Citation: | Zhang S J, Cao T, Tian Z. Progress on reconfigurable terahertz metasurface devices based on sulfide phase change materials[J]. Opto-Electron Eng, 2023, 50(9): 230142. doi: 10.12086/oee.2023.230142 |
[1] | Dragoman D, Dragoman M. Terahertz fields and applications[J]. Progr Quant Electron, 2004, 28(1): 1−66. doi: 10.1016/S0079-6727(03)00058-2 |
[2] | Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging–Modern techniques and applications[J]. Laser Photon Rev, 2011, 5(1): 124−166. doi: 10.1002/lpor.201000011 |
[3] | Mittleman D M. Twenty years of terahertz imaging [Invited][J]. Opt Express, 2018, 26(8): 9417−9431. doi: 10.1364/OE.26.009417 |
[4] | Nagatsuma T, Ducournau G, Renaud C C. Advances in terahertz communications accelerated by photonics[J]. Nat Photon, 2016, 10(6): 371−379. doi: 10.1038/nphoton.2016.65 |
[5] | Tonouchi M. Cutting-edge terahertz technology[J]. Nat Photon, 2007, 1(2): 97−105. doi: 10.1038/nphoton.2007.3 |
[6] | He J W, Dong T, Chi B H, et al. Metasurfaces for terahertz wavefront modulation: a review[J]. J Infrared Millit Terahertz Waves, 2020, 41(6): 607−631. doi: 10.1007/s10762-020-00677-3 |
[7] | Zang X F, Yao B S, Chen L, et al. Metasurfaces for manipulating terahertz waves[J]. Light Adv Manuf, 2021, 2(2): 148−172. doi: 10.37188/lam.2021.010 |
[8] | Liu L X, Zhang X Q, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Adv Mater, 2014, 26(29): 5031−5036. doi: 10.1002/adma.201401484 |
[9] | 王鹏飞, 贺风艳, 刘建军, 等. 基于连续谱束缚态的高Q太赫兹全介质超表面[J]. 激光技术, 2022, 46(5): 630−635. doi: 10.7510/jgjs.issn.1001-3806.2002.05.008 Wang P F, He F Y, Liu J J, et al. High-Q ter ahertz all-dielectric metasurface based on bound states in the continuum[J]. Laser Technol, 2022, 46(5): 630−635. doi: 10.7510/jgjs.issn.1001-3806.2002.05.008 |
[10] | Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713 |
[11] | Zhang X Q, Tian Z, Yue W S, et al. Broadband terahertz wave deflection based on C‐shape complex metamaterials with phase discontinuities[J]. Adv Mater, 2013, 25(33): 4567−4572. doi: 10.1002/adma.201204850 |
[12] | Papakostas A, Potts A, Bagnall D, et al. Optical manifestations of planar chirality[J]. Phys Rev Lett, 2003, 90(10): 107404. doi: 10.1103/PhysRevLett.90.107404 |
[13] | Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304−1307. doi: 10.1126/science.1235399 |
[14] | Zhao H, Wang X K, Liu S T, et al. Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz Band[J]. Opto-Electron Adv, 2023, 6(2): 220012. doi: 10.29026/oea.2023.220012 |
[15] | Wang Q, Plum E, Yang Q L, et al. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves[J]. Light Sci Appl, 2018, 7(1): 25. doi: 10.1038/s41377-018-0019-8 |
[16] | Ye W M, Zeuner F, Li X, et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nat Commun, 2016, 7(1): 11930. doi: 10.1038/ncomms11930 |
[17] | Xu M F, He Q, Pu M B, et al. Emerging long‐range order from a freeform disordered metasurface[J]. Adv Mater, 2022, 34(12): 2108709. doi: 10.1002/adma.202108709 |
[18] | Li Z Y, Pestourie R, Park J S, et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality[J]. Nat Commun, 2022, 13(1): 2409. doi: 10.1038/s41467-022-29973-3 |
[19] | Sang D, Xu M F, Pu M B, et al. Toward high‐efficiency ultrahigh numerical aperture freeform metalens: from vector diffraction theory to topology optimization[J]. Laser Photon Rev, 2022, 16(10): 2200265. doi: 10.1002/lpor.202200265 |
[20] | Wang Q, Zhang X Q, Xu Y H, et al. A broadband metasurface‐based terahertz flat‐lens array[J]. Adv Opt Mater, 2015, 3(6): 779−785. doi: 10.1002/adom.201400557 |
[21] | Li J T, Wang G C, Yue Z, et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization[J]. Opto-Electron Adv, 2022, 5(1): 210062. doi: 10.29026/oea.2022.210062 |
[22] | Xu Y H, Li Q, Zhang X Q, et al. Spin-decoupled multifunctional metasurface for asymmetric polarization generation[J]. ACS Photonics, 2019, 6(11): 2933−2941. doi: 10.1021/acsphotonics.9b01047 |
[23] | Cong L Q, Srivastava Y K, Zhang H F, et al. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting[J]. Light Sci Appl, 2018, 7(1): 28. doi: 10.1038/s41377-018-0024-y |
[24] | Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nat Commun, 2013, 4(1): 2807. doi: 10.1038/ncomms3807 |
[25] | Liu M, Plum E, Li H, et al. Switchable chiral mirrors[J]. Adv Opt Mater, 2020, 8(15): 2000247. doi: 10.1002/adom.202000247 |
[26] | Chen B W, Wu J B, Li W L, et al. Programmable terahertz metamaterials with non‐volatile memory[J]. Laser Photon Rev, 2022, 16(4): 2100472. doi: 10.1002/lpor.202100472 |
[27] | Wang L, Lin X W, Hu W, et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes[J]. Light Sci Appl, 2015, 4(2): e253. doi: 10.1038/lsa.2015.26 |
[28] | Shrekenhamer D, Chen W C, Padilla W J. Liquid crystal tunable metamaterial absorber[J]. Phys Rev Lett, 2013, 110(17): 177403. doi: 10.1103/PhysRevLett.110.177403 |
[29] | Lee S H, Choi M, Kim T T, et al. Switching terahertz waves with gate-controlled active graphene metamaterials[J]. Nat Mater, 2012, 11(11): 936−941. doi: 10.1038/nmat3433 |
[30] | Li Q, Tian Z, Zhang X Q, et al. Active graphene–silicon hybrid diode for terahertz waves[J]. Nat Commun, 2015, 6(1): 7082. doi: 10.1038/ncomms8082 |
[31] | Chen H T, Padilla W J, Zide J M, et al. Active terahertz metamaterial devices[J]. Nature, 2006, 444(7119): 597−600. doi: 10.1038/nature05343 |
[32] | Zhou J F, Chowdhury D R, Zhao R K, et al. Terahertz chiral metamaterials with giant and dynamically tunable optical activity[J]. Phys Rev B, 2012, 86(3): 035448. doi: 10.1103/PhysRevB.86.035448 |
[33] | Pitchappa P, Manjappa M, Ho C P, et al. Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial[J]. Adv Opt Mater, 2016, 4(4): 541−547. doi: 10.1002/adom.201500676 |
[34] | Cong L Q, Pitchappa P, Lee C, et al. Active phase transition via loss engineering in a terahertz MEMS metamaterial[J]. Adv Mater, 2017, 29(26): 1700733. doi: 10.1002/adma.201700733 |
[35] | Abdollahramezani S, Hemmatyar O, Taghinejad H, et al. Tunable nanophotonics enabled by chalcogenide phase-change materials[J]. Nanophotonics, 2020, 9(5): 1189−1241. doi: 10.1515/nanoph-2020-0039 |
[36] | Wang J M, Wang L, Liu J. Overview of phase-change materials based photonic devices[J]. IEEE Access, 2020, 8: 121211−121245. doi: 10.1109/ACCESS.2020.3006899 |
[37] | Guo P F, Sarangan A M, Agha I. A review of germanium-antimony-telluride phase change materials for non-volatile memories and optical modulators[J]. Appl Sci, 2019, 9(3): 530. doi: 10.3390/app9030530 |
[38] | Ríos C, Stegmaier M, Hosseini P, et al. Integrated all-photonic non-volatile multi-level memory[J]. Nat Photon, 2015, 9(11): 725−732. doi: 10.1038/nphoton.2015.182 |
[39] | Farmakidis N, Youngblood N, Li X, et al. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality[J]. Sci Adv, 2019, 5(11): eaaw2687. doi: 10.1126/sciadv.aaw2687 |
[40] | Tuma T, Pantazi A, Le Gallo M, et al. Stochastic phase-change neurons[J]. Nat Nanotechnol, 2016, 11(8): 693−699. doi: 10.1038/nnano.2016.70 |
[41] | Feldmann J, Stegmaier M, Gruhler N, et al. Calculating with light using a chip-scale all-optical abacus[J]. Nat Commun, 2017, 8(1): 1256. doi: 10.1038/s41467-017-01506-3 |
[42] | Hosseini P, Wright C D, Bhaskaran H. An optoelectronic framework enabled by low-dimensional phase-change films[J]. Nature, 2014, 511(7508): 206−211. doi: 10.1038/nature13487 |
[43] | Du K K, Li Q, Lyu Y B, et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST[J]. Light Sci Appl, 2017, 6(1): e16194. doi: 10.1038/lsa.2016.194 |
[44] | De Galarreta C R, Sinev I, Alexeev A M, et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces[J]. Optica, 2020, 7(5): 476−484. doi: 10.1364/OPTICA.384138 |
[45] | Julian M N, Williams C, Borg S, et al. Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging[J]. Optica, 2020, 7(7): 746−754. doi: 10.1364/OPTICA.392878 |
[46] | Zhang M, Pu M B, Zhang F, et al. Plasmonic metasurfaces for switchable photonic spin–orbit interactions based on phase change materials[J]. Adv Sci, 2018, 5(10): 1800835. doi: 10.1002/advs.201800835 |
[47] | Zhang F, Xie X, Pu M B, et al. Multistate switching of photonic angular momentum coupling in phase‐change metadevices[J]. Adv Mater, 2020, 32(39): 1908194. doi: 10.1002/adma.201908194 |
[48] | Huang Y J, Xiao T X, Xie Z W, et al. Multistate nonvolatile metamirrors with tunable optical chirality[J]. ACS Appl Mater Interfaces, 2021, 13(38): 45890−45897. doi: 10.1021/acsami.1c14204 |
[49] | Wuttig M, Bhaskaran H, Taubner T. Phase-change materials for non-volatile photonic applications[J]. Nat Photon, 2017, 11(8): 465−476. doi: 10.1038/nphoton.2017.126 |
[50] | Raeis-Hosseini N, Rho J. Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices[J]. Materials (Basel), 2017, 10(9): 1046. doi: 10.3390/ma10091046 |
[51] | Makino K, Kuromiya S, Takano K, et al. THz pulse detection by multilayered GeTe/Sb2Te3[J]. ACS Appl Mater Interfaces, 2016, 8(47): 32408−32413. doi: 10.1021/acsami.6b11418 |
[52] | Zhou K, Nan J Y, Shen J B, et al. Phase change of Ge2Sb2Te5 under terahertz laser illumination[J]. APL Mater, 2021, 9(10): 101113. doi: 10.1063/5.0070304 |
[53] | Zhang S J, Chen X Y, Liu K, et al. Terahertz multi-level nonvolatile optically rewritable encryption memory based on chalcogenide phase-change materials[J]. Iscience, 2022, 25(8): 104866. doi: 10.1016/j.isci.2022.104866 |
[54] | Pitchappa P, Kumar A, Prakash S, et al. Chalcogenide phase change material for active terahertz photonics[J]. Adv Mater, 2019, 31(12): 1808157. doi: 10.1002/adma.201808157 |
[55] | Liu K, Chen X Y, Lian M, et al. Nonvolatile reconfigurable electromagnetically induced transparency with terahertz chalcogenide metasurfaces[J]. Laser Photon Rev, 2022, 16(4): 2100393. doi: 10.1002/LPOR.202100393 |
[56] | Cao T, Lian M, Chen X Y, et al. Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials[J]. Opto-Electron Sci, 2022, 1(1): 210010. doi: 10.29026/oes.2022.210010 |
[57] | Chen X Y, Zhang S J, Liu K, et al. Reconfigurable and nonvolatile terahertz metadevices based on a phase-change material[J]. ACS Photonics, 2022, 9(5): 1638−1646. doi: 10.1021/acsphotonics.1c01977 |
[58] | Chen J J, Chen X Y, Liu K, et al. A thermally switchable bifunctional metasurface for broadband polarization conversion and absorption based on phase‐change material[J]. Adv Photonics Res, 2022, 3(9): 2100369. doi: 10.1002/adpr.202100369 |
[59] | Bao J X, Chen X Y, Liu K, et al. Nonvolatile chirality switching in terahertz chalcogenide metasurfaces[J]. Microsyst Nanoeng, 2022, 8(1): 112. doi: 10.1038/s41378-022-00445-4 |
[60] | Zhang S J, Chen X Y, Liu K, et al. Nonvolatile reconfigurable terahertz wave modulator[J]. PhotoniX, 2022, 3(1): 7. doi: 10.1186/s43074-022-00053-5 |
[61] | Lian M, Su Y, Liu K, et al. Nonvolatile switchable broadband polarization conversion with wearable terahertz chalcogenide metamaterials[J]. Adv Opt Mater, 2023, 11(9): 2202439. doi: 10.1002/adom.202202439 |
[62] | Chen X Y, Zhang S J, Liu K, et al. Reconfigurable and nonvolatile terahertz lithography-free photonic devices based on phase change films[J]. Photonics Res, 2023, 11(4): 669−681. doi: 10.1364/PRJ.478103 |
[63] | Zhang S J, Chen X Y, Liu K, et al. Nonvolatile reconfigurable dynamic Janus metasurfaces in the terahertz regime[J]. Photonics Res, 2022, 10(7): 1731−1743. doi: 10.1364/PRJ.456161 |
[64] | Pitchappa P, Kumar A, Prakash S, et al. Volatile ultrafast switching at multilevel nonvolatile states of phase change material for active flexible terahertz metadevices[J]. Adv Funct Mater, 2021, 31(17): 2100200. doi: 10.1002/adfm.202100200 |
We review the process on reconfigurable terahertz metasurface devices based on sulfide phase-change materials. Currently, most existing reconfigurable metasurfaces are limited by their volatile properties and single functionality, which hinder their applications in advanced photonics. The chalcogenide phase-change material Ge2Sb2Te5 (GST) exhibits non-volatility, reconfigurability, and large optical contrast, which can be used to realize tunable metasurface devices.
Firstly, the reversible phase transition of GST was realized in the terahertz band, its terahertz spectral characteristics were tested, and a multi-level memory device was realized.
One-dimensional or multi-dimensional dynamic modulation of the amplitude, phase, and polarization of terahertz waves can be achieved by combining GST with metasurfaces. Multilevel modulation of Fano resonances can be achieved by combining GST with asymmetric split-ring resonators and inducing phase transitions of GST. Using electrical excitation, a spatial light modulator with 2×2 pixels can be realized. The use of metasurfaces to achieve electromagnetically induced transparency (EIT) has attracted widespread attention, and placing GST at the openings can achieve multi-level modulation of the transmission amplitude. Extraordinary optical transmission (EOT) on metasurfaces is an important research area for controlling the amplitude of terahertz waves. The subwavelength gold hole array plays an important role in the coupling of surface plasmons on the gold surface, and the resonant coupling of EOT can be controlled by placing the GST under the gold hole. In the amorphous state, the conductivity is low, which has little effect on EOT. In the crystalline state, the conductivity is high, which reduces the transmission. By incorporating GST, tunable plasmonic dimers are proposed. The structure consists of two trapezoidal metal rings connected by GST islands. Near-field coupling occurs between the two metal rings, and the active modulation of the resonant mode can be achieved by changing the conductivity of the GST islands.
The use of metasurfaces to realize the modulation of the polarization of terahertz waves has important application fields. Chiral switching can be achieved by combining GST with a bilayer structure. Realizing the polarization conversion of linear polarization is of great significance for the realization of applications such as terahertz polarizers. Combining the phase-change characteristics of GST can further realize the switching of dual functions. Combined with flexible substrates, flexible polarization conversion devices can also be realized.
The modulation of terahertz wavefront by metasurface structures is of great significance for the realization of terahertz wave anomalous deflectors, focusing lenses, and vortex devices. The phase modulation of the terahertz wave can be realized by using the metal structure, and the wavefront modulation of the terahertz wave can be realized by combining the phase-change characteristics of GST, including two-dimensional modulation of intensity and phase.
Terahertz spectral properties and reversible phase transition of GST[57]
Hexadecimal storage memory devices[53]
Nonvolatile and reconfigurable terahertz wave amplitude modulation devices. (a-c) Fano modulation devices[54]; (d-g) EIT devices[55]; (h-k) EOT devices[56]; (l-o) Dimer devices[57]
Nonvolatile reconfigurable terahertz wave polarization modulation devices. (a-d) Chiral modulation devices[59]; (e-h) Polarization conversion bifunctional devices[58]; (i-k) Flexible linear polarization conversion devices[61]
Nonvolatile reconfigurable terahertz wavefront modulation devices. (a-d) Terahertz wave multi-level switching modulation devices[60]; (e-h) Terahertz wave function switching devices[63]; (i-l) Terahertz wave non-lithographic modulation devices[62]
Volatile terahertz wave modulation devices. (a-c) Optically pumped Fano modulation devices[54]; (d-f) Flexible ultrafast terahertz wave modulation devices[64]