Zhang S J, Cao T, Tian Z. Progress on reconfigurable terahertz metasurface devices based on sulfide phase change materials[J]. Opto-Electron Eng, 2023, 50(9): 230142. doi: 10.12086/oee.2023.230142
Citation: Zhang S J, Cao T, Tian Z. Progress on reconfigurable terahertz metasurface devices based on sulfide phase change materials[J]. Opto-Electron Eng, 2023, 50(9): 230142. doi: 10.12086/oee.2023.230142

Progress on reconfigurable terahertz metasurface devices based on sulfide phase change materials

    Fund Project: Project supported by National Natural Science Foundation of China (62235013), Tianjin Municipal Fund for Distinguished Young Scholars (20JCJQJC00190), Key Fund of Shenzhen Natural Science Foundation (JCYJ20200109150212515), and International Science and Technology Independent Cooperation Project of Shenzhen (GJHZ20210705142401004)
More Information
  • Metasurfaces play an important role in controlling the amplitude, phase, polarization, and complex wavefront of electromagnetic waves. Dynamic tunable devices can be realized by combining various active modulation means. However, most of the existing reconfigurable devices have volatile properties that require a constant stimulus to maintain. The chalcogenide phase-change material Ge2Sb2Te5 (GST) has the characteristics of non-volatility, reconfigurability, and large optical contrast, which can be used to achieve tunable metasurface devices. In this review, we review the recent research progress of GST-based terahertz (THz) metasurface devices and introduce the spectral characteristics and reversible phase transition conditions of GST in the THz band. Furthermore, we systematically summarizes the relevant works on non-volatile, reconfigurable, and multi-level manipulation of THz amplitude, polarization, and wavefront by combining GST with metasurfaces. Finally, the future development prospects and challenges are discussed. The non-volatile nature of GST provides a new path to achieve non-volatile reconfigurable THz devices with low energy consumption, while its ultra-fast volatility can be used for next-generation high-speed communication.
  • 加载中
  • [1] Dragoman D, Dragoman M. Terahertz fields and applications[J]. Progr Quant Electron, 2004, 28(1): 1−66. doi: 10.1016/S0079-6727(03)00058-2

    CrossRef Google Scholar

    [2] Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging–Modern techniques and applications[J]. Laser Photon Rev, 2011, 5(1): 124−166. doi: 10.1002/lpor.201000011

    CrossRef Google Scholar

    [3] Mittleman D M. Twenty years of terahertz imaging [Invited][J]. Opt Express, 2018, 26(8): 9417−9431. doi: 10.1364/OE.26.009417

    CrossRef Google Scholar

    [4] Nagatsuma T, Ducournau G, Renaud C C. Advances in terahertz communications accelerated by photonics[J]. Nat Photon, 2016, 10(6): 371−379. doi: 10.1038/nphoton.2016.65

    CrossRef Google Scholar

    [5] Tonouchi M. Cutting-edge terahertz technology[J]. Nat Photon, 2007, 1(2): 97−105. doi: 10.1038/nphoton.2007.3

    CrossRef Google Scholar

    [6] He J W, Dong T, Chi B H, et al. Metasurfaces for terahertz wavefront modulation: a review[J]. J Infrared Millit Terahertz Waves, 2020, 41(6): 607−631. doi: 10.1007/s10762-020-00677-3

    CrossRef Google Scholar

    [7] Zang X F, Yao B S, Chen L, et al. Metasurfaces for manipulating terahertz waves[J]. Light Adv Manuf, 2021, 2(2): 148−172. doi: 10.37188/lam.2021.010

    CrossRef Google Scholar

    [8] Liu L X, Zhang X Q, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Adv Mater, 2014, 26(29): 5031−5036. doi: 10.1002/adma.201401484

    CrossRef Google Scholar

    [9] 王鹏飞, 贺风艳, 刘建军, 等. 基于连续谱束缚态的高Q太赫兹全介质超表面[J]. 激光技术, 2022, 46(5): 630−635. doi: 10.7510/jgjs.issn.1001-3806.2002.05.008

    CrossRef Google Scholar

    Wang P F, He F Y, Liu J J, et al. High-Q ter ahertz all-dielectric metasurface based on bound states in the continuum[J]. Laser Technol, 2022, 46(5): 630−635. doi: 10.7510/jgjs.issn.1001-3806.2002.05.008

    CrossRef Google Scholar

    [10] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [11] Zhang X Q, Tian Z, Yue W S, et al. Broadband terahertz wave deflection based on C‐shape complex metamaterials with phase discontinuities[J]. Adv Mater, 2013, 25(33): 4567−4572. doi: 10.1002/adma.201204850

    CrossRef Google Scholar

    [12] Papakostas A, Potts A, Bagnall D, et al. Optical manifestations of planar chirality[J]. Phys Rev Lett, 2003, 90(10): 107404. doi: 10.1103/PhysRevLett.90.107404

    CrossRef Google Scholar

    [13] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304−1307. doi: 10.1126/science.1235399

    CrossRef Google Scholar

    [14] Zhao H, Wang X K, Liu S T, et al. Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz Band[J]. Opto-Electron Adv, 2023, 6(2): 220012. doi: 10.29026/oea.2023.220012

    CrossRef Google Scholar

    [15] Wang Q, Plum E, Yang Q L, et al. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves[J]. Light Sci Appl, 2018, 7(1): 25. doi: 10.1038/s41377-018-0019-8

    CrossRef Google Scholar

    [16] Ye W M, Zeuner F, Li X, et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nat Commun, 2016, 7(1): 11930. doi: 10.1038/ncomms11930

    CrossRef Google Scholar

    [17] Xu M F, He Q, Pu M B, et al. Emerging long‐range order from a freeform disordered metasurface[J]. Adv Mater, 2022, 34(12): 2108709. doi: 10.1002/adma.202108709

    CrossRef Google Scholar

    [18] Li Z Y, Pestourie R, Park J S, et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality[J]. Nat Commun, 2022, 13(1): 2409. doi: 10.1038/s41467-022-29973-3

    CrossRef Google Scholar

    [19] Sang D, Xu M F, Pu M B, et al. Toward high‐efficiency ultrahigh numerical aperture freeform metalens: from vector diffraction theory to topology optimization[J]. Laser Photon Rev, 2022, 16(10): 2200265. doi: 10.1002/lpor.202200265

    CrossRef Google Scholar

    [20] Wang Q, Zhang X Q, Xu Y H, et al. A broadband metasurface‐based terahertz flat‐lens array[J]. Adv Opt Mater, 2015, 3(6): 779−785. doi: 10.1002/adom.201400557

    CrossRef Google Scholar

    [21] Li J T, Wang G C, Yue Z, et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization[J]. Opto-Electron Adv, 2022, 5(1): 210062. doi: 10.29026/oea.2022.210062

    CrossRef Google Scholar

    [22] Xu Y H, Li Q, Zhang X Q, et al. Spin-decoupled multifunctional metasurface for asymmetric polarization generation[J]. ACS Photonics, 2019, 6(11): 2933−2941. doi: 10.1021/acsphotonics.9b01047

    CrossRef Google Scholar

    [23] Cong L Q, Srivastava Y K, Zhang H F, et al. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting[J]. Light Sci Appl, 2018, 7(1): 28. doi: 10.1038/s41377-018-0024-y

    CrossRef Google Scholar

    [24] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nat Commun, 2013, 4(1): 2807. doi: 10.1038/ncomms3807

    CrossRef Google Scholar

    [25] Liu M, Plum E, Li H, et al. Switchable chiral mirrors[J]. Adv Opt Mater, 2020, 8(15): 2000247. doi: 10.1002/adom.202000247

    CrossRef Google Scholar

    [26] Chen B W, Wu J B, Li W L, et al. Programmable terahertz metamaterials with non‐volatile memory[J]. Laser Photon Rev, 2022, 16(4): 2100472. doi: 10.1002/lpor.202100472

    CrossRef Google Scholar

    [27] Wang L, Lin X W, Hu W, et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes[J]. Light Sci Appl, 2015, 4(2): e253. doi: 10.1038/lsa.2015.26

    CrossRef Google Scholar

    [28] Shrekenhamer D, Chen W C, Padilla W J. Liquid crystal tunable metamaterial absorber[J]. Phys Rev Lett, 2013, 110(17): 177403. doi: 10.1103/PhysRevLett.110.177403

    CrossRef Google Scholar

    [29] Lee S H, Choi M, Kim T T, et al. Switching terahertz waves with gate-controlled active graphene metamaterials[J]. Nat Mater, 2012, 11(11): 936−941. doi: 10.1038/nmat3433

    CrossRef Google Scholar

    [30] Li Q, Tian Z, Zhang X Q, et al. Active graphene–silicon hybrid diode for terahertz waves[J]. Nat Commun, 2015, 6(1): 7082. doi: 10.1038/ncomms8082

    CrossRef Google Scholar

    [31] Chen H T, Padilla W J, Zide J M, et al. Active terahertz metamaterial devices[J]. Nature, 2006, 444(7119): 597−600. doi: 10.1038/nature05343

    CrossRef Google Scholar

    [32] Zhou J F, Chowdhury D R, Zhao R K, et al. Terahertz chiral metamaterials with giant and dynamically tunable optical activity[J]. Phys Rev B, 2012, 86(3): 035448. doi: 10.1103/PhysRevB.86.035448

    CrossRef Google Scholar

    [33] Pitchappa P, Manjappa M, Ho C P, et al. Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial[J]. Adv Opt Mater, 2016, 4(4): 541−547. doi: 10.1002/adom.201500676

    CrossRef Google Scholar

    [34] Cong L Q, Pitchappa P, Lee C, et al. Active phase transition via loss engineering in a terahertz MEMS metamaterial[J]. Adv Mater, 2017, 29(26): 1700733. doi: 10.1002/adma.201700733

    CrossRef Google Scholar

    [35] Abdollahramezani S, Hemmatyar O, Taghinejad H, et al. Tunable nanophotonics enabled by chalcogenide phase-change materials[J]. Nanophotonics, 2020, 9(5): 1189−1241. doi: 10.1515/nanoph-2020-0039

    CrossRef Google Scholar

    [36] Wang J M, Wang L, Liu J. Overview of phase-change materials based photonic devices[J]. IEEE Access, 2020, 8: 121211−121245. doi: 10.1109/ACCESS.2020.3006899

    CrossRef Google Scholar

    [37] Guo P F, Sarangan A M, Agha I. A review of germanium-antimony-telluride phase change materials for non-volatile memories and optical modulators[J]. Appl Sci, 2019, 9(3): 530. doi: 10.3390/app9030530

    CrossRef Google Scholar

    [38] Ríos C, Stegmaier M, Hosseini P, et al. Integrated all-photonic non-volatile multi-level memory[J]. Nat Photon, 2015, 9(11): 725−732. doi: 10.1038/nphoton.2015.182

    CrossRef Google Scholar

    [39] Farmakidis N, Youngblood N, Li X, et al. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality[J]. Sci Adv, 2019, 5(11): eaaw2687. doi: 10.1126/sciadv.aaw2687

    CrossRef Google Scholar

    [40] Tuma T, Pantazi A, Le Gallo M, et al. Stochastic phase-change neurons[J]. Nat Nanotechnol, 2016, 11(8): 693−699. doi: 10.1038/nnano.2016.70

    CrossRef Google Scholar

    [41] Feldmann J, Stegmaier M, Gruhler N, et al. Calculating with light using a chip-scale all-optical abacus[J]. Nat Commun, 2017, 8(1): 1256. doi: 10.1038/s41467-017-01506-3

    CrossRef Google Scholar

    [42] Hosseini P, Wright C D, Bhaskaran H. An optoelectronic framework enabled by low-dimensional phase-change films[J]. Nature, 2014, 511(7508): 206−211. doi: 10.1038/nature13487

    CrossRef Google Scholar

    [43] Du K K, Li Q, Lyu Y B, et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST[J]. Light Sci Appl, 2017, 6(1): e16194. doi: 10.1038/lsa.2016.194

    CrossRef Google Scholar

    [44] De Galarreta C R, Sinev I, Alexeev A M, et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces[J]. Optica, 2020, 7(5): 476−484. doi: 10.1364/OPTICA.384138

    CrossRef Google Scholar

    [45] Julian M N, Williams C, Borg S, et al. Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging[J]. Optica, 2020, 7(7): 746−754. doi: 10.1364/OPTICA.392878

    CrossRef Google Scholar

    [46] Zhang M, Pu M B, Zhang F, et al. Plasmonic metasurfaces for switchable photonic spin–orbit interactions based on phase change materials[J]. Adv Sci, 2018, 5(10): 1800835. doi: 10.1002/advs.201800835

    CrossRef Google Scholar

    [47] Zhang F, Xie X, Pu M B, et al. Multistate switching of photonic angular momentum coupling in phase‐change metadevices[J]. Adv Mater, 2020, 32(39): 1908194. doi: 10.1002/adma.201908194

    CrossRef Google Scholar

    [48] Huang Y J, Xiao T X, Xie Z W, et al. Multistate nonvolatile metamirrors with tunable optical chirality[J]. ACS Appl Mater Interfaces, 2021, 13(38): 45890−45897. doi: 10.1021/acsami.1c14204

    CrossRef Google Scholar

    [49] Wuttig M, Bhaskaran H, Taubner T. Phase-change materials for non-volatile photonic applications[J]. Nat Photon, 2017, 11(8): 465−476. doi: 10.1038/nphoton.2017.126

    CrossRef Google Scholar

    [50] Raeis-Hosseini N, Rho J. Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices[J]. Materials (Basel), 2017, 10(9): 1046. doi: 10.3390/ma10091046

    CrossRef Google Scholar

    [51] Makino K, Kuromiya S, Takano K, et al. THz pulse detection by multilayered GeTe/Sb2Te3[J]. ACS Appl Mater Interfaces, 2016, 8(47): 32408−32413. doi: 10.1021/acsami.6b11418

    CrossRef Google Scholar

    [52] Zhou K, Nan J Y, Shen J B, et al. Phase change of Ge2Sb2Te5 under terahertz laser illumination[J]. APL Mater, 2021, 9(10): 101113. doi: 10.1063/5.0070304

    CrossRef Google Scholar

    [53] Zhang S J, Chen X Y, Liu K, et al. Terahertz multi-level nonvolatile optically rewritable encryption memory based on chalcogenide phase-change materials[J]. Iscience, 2022, 25(8): 104866. doi: 10.1016/j.isci.2022.104866

    CrossRef Google Scholar

    [54] Pitchappa P, Kumar A, Prakash S, et al. Chalcogenide phase change material for active terahertz photonics[J]. Adv Mater, 2019, 31(12): 1808157. doi: 10.1002/adma.201808157

    CrossRef Google Scholar

    [55] Liu K, Chen X Y, Lian M, et al. Nonvolatile reconfigurable electromagnetically induced transparency with terahertz chalcogenide metasurfaces[J]. Laser Photon Rev, 2022, 16(4): 2100393. doi: 10.1002/LPOR.202100393

    CrossRef Google Scholar

    [56] Cao T, Lian M, Chen X Y, et al. Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials[J]. Opto-Electron Sci, 2022, 1(1): 210010. doi: 10.29026/oes.2022.210010

    CrossRef Google Scholar

    [57] Chen X Y, Zhang S J, Liu K, et al. Reconfigurable and nonvolatile terahertz metadevices based on a phase-change material[J]. ACS Photonics, 2022, 9(5): 1638−1646. doi: 10.1021/acsphotonics.1c01977

    CrossRef Google Scholar

    [58] Chen J J, Chen X Y, Liu K, et al. A thermally switchable bifunctional metasurface for broadband polarization conversion and absorption based on phase‐change material[J]. Adv Photonics Res, 2022, 3(9): 2100369. doi: 10.1002/adpr.202100369

    CrossRef Google Scholar

    [59] Bao J X, Chen X Y, Liu K, et al. Nonvolatile chirality switching in terahertz chalcogenide metasurfaces[J]. Microsyst Nanoeng, 2022, 8(1): 112. doi: 10.1038/s41378-022-00445-4

    CrossRef Google Scholar

    [60] Zhang S J, Chen X Y, Liu K, et al. Nonvolatile reconfigurable terahertz wave modulator[J]. PhotoniX, 2022, 3(1): 7. doi: 10.1186/s43074-022-00053-5

    CrossRef Google Scholar

    [61] Lian M, Su Y, Liu K, et al. Nonvolatile switchable broadband polarization conversion with wearable terahertz chalcogenide metamaterials[J]. Adv Opt Mater, 2023, 11(9): 2202439. doi: 10.1002/adom.202202439

    CrossRef Google Scholar

    [62] Chen X Y, Zhang S J, Liu K, et al. Reconfigurable and nonvolatile terahertz lithography-free photonic devices based on phase change films[J]. Photonics Res, 2023, 11(4): 669−681. doi: 10.1364/PRJ.478103

    CrossRef Google Scholar

    [63] Zhang S J, Chen X Y, Liu K, et al. Nonvolatile reconfigurable dynamic Janus metasurfaces in the terahertz regime[J]. Photonics Res, 2022, 10(7): 1731−1743. doi: 10.1364/PRJ.456161

    CrossRef Google Scholar

    [64] Pitchappa P, Kumar A, Prakash S, et al. Volatile ultrafast switching at multilevel nonvolatile states of phase change material for active flexible terahertz metadevices[J]. Adv Funct Mater, 2021, 31(17): 2100200. doi: 10.1002/adfm.202100200

    CrossRef Google Scholar

  • We review the process on reconfigurable terahertz metasurface devices based on sulfide phase-change materials. Currently, most existing reconfigurable metasurfaces are limited by their volatile properties and single functionality, which hinder their applications in advanced photonics. The chalcogenide phase-change material Ge2Sb2Te5 (GST) exhibits non-volatility, reconfigurability, and large optical contrast, which can be used to realize tunable metasurface devices.

    Firstly, the reversible phase transition of GST was realized in the terahertz band, its terahertz spectral characteristics were tested, and a multi-level memory device was realized.

    One-dimensional or multi-dimensional dynamic modulation of the amplitude, phase, and polarization of terahertz waves can be achieved by combining GST with metasurfaces. Multilevel modulation of Fano resonances can be achieved by combining GST with asymmetric split-ring resonators and inducing phase transitions of GST. Using electrical excitation, a spatial light modulator with 2×2 pixels can be realized. The use of metasurfaces to achieve electromagnetically induced transparency (EIT) has attracted widespread attention, and placing GST at the openings can achieve multi-level modulation of the transmission amplitude. Extraordinary optical transmission (EOT) on metasurfaces is an important research area for controlling the amplitude of terahertz waves. The subwavelength gold hole array plays an important role in the coupling of surface plasmons on the gold surface, and the resonant coupling of EOT can be controlled by placing the GST under the gold hole. In the amorphous state, the conductivity is low, which has little effect on EOT. In the crystalline state, the conductivity is high, which reduces the transmission. By incorporating GST, tunable plasmonic dimers are proposed. The structure consists of two trapezoidal metal rings connected by GST islands. Near-field coupling occurs between the two metal rings, and the active modulation of the resonant mode can be achieved by changing the conductivity of the GST islands.

    The use of metasurfaces to realize the modulation of the polarization of terahertz waves has important application fields. Chiral switching can be achieved by combining GST with a bilayer structure. Realizing the polarization conversion of linear polarization is of great significance for the realization of applications such as terahertz polarizers. Combining the phase-change characteristics of GST can further realize the switching of dual functions. Combined with flexible substrates, flexible polarization conversion devices can also be realized.

    The modulation of terahertz wavefront by metasurface structures is of great significance for the realization of terahertz wave anomalous deflectors, focusing lenses, and vortex devices. The phase modulation of the terahertz wave can be realized by using the metal structure, and the wavefront modulation of the terahertz wave can be realized by combining the phase-change characteristics of GST, including two-dimensional modulation of intensity and phase.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint