex[J]. Adv Mater, 2023, 35(1): 2207430. doi: 10.1002/ADMA.202207430

    CrossRef Google Scholar

    [43] Abdelraouf O A M, Wang Z Y, Liu H L, et al. Recent advances in tunable metasurfaces: materials, design, and applications[J]. ACS Nano, 2022, 16(9): 13339−13369. doi: 10.1021/acsnano.2c04628

    CrossRef Google Scholar

    [44] Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications[J]. Rep Prog Phys, 2016, 79(7): 076401. doi: 10.1088/0034-4885/79/7/076401

    CrossRef Google Scholar

    [45] Sun S L, He Q, Hao J M, et al. Electromagnetic metasurfaces: physics and applications[J]. Adv Opt Photonics, 2019, 11(2): 380−478. doi: 10.1364/AOP.11.000380

    CrossRef Google Scholar

    [46] Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J]. J Phys Chem B, 2003, 107(3): 668−677. doi: 10.1021/jp026731y

    CrossRef Google Scholar

    [47] Murray W A, Barnes W L. Plasmonic materials[J]. Adv Mater, 2007, 19(22): 3771−3782. doi: 10.1002/adma.200700678

    CrossRef Google Scholar

    [48] Franklin D, Chen Y, Vazquez-Guardado A, et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces[J]. Nat Commun, 2015, 6: 7337. doi: 10.1038/ncomms8337

    CrossRef Google Scholar

    [49] Li K, Wang J W, Cai W F, et al. Electrically switchable structural colors based on liquid-crystal-overlaid aluminum anisotropic nanoaperture arrays[J]. Opt Express, 2022, 30(18): 31913−31924. doi: 10.1364/OE.461887

    CrossRef Google Scholar

    [50] Zhang J, Wei X Z, Rukhlenko I D, et al. Electrically tunable metasurface with independent frequency and amplitude modulations[J]. ACS Photonics, 2020, 7(1): 265−271. doi: 10.1021/acsphotonics.9b01532

    CrossRef Google Scholar

    [51] Wang H T, Hao C L, Lin H, et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses[J]. Opto-Electron Adv, 2021, 4(2): 200031. doi: 10.29026/oea.2021.200031

    CrossRef Google Scholar

    [52] Ju L, Geng B S, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nat Nanotechnol, 2011, 6(10): 630−634. doi: 10.1038/nnano.2011.146

    CrossRef Google Scholar

    [53] Fang Z Y, Wang Y M, Schlather A E, et al. Active tunable absorption enhancement with graphene nanodisk arrays[J]. Nano Lett, 2014, 14(1): 299−304. doi: 10.1021/nl404042h

    CrossRef Google Scholar

    [54] Mou N L, Sun S L, Dong H X, et al. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces[J]. Opt Express, 2018, 26(9): 11728−11736. doi: 10.1364/OE.26.011728

    CrossRef Google Scholar

    [55] Nemati A, Wang Q, Ang N S S, et al. Ultra-high extinction-ratio light modulation by electrically tunable metasurface using dual epsilon-near-zero resonances[J]. Opto-Electron Adv, 2021, 4(7): 200088. doi: 10.29026/oea.2021.200088

    CrossRef Google Scholar

    [56] Zeng C, Lu H, Mao D, et al. Graphene-empowered dynamic metasurfaces and metadevices[J]. Opto-Electron Adv, 2022, 5(4): 200098. doi: 10.29026/oea.2022.200098

    CrossRef Google Scholar

    [57] Xiong K L, Emilsson G, Maziz A, et al. Plasmonic metasurfaces with conjugated polymers for flexible electronic paper in color[J]. Adv Mater, 2016, 28(45): 9956−9960. doi: 10.1002/adma.201603358

    CrossRef Google Scholar

    [58] Arbabi E, Arbabi A, Kamali S M, et al. MEMS-tunable dielectric metasurface lens[J]. Nat Commun, 2018, 9(1): 812. doi: 10.1038/s41467-018-03155-6

    CrossRef Google Scholar

    [59] Meng C, Thrane P C V, Ding F, et al. Dynamic piezoelectric mems-based optical metasurfaces[J]. Sci Adv, 2021, 7(26): eabg5639. doi: 10.1126/SCIADV.ABG5639

    CrossRef Google Scholar

    [60] Camurlu P. Polypyrrole derivatives for electrochromic applications[J]. RSC Adv, 2014, 4(99): 55832−55845. doi: 10.1039/C4RA11827H

    CrossRef Google Scholar

    [61] Abdollahramezani S, Hemmatyar O, Taghinejad M, et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency[J]. Nat Commun, 2022, 13(1): 1696. doi: 10.1038/s41467-022-29374-6

    CrossRef Google Scholar

    [62] Rahmani M, Xu L, Miroshnichenko A E, et al. Reversible thermal tuning of all-dielectric metasurfaces[J]. Adv Funct Mater, 2017, 27(31): 1700580. doi: 10.1002/adfm.201700580.

    CrossRef Google Scholar

    [63] Sun J, Timurdogan E, Yaacobi A, Hosseini E S, et al. Large-scale nanophotonic phased array[J]. Nature, 2013, 493(7431): 195−199. doi: 10.1038/nature11727

    CrossRef Google Scholar

    [64] Ding L, Luo X S, Cheng L, et al. Electrically and thermally tunable smooth silicon metasurfaces for broadband terahertz antireflection[J]. Adv Opt Mater, 2018, 6(23): 1800928. doi: 10.1002/adom.201800928

    CrossRef Google Scholar

    [65] Kamali K Z, Xu L, Gagrani N, et al. Electrically programmable solid-state metasurfaces via flash localised heating[J]. Light Sci Appl, 2023, 12(1): 40. doi: 10.1038/s41377-023-01078-6

    CrossRef Google Scholar

    [66] Iyer P P, Pendharkar M, Palmstrøm C J, et al. Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates[J]. Nat Commun, 2017, 8(1): 472. doi: 10.1038/s41467-017-00615-3

    CrossRef Google Scholar

    [67] Driscoll T, Palit S, Qazilbash M M, et al. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide[J]. Appl Phys Lett, 2008, 93(2): 024101. doi: 10.1063/1.2956675

    CrossRef Google Scholar

    [68] Driscoll T, Kim H T, Chae B G, et al. Memory metamaterials[J]. Science, 2009, 325(5947): 1518−1521. doi: 10.1126/science.1176580

    CrossRef Google Scholar

    [69] Liu L, Kang L, Mayer T S, Werner D H. Hybrid metamaterials for electrically triggered multifunctional control[J]. Nat Commun, 2016, 7: 13236. doi: 10.1038/ncomms13236

    CrossRef Google Scholar

    [70] Tittl A, Michel A K U, Schäferling M, et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability[J]. Adv Mater, 2015, 27(31): 4597−4603. doi: 10.1002/adma.201502023

    CrossRef Google Scholar

    [71] Mou N L, Liu X L, Wei T, et al. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material[J]. Nanoscale, 2020, 12(9): 5374−5379. doi: 10.1039/C9NR07602F

    CrossRef Google Scholar

    [72] Yin X H, Steinle T, Huang L L, et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces[J]. Light Sci Appl, 2017, 6(7): e17016. doi: 10.1038/lsa.2017.16

    CrossRef Google Scholar

    [73] Zhang F, Xie X, Pu M B, et al. Multistate switching of photonic angular momentum coupling in phase-change metadevices[J]. Adv Mater, 2020, 32(39): 1908194. doi: 10.1002/adma.201908194

    CrossRef Google Scholar

    [74] Sautter J, Staude I, Decker M, et al. Active tuning of all-dielectric metasurfaces[J]. ACS Nano, 2015, 9(4): 4308−4315. doi: 10.1021/acsnano.5b00723

    CrossRef Google Scholar

    [75] Komar A, Paniagua-Domínguez R, Miroshnichenko A, et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces[J]. ACS Photonics, 2018, 5(5): 1742−1748. doi: 10.1021/acsphotonics.7b01343

    CrossRef Google Scholar

    [76] Kim I, Ansari M A, Mehmood M Q, et al. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators[J]. Adv Mater, 2020, 32(50): 2004664. doi: 10.1002/adma.202004664

    CrossRef Google Scholar

    [77] Padilla W J, Taylor A J, Highstrete C, et al. Dynamical electric and magnetic metamaterial response at terahertz frequencies[J]. Phys Rev Lett, 2006, 96(10): 107401. doi: 10.1103/PhysRevLett.96.107401

    CrossRef Google Scholar

    [78] Gu J Q, Singh R, Liu X J, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nat Commun, 2012, 3: 1151. doi: 10.1038/ncomms2153

    CrossRef Google Scholar

    [79] Shcherbakov M R, Liu S, Zubyuk V V, et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces[J]. Nat Commun, 2017, 8(1): 17. doi: 10.1038/s41467-017-00019-3

    CrossRef Google Scholar

    [80] Cong L Q, Srivastava Y K, Zhang H F, et al. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting[J]. Light Sci Appl, 2018, 7: 28. doi: 10.1038/s41377-018-0024-y

    CrossRef Google Scholar

    [81] Guo P J, Schaller R D, Ketterson J B, et al. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude[J]. Nat Photonics, 2016, 10(4): 267−273. doi: 10.1038/nphoton.2016.14

    CrossRef Google Scholar

    [82] Yang Y M, Kelley K, Sachet E, et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber[J]. Nat Photonics, 2017, 11(6): 390−395. doi: 10.1038/nphoton.2017.64

    CrossRef Google Scholar

    [83] Liu M K, Hwang H Y, Tao H, et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial[J]. Nature, 2012, 487(7407): 345−348. doi: 10.1038/nature11231

    CrossRef Google Scholar

    [84] Wang Q, Rogers E T F, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nat Photonics, 2016, 10(1): 60−65. doi: 10.1038/nphoton.2015.247

    CrossRef Google Scholar

    [85] Li P N, Yang X S, Maß T W W, et al. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material[J]. Nat Mater, 2016, 15(8): 870−875. doi: 10.1038/nmat4649

    CrossRef Google Scholar

    [86] Sharma M, Ellenbogen T. An all-optically controlled liquid-crystal plasmonic metasurface platform[J]. Laser Photonics Rev, 2020, 14(11): 2000253. doi: 10.1002/lpor.202000253

    CrossRef Google Scholar

    [87] Ren M X, Wu W, Cai W, et al. Reconfigurable metasurfaces that enable light polarization control by light[J]. Light Sci Appl, 2017, 6(6): e16254. doi: 10.1038/lsa.2016.254

    CrossRef Google Scholar

    [88] Liu J X, Zeng H, Cheng M, et al. Photoelastic plasmonic metasurfaces with ultra-large near infrared spectral tuning[J]. Mater Horiz, 2022, 9(3): 942−951. doi: 10.1039/D1MH01377G

    CrossRef Google Scholar

    [89] Cong L Q, Pitchappa P, Wu Y, et al. Active multifunctional microelectromechanical system metadevices: Applications in polarization control, wavefront deflection, and holograms[J]. Adv Opt Mater, 2017, 5(2): 1600716. doi: 10.1002/adom.201600716

    CrossRef Google Scholar

    [90] Shimura T, Kinoshita T, Koto Y, et al. Birefringent reconfigurable metasurface at visible wavelengths by MEMS nanograting[J]. Appl Phys Lett, 2018, 113(17): 171905. doi: 10.1063/1.5046976

    CrossRef Google Scholar

    [91] Roy T, Zhang S Y, Jung I W, et al. Dynamic metasurface lens based on MEMS technology[J]. APL Photonics, 2018, 3(2): 021302. doi: 10.1063/1.5018865

    CrossRef Google Scholar

    [92] Oshita M, Takahashi H, Ajiki Y, et al. Reconfigurable surface plasmon resonance photodetector with a MEMS deformable cantilever[J]. ACS Photonics, 2020, 7(3): 673−679. doi: 10.1021/acsphotonics.9b01510

    CrossRef Google Scholar

    [93] He S W, Yang H M, Jiang Y H, et al. Recent advances in MEMS metasurfaces and their applications on tunable lens[J]. Micromachines, 2019, 10(8): 505. doi: 10.3390/mi10080505

    CrossRef Google Scholar

    [94] Kamali S M, Arbabi E, Arbabi A, et al. Highly tunable elastic dielectric metasurface lenses[J]. Laser Photonics Rev, 2016, 10(6): 1002−1008. doi: 10.1002/lpor.201600144

    CrossRef Google Scholar

    [95] Malek S C, Ee H S, Agarwal R. Strain multiplexed metasurface holograms on a stretchable substrate[J]. Nano Lett, 2017, 17(6): 3641−3645. doi: 10.1021/acs.nanolett.7b00807

    CrossRef Google Scholar

    [96] Yuan S M, Chen A L, Wang Y S. Switchable multifunctional fish-bone elastic metasurface for transmitted plate wave modulation[J]. J Sound Vib, 2020, 470: 115168. doi: 10.1016/j.jsv.2019.115168

    CrossRef Google Scholar

    [97] Cao L Y, Yang Z C, Xu Y L, et al. Deflecting flexural wave with high transmission by using pillared elastic metasurface[J]. Smart Mater Struct, 2018, 27(7): 075051. doi: 10.1088/1361-665X/aaca51

    CrossRef Google Scholar

    [98] Cao L Y, Yang Z C, Xu Y L, et al. Disordered elastic metasurfaces[J]. Phys Rev Appl, 2020, 13(1): 014054. doi: 10.1103/PhysRevApplied.13.014054

    CrossRef Google Scholar

    [99] Kocer H, Durna Y, Kurt H, et al. Dynamic beam splitter employing an all-dielectric metasurface based on an elastic substrate[J]. Opt Lett, 2020, 45(13): 3521−3524. doi: 10.1364/OL.392872

    CrossRef Google Scholar

    [100] Lee S W, Oh J H. Single-layer elastic metasurface with double negativity for anomalous refraction[J]. J Phys D Appl Phys, 2020, 53(26): 265301. doi: 10.1088/1361-6463/ab7fd6

    CrossRef Google Scholar

    [101] Song S C, Ma X L, Pu M B, et al. Actively tunable structural color rendering with tensile substrate[J]. Adv Opt Mater, 2017, 5(9): 1600829. doi: 10.1002/adom.201600829

    CrossRef Google Scholar

    [102] Tao H, Strikwerda A C, Fan K, et al. Reconfigurable terahertz metamaterials[J]. Phys Rev Lett, 2009, 103(14): 147401. doi: 10.1103/PhysRevLett.103.147401

    CrossRef Google Scholar

    [103] Han Z L, Kohno K, Fujita H, et al. MEMS reconfigurable metamaterial for terahertz switchable filter and modulator[J]. Opt Express, 2014, 22(18): 21326−21339. doi: 10.1364/OE.22.021326

    CrossRef Google Scholar

    [104] Zhao X G, Schalch J, Zhang J D, et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies[J]. Optica, 2018, 5(3): 303−310. doi: 10.1364/OPTICA.5.000303

    CrossRef Google Scholar

    [105] Fu Y H, Liu A Q, Zhu W M, et al. A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators[J]. Adv Funct Mater, 2011, 21(18): 3589−3594. doi: 10.1002/adfm.201101087

    CrossRef Google Scholar

    [106] Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Lett, 2016, 16(4): 2818−2823. doi: 10.1021/acs.nanolett.6b00618

    CrossRef Google Scholar

    [107] Duan X Y, Kamin S, Liu N. Dynamic plasmonic colour display[J]. Nat Commun, 2017, 8(1): 14606. doi: 10.1038/ncomms14606

    CrossRef Google Scholar

    [108] Yu P, Li J X, Li X, et al. Generation of switchable singular beams with dynamic metasurfaces[J]. ACS Nano, 2019, 13(6): 7100−7106. doi: 10.1021/acsnano.9b02425

    CrossRef Google Scholar

    [109] Li J X, Chen Y Q, Hu Y Q, et al. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display[J]. ACS Nano, 2020, 14(7): 7892−7898. doi: 10.1021/acsnano.0c01469

    CrossRef Google Scholar

    [110] Li J X, Kamin S, Zheng G X, et al. Addressable metasurfaces for dynamic holography and optical information encryption[J]. Sci Adv, 2018, 4(6): eaar6768. doi: 10.1126/sciadv.aar6768

    CrossRef Google Scholar

    [111] Duan X Y, Kamin S, Sterl F, et al. Hydrogen-regulated chiral nanoplasmonics[J]. Nano Lett, 2016, 16(2): 1462−1466. doi: 10.1021/acs.nanolett.5b05105

    CrossRef Google Scholar

    [112] Cui Y, Hegde R S, Phang I Y, et al. Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications[J]. Nanoscale, 2014, 6(1): 282−288. doi: 10.1039/C3NR04375D

    CrossRef Google Scholar

    [113] Duan X Y, Liu N. Scanning plasmonic color display[J]. ACS Nano, 2018, 12(8): 8817−8823. doi: 10.1021/acsnano.8b05467

    CrossRef Google Scholar

    [114] Nagasaki Y, Suzuki M, Hotta I, et al. Control of Si-based all-dielectric printing color through oxidation[J]. ACS Photonics, 2018, 5(4): 1460−1466. doi: 10.1021/acsphotonics.7b01467

    CrossRef Google Scholar

    [115] Kim I, Kim W S, Kim K, et al. Holographic metasurface gas sensors for instantaneous visual alarms[J]. Sci Adv, 2021, 7(15): eabe9943. doi: 10.1126/sciadv.abe9943

    CrossRef Google Scholar

    [116] Dai C J, Wang Z J, Shi Y Y, et al. Scalable hydrogel-based nanocavities for switchable meta-holography with dynamic color printing[J]. Nano Lett, 2022, 22(24): 9990−9996. doi: 10.1021/acs.nanolett.2c03570

    CrossRef Google Scholar

    [117] Zhu W M, Song Q H, Yan L B, et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial[J]. Adv Mater, 2015, 27(32): 4739−4743. doi: 10.1002/adma.201501943

    CrossRef Google Scholar

    [118] Afridi A, Gieseler J, Meyer N, et al. Ultrathin tunable optomechanical metalens[J]. Nano Lett, 2023, 23(7): 2496−2501. doi: 10.1021/acs.nanolett.2c04105

    CrossRef Google Scholar

    [119] Shalaginov M Y, An S D, Zhang Y F, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance[J]. Nat Commun, 2021, 12(1): 1225. doi: 10.1038/s41467-021-21440-9

    CrossRef Google Scholar

    [120] Huang L L, Chen X Z, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nat Commun, 2013, 4(1): 2808. doi: 10.1038/ncomms3808

    CrossRef Google Scholar

    [121] Xu Z T, Huang L L, Li X W, et al. Quantitatively correlated amplitude holography based on photon sieves[J]. Adv Opt Mater, 2020, 8(2): 1901169. doi: 10.1002/adom.201901169

    CrossRef Google Scholar

    [122] Overvig A C, Shrestha S, Malek S C, et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase[J]. Light Sci Appl, 2019, 8: 92. doi: 10.1038/s41377-019-0201-7

    CrossRef Google Scholar

    [123] Gao Y S, Fan Y B, Wang Y J, et al. Nonlinear holographic all-dielectric metasurfaces[J]. Nano Lett, 2018, 18(12): 8054−8061. doi: 10.1021/acs.nanolett.8b04311

    CrossRef Google Scholar

    [124] Huang Y W, Chen W T, Tsai W Y, et al. Aluminum plasmonic multicolor meta-hologram[J]. Nano Lett, 2015, 15(5): 3122−3127. doi: 10.1021/acs.nanolett.5b00184

    CrossRef Google Scholar

    [125] Wang E L, Niu J B, Liang Y H, et al. Complete control of multichannel, angle-multiplexed, and arbitrary spatially varying polarization fields[J]. Adv Opt Mater, 2020, 8(6): 1901674. doi: 10.1002/adom.201901674

    CrossRef Google Scholar

    [126] Ren H R, Fang X Y, Jang J, et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nat Nanotechnol, 2020, 15(11): 948−955. doi: 10.1038/s41565-020-0768-4

    CrossRef Google Scholar

    [127] Kim G, Kim S, Kim H, et al. Metasurface-empowered spectral and spatial light modulation for disruptive holographic displays[J]. Nanoscale, 2022, 14(12): 4380−4410. doi: 10.1039/D1NR07909C

    CrossRef Google Scholar

    [128] Li L L, Cui T J, Ji W, et al. Electromagnetic reprogrammable coding–metasurface holograms[J]. Nat Commun, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9

    CrossRef Google Scholar

    [129] Li J X, Yu P, Zhang S, et al. Electrically-controlled digital metasurface device for light projection displays[J]. Nat Commun, 2020, 11(1): 3574. doi: 10.1038/s41467-020-17390-3

    CrossRef Google Scholar

    [130] Chen Y Q, Duan X Y, Matuschek M, et al. Dynamic color displays using stepwise cavity resonators[J]. Nano Lett, 2017, 17(9): 5555−5560. doi: 10.1021/acs.nanolett.7b02336

    CrossRef Google Scholar

    [131] Sterl F, Strohfeldt N, Walter R, et al. Magnesium as novel material for active plasmonics in the visible wavelength range[J]. Nano Lett, 2015, 15(12): 7949−7955. doi: 10.1021/acs.nanolett.5b03029

    CrossRef Google Scholar

    [132] Ko B, Badloe T, Rho J. Vanadium dioxide for dynamically tunable photonics[J]. ChemNanoMat, 2021, 7(7): 713−727. doi: 10.1002/cnma.202100060

    CrossRef Google Scholar

    [133] Kim S J, Lee D, Chae J Y, et al. Reconfigurable, vivid reflective colors based on solution-processed Fabry-Perot absorber using thermochromic vanadium dioxide[J]. Appl Surf Sci, 2021, 565: 150610. doi: 10.1016/j.apsusc.2021.150610

    CrossRef Google Scholar

    [134] Badloe T, Kim I, Rho J. Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide[J]. Sci Rep, 2020, 10(1): 4522. doi: 10.1038/s41598-020-59729-2

    CrossRef Google Scholar

    [135] Liu X B, Wang Q, Zhang X Q, et al. Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface[J]. Adv Opt Mater, 2019, 7(12): 1900175. doi: 10.1002/adom.201900175

    CrossRef Google Scholar

    [136] Kinoshita S, Yoshioka S, Miyazaki J. Physics of structural colors[J]. Rep Prog Phys, 2008, 71(7): 076401. doi: 10.1088/0034-4885/71/7/076401

    CrossRef Google Scholar

    [137] Ghiradella H. Light and color on the wing: structural colors in butterflies and moths[J]. Appl Opt, 1991, 30(24): 3492−3500. doi: 10.1364/AO.30.003492

    CrossRef Google Scholar

    [138] Zhang K, Tang Y W, Meng J S, et al. Polarization-sensitive color in butterfly scales: polarization conversion from ridges with reflecting elements[J]. Opt Express, 2014, 22(22): 27437−27450. doi: 10.1364/OE.22.027437

    CrossRef Google Scholar

    [139] Li K, Wang J W, Cai W F, et al. Electrically switchable, polarization-sensitive encryption based on aluminum nanoaperture arrays integrated with polymer-dispersed liquid crystals[J]. Nano Lett, 2021, 21(17): 7183−7190. doi: 10.1021/acs.nanolett.1c01947

    CrossRef Google Scholar

    [140] Yang W H, Qu G Y, Lai F X, et al. Dynamic bifunctional metasurfaces for holography and color display[J]. Adv Mater, 2021, 33(36): 2101258. doi: 10.1002/adma.202101258

    CrossRef Google Scholar

    [141] Huang Y W, Lee H W H, Sokhoyan R, et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Lett, 2016, 16(9): 5319−5325. doi: 10.1021/acs.nanolett.6b00555

    CrossRef Google Scholar

    [142] Park J, Jeong B G, Kim S I, et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications[J]. Nat Nanotechnol, 2021, 16(1): 69−76. doi: 10.1038/s41565-020-00787-y

    CrossRef Google Scholar

  • Researchers have witnessed significant progress for metasurfaces in various domains of flat optics, including displays, holograms, beam steering, structural colors, and other planar optical applications. The progress is also accompanied by a growing trend towards device integration and industrialization. However, most optical metasurfaces lack the function of dynamic modulation, which further limits their potential applications. In recent years, numerous efforts have been made for dynamic control of metasurfaces. This review article primarily focuses on elucidating the working mechanisms for the current dynamic modulation methods, namely electrical, thermal, optical, mechanical, and chemical modulations.

    Electrically tunable metasurfaces primarily utilize materials that exhibit electrical response, such as liquid crystals, two-dimensional materials, and electrochromic materials, to change the refractive index and the dimensions of structural units, thereby achieving responsive tuning. By combining metasurfaces with thermally responsive materials such as semiconductors, transparent conductive oxides, and phase-change materials, dynamic thermal tuning of metasurfaces can be realized based on mechanisms such as thermo-optic effects, carrier modulation, and phase change. Optical pumping allows for modulation at picosecond and even femtosecond timescales. Optically tunable metasurfaces can also rely on photothermal effects and the phase change of materials. The photothermal effect induced by high-energy lasers could enable to locally heat the material, leading to a phase change and modulation of the refractive index. This tuning of the refractive index gives rise to the adjusted functionality of the metasurfaces. Mechanical tuning involves dynamically controlling metasurfaces by changing the geometric shape of meta-atoms and/or the spacing between adjacent meta-atoms using mechanical force as an external excitation. This can be achieved through two approaches, namely microelectromechanical systems (MEMS) and flexible substrates. Chemical tuning involves altering the composition of materials constituting meta-atoms and changing the chemical properties of the surrounding medium. These changes in the chemical properties can cause variations in material optical parameters, such as refractive index and polarization, resulting in the tuning of the functionality of the metasurfaces.

    Furthermore, this review article provides an overview of the applications of dynamic metasurfaces in imaging, displays, and light field modulation, shedding light on their significance and future prospects. In metalens-based imaging, the adjustable focal length undoubtedly adds more channels to imaging, hence greatly expanding the application range. Due to its compatibility with traditional electrical devices, electrically tunable metasurfaces are considered as one of the most promising pathways to achieve interactive holographic displays. Furthermore, the dynamic display of metasurface-based structural colors holds great potential for super-resolution display applications. Moreover, dynamic beam control plays an important role in various fields such as laser radar, optical communication, laser processing, and 3D printing.

    In summary, the development of dynamically tunable metasurface devices aims to achieve fast response speeds, user-friendly tuning mechanisms, easy integration, and multiple functions in one device.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views(6176) PDF downloads(1873) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint