Guo Y X, Liang K, Xu Y R, et al. Multiple environmental elements laser remote sensing method based on direct scattering spectrum[J]. Opto-Electron Eng, 2024, 51(3): 240003. doi: 10.12086/oee.2024.240003
Citation: Guo Y X, Liang K, Xu Y R, et al. Multiple environmental elements laser remote sensing method based on direct scattering spectrum[J]. Opto-Electron Eng, 2024, 51(3): 240003. doi: 10.12086/oee.2024.240003

Multiple environmental elements laser remote sensing method based on direct scattering spectrum

    Fund Project: Project supported by Pre-research Project on Civil Aerospace Technologies (D040107)
More Information
  • LiDAR plays an important role in the remote sensing of environmental elements due to its active emission, high detection accuracy, good real-time performance, and high spatial and temporal resolution. Based on the coupling relationship between the scattering spectrum and the medium environment, the direct scattering spectrum LiDAR can invert the multiple environment elements by directly measuring the energy dimension and the spectral dimension multi-feature information such as energy, frequency shift, linewidth, etc. In this paper, the recent advances in spectrum characteristics research and spectrum detection techniques of direct scattering spectrum LiDAR are briefly summarized. The detection theory and inversion models of underwater and atmospheric direct scattering spectrum are mainly introduced, as well as the existing measurement methods of direct scattering spectrum.
  • 加载中
  • [1] 唐军武, 陈戈, 陈卫标, 等. 海洋三维遥感与海洋剖面激光雷达[J]. 遥感学报, 2021, 25(1): 460−500. doi: 10.11834/jrs.20210495

    CrossRef Google Scholar

    Tang J W, Chen G, Chen W B, et al. Three dimensional remote sensing for oceanography and the Guanlan ocean profiling Lidar[J]. Natl Remote Sens Bull, 2021, 25(1): 460−500. doi: 10.11834/jrs.20210495

    CrossRef Google Scholar

    [2] Liu D, Zhou Y D, Zhu X L, et al. Investigation on discrimination characteristics of atmospheric and oceanic high-spectral-resolution lidar[J]. J Atmos Environ Opt, 2020, 15(1): 48−54. doi: 10.3969/j.issn.1673-6141.2020.01.005

    CrossRef Google Scholar

    [3] 刘文清, 陈臻懿, 刘建国, 等. 环境监测领域中光谱学技术进展[J]. 光学学报, 2020, 40(5): 0500001. doi: 10.3788/AOS202040.0500001

    CrossRef Google Scholar

    Liu W Q, Chen Z Y, Liu J G, et al. Advances with respect to the environmental spectroscopy monitoring technology[J]. Acta Opt Sin, 2020, 40(5): 0500001. doi: 10.3788/AOS202040.0500001

    CrossRef Google Scholar

    [4] 刘博, 于洋, 姜朔. 激光雷达探测及三维成像研究进展[J]. 光电工程, 2019, 46(7): 190167. doi: 10.12086/oee.2019.190167

    CrossRef Google Scholar

    Liu B, Yu Y, Jiang S. Review of advances in LiDAR detection and 3D imaging[J]. Opto-Electron Eng, 2019, 46(7): 190167. doi: 10.12086/oee.2019.190167

    CrossRef Google Scholar

    [5] 贺岩, 胡善江, 陈卫标, 等. 国产机载双频激光雷达探测技术研究进展[J]. 激光与光电子学进展, 2018, 55(8): 082801. doi: 10.3788/LOP55.082801

    CrossRef Google Scholar

    He Y, Hu S J, Chen W B, et al. Research progress of domestic airborne dual-frequency LiDAR detection technology[J]. Laser Optoelectron Prog, 2018, 55(8): 082801. doi: 10.3788/LOP55.082801

    CrossRef Google Scholar

    [6] 马愈昭, 张岩峰, 冯帅. 基于神经网络的侧向激光雷达信号去噪算法[J]. 光电工程, 2023, 50(6): 220341. doi: 10.12086/oee.2023.220341

    CrossRef Google Scholar

    Ma Y Z, Zhang Y F, Feng S. A denoising algorithm based on neural network for side-scatter lidar signal[J]. Opto-Electron Eng, 2023, 50(6): 220341. doi: 10.12086/oee.2023.220341

    CrossRef Google Scholar

    [7] Ke J, Sun Y S, Dong C Z, et al. Development of China’s first space-borne aerosol-cloud high-spectral-resolution lidar: retrieval algorithm and airborne demonstration[J]. PhotoniX, 2022, 3(1): 17. doi: 10.1186/s43074-022-00063-3

    CrossRef Google Scholar

    [8] Collis R T H, Russell P B. Lidar measurement of particles and gases by elastic backscattering and differential absorption[M]//Hinkley E D. Laser Monitoring of the Atmosphere. Berlin, Heidelberg: Springer, 1976: 71–151. https://doi.org/10.1007/3-540-07743-X_18.

    Google Scholar

    [9] Klett J D. Stable analytical inversion solution for processing lidar returns[J]. Appl Opt, 1981, 20(2): 211−220. doi: 10.1364/AO.20.000211

    CrossRef Google Scholar

    [10] Fernald F G. Analysis of atmospheric lidar observations: some comments[J]. Appl Opt, 1984, 23(5): 652−653. doi: 10.1364/AO.23.000652

    CrossRef Google Scholar

    [11] 刘秉义, 庄全风, 秦胜光, 等. 基于高光谱分辨率激光雷达的气溶胶分类方法研究[J]. 红外与激光工程, 2017, 46(4): 411001. doi: 10.3788/IRLA201746.0411001

    CrossRef Google Scholar

    Liu B Y, Zhuang Q F, Qin S G, et al. Aerosol classification method based on high spectral resolution lidar[J]. Infrared Laser Eng, 2017, 46(4): 411001. doi: 10.3788/IRLA201746.0411001

    CrossRef Google Scholar

    [12] 刘东, 杨甬英, 周雨迪, 等. 大气遥感高光谱分辨率激光雷达研究进展[J]. 红外与激光工程, 2015, 44(9): 2535−2546. doi: 10.3969/j.issn.1007-2276.2015.09.001

    CrossRef Google Scholar

    Liu D, Yang Y Y, Zhou Y D, et al. High spectral resolution lidar for atmosphere remote sensing: a review[J]. Infrared Laser Eng, 2015, 44(9): 2535−2546. doi: 10.3969/j.issn.1007-2276.2015.09.001

    CrossRef Google Scholar

    [13] Lmaki M, Takegoshi Y, Kobayashi T. Ultraviolet high-spectral-resolution Lidar with Fabry–perot filter for accurate measurement of extinction and Lidar ratio[J]. Jpn J Appl Phys, 2005, 44(5R): 3063−3067. doi: 10.1143/JJAP.44.3063

    CrossRef Google Scholar

    [14] Fiocco G, Benedetti-Michelangeli G, Maischberger K, et al. Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar[J]. Nat Phys Sci, 1971, 229(3): 78−79. doi: 10.1038/physci229078a0

    CrossRef Google Scholar

    [15] 黄忠伟, 王雍恺, 闭建荣, 等. 气溶胶激光雷达的国内外研究进展与展望[J]. 遥感学报, 2022, 26(5): 834−851. doi: 10.11834/jrs.20221388

    CrossRef Google Scholar

    Huang Z W, Wang Y K, Bi J R, et al. An overview of aerosol lidar: progress and prospect[J]. Natl Remote Sens Bull, 2022, 26(5): 834−851. doi: 10.11834/jrs.20221388

    CrossRef Google Scholar

    [16] Chen P, Jamet C, Liu D. LiDAR remote sensing for vertical distribution of seawater optical properties and chlorophyll-a from the East China Sea to the South China Sea[J]. IEEE Trans Geosci Remote Sens, 2022, 60: 4207321. doi: 10.1109/TGRS.2022.3174230

    CrossRef Google Scholar

    [17] 许锦, 郭洋宁, 罗宁宁, 等. 水体温度对受激布里渊散射时间相干性的影响[J]. 光学学报, 2020, 40(9): 0929001. doi: 10.3788/AOS202040.0929001

    CrossRef Google Scholar

    Xu J, Guo Y N, Luo N N, et al. Influence of water temperature on temporal coherence of stimulated brillouin scattering[J]. Acta Opt Sin, 2020, 40(9): 0929001. doi: 10.3788/AOS202040.0929001

    CrossRef Google Scholar

    [18] 张念, 马泳, 梁琨, 等. 海水布里渊散射谱特征参数的测量[J]. 光电工程, 2014, 41(11): 84−88. doi: 10.3969/j.issn.1003-501X.2014.11.014

    CrossRef Google Scholar

    Zhang N, Ma Y, Liang K, et al. Characteristics measurement of the ocean brillouin scattering spectrum[J]. Opto-Electron Eng, 2014, 41(11): 84−88. doi: 10.3969/j.issn.1003-501X.2014.11.014

    CrossRef Google Scholar

    [19] Chen X C, Dai G Y, Wu S H, et al. Coherent high-spectral-resolution lidar for the measurement of the atmospheric Mie–Rayleigh–Brillouin backscatter spectrum[J]. Opt Express, 2022, 30(21): 38060−38076. doi: 10.1364/OE.471155

    CrossRef Google Scholar

    [20] Liu D H, Xu J F, Li R S, et al. Measurements of sound speed in the water by Brillouin scattering using pulsed Nd: YAG laser[J]. Opt Commun, 2002, 203(3-6): 335−340. doi: 10.1016/S0030-4018(02)01181-1

    CrossRef Google Scholar

    [21] Lin X F, Bu L B, Liang K, et al. Simulation analysis of a lidar performance for atmospheric temperature profile measurements based on the Fizeau interferometer and multichannel photomultiplier tube[J]. Microw Opt Technol Lett, 2022, 64(4): 650−654. doi: 10.1002/mop.33165

    CrossRef Google Scholar

    [22] He X D, Wei H J, Shi J L, et al. Experimental measurement of bulk viscosity of water based on stimulated Brillouin scattering[J]. Opt Commun, 2012, 285(20): 4120−4124. doi: 10.1016/j.optcom.2012.05.062

    CrossRef Google Scholar

    [23] Emery Y, Fry E. Laboratory development of a lidar for measurement of sound velocity in the ocean using Brillouin scattering[J]. Proc SPIE, 1997, 2963: 210−215. doi: 10.1117/12.266444

    CrossRef Google Scholar

    [24] 许佳琪, 王元庆, 徐杨睿, 等. 基于布里渊散射的海洋环境激光遥感技术研究进展[J]. 红外与激光工程, 2021, 50(6): 20211036. doi: 10.3788/IRLA20211036

    CrossRef Google Scholar

    Xu J Q, Wang Y Q, Xu Y R, et al. Research progress of ocean environmental laser remote sensing based on Brillouin scattering[J]. Infrared Laser Eng, 2021, 50(6): 20211036. doi: 10.3788/IRLA20211036

    CrossRef Google Scholar

    [25] Zhou B, Fan Q M, Ma Y, et al. Experimental analysis on the rapid measurement of a high precision Brillouin scattering spectrum in water using a Fabry-Pérot etalon[J]. Laser Phys Lett, 2016, 13(5): 055701. doi: 10.1088/1612-2011/13/5/055701

    CrossRef Google Scholar

    [26] 张明生. 激光光散射谱学[M]. 北京: 科学出版社, 2008: 9–11.

    Google Scholar

    [27] 石锦卫, 弓文平, 白建辉, 等. 布里渊散射及其在激光雷达中的应用[J]. 物理, 2007, 36(10): 777−782. doi: 10.3321/j.issn:0379-4148.2007.10.008

    CrossRef Google Scholar

    Shi J W, Gong W P, Bai J H, et al. Brillouin scattering and its application in LiDAR[J]. Physics, 2007, 36(10): 777−782. doi: 10.3321/j.issn:0379-4148.2007.10.008

    CrossRef Google Scholar

    [28] Liu J, Shi M Q, Chen Z, et al. Quantum photonics based on metasurfaces[J]. Opto-Electron Adv, 2021, 4(9): 200092. doi: 10.29026/oea.2021.200092

    CrossRef Google Scholar

    [29] 刘玉丽, 张寅超, 苏嘉, 等. 探测低空大气温度分布的转动拉曼激光雷达[J]. 光电工程, 2006, 33(10): 43−48. doi: 10.3969/j.issn.1003-501X.2006.10.009

    CrossRef Google Scholar

    Liu Y L, Zhang Y C, Su J, et al. Rotational Raman lidar for atmospheric temperature profiles measurements in the lower-air[J]. Opto-Electron Eng, 2006, 33(10): 43−48. doi: 10.3969/j.issn.1003-501X.2006.10.009

    CrossRef Google Scholar

    [30] 任秀云, 王玲, 田兆硕, 等. 实用化拉曼光谱水下温度遥测系统研究[J]. 光谱学与光谱分析, 2019, 39(3): 778−783. doi: 10.3964/j.issn.1000-0593(2019)03-0778-06

    CrossRef Google Scholar

    Ren X Y, Wang L, Tian Z S, et al. Study on practical Raman Lidar seawater temperature remote sensing system[J]. Spectrosc Spect Anal, 2019, 39(3): 778−783. doi: 10.3964/j.issn.1000-0593(2019)03-0778-06

    CrossRef Google Scholar

    [31] Yuan D P, Xu J, Liu Z, et al. High resolution stimulated Brillouin scattering lidar using Galilean focusing system for detecting submerged objects[J]. Opt Commun, 2018, 427: 27−32. doi: 10.1016/j.optcom.2018.06.025

    CrossRef Google Scholar

    [32] Wang Y Q, Ubachs W, van de Water W. Bulk viscosity of CO2 from Rayleigh-Brillouin light scattering spectroscopy at 532 nm[J]. J Chem Phys, 2019, 150(15): 154502. doi: 10.1063/1.5093541

    CrossRef Google Scholar

    [33] 李天夫, 巴德欣, 周登望, 等. 前向受激布里渊散射光纤传感研究进展[J]. 光电工程, 2022, 49(9): 220021. doi: 10.12086/oee.2022.220021

    CrossRef Google Scholar

    Li T F, Ba D X, Zhou D W, et al. Recent progress in optical fiber sensing based on forward stimulated Brillouin scattering[J]. Opto-Electron Eng, 2022, 49(9): 220021. doi: 10.12086/oee.2022.220021

    CrossRef Google Scholar

    [34] Shang J C, Wu T, Yang C Y, et al. Pressure and temperature retrieval of nitrogen respectively by analysis of spontaneous Rayleigh–Brillouin scattering profiles[J]. Opt Commun, 2019, 436: 127−133. doi: 10.1016/j.optcom.2018.12.017

    CrossRef Google Scholar

    [35] Witschas B, Gu Z Y, Ubachs W. Temperature retrieval from Rayleigh-Brillouin scattering profiles measured in air[J]. Opt Express, 2014, 22(24): 29655−29667. doi: 10.1364/OE.22.029655

    CrossRef Google Scholar

    [36] Liang K, Xu J Q, Wang Y Q, et al. Grüneisen approach for universal scaling of the Brillouin shift in gases[J]. New J Phys, 2022, 24: 103005. doi: 10.1088/1367-2630/ac93a7

    CrossRef Google Scholar

    [37] Witschas B, Lemmerz C, Reitebuch O. Daytime measurements of atmospheric temperature profiles (2–15 km) by lidar utilizing Rayleigh–Brillouin scattering[J]. Opt Lett, 2014, 39(7): 1972−1975. doi: 10.1364/OL.39.001972

    CrossRef Google Scholar

    [38] Hirschberg J G, Byrne J D, Wouters A W, et al. Speed of sound and temperature in the ocean by Brillouin scattering[J]. Appl Opt, 1984, 23(15): 2624−2628. doi: 10.1364/AO.23.002624

    CrossRef Google Scholar

    [39] Fry E S, Emery Y, Quan X H, et al. Accuracy limitations on Brillouin lidar measurements of temperature and sound speed in the ocean[J]. Appl Opt, 1997, 36(27): 6887−6894. doi: 10.1364/AO.36.006887

    CrossRef Google Scholar

    [40] Gao W, Lü Z W, Dong Y K, et al. A new approach to measure the ocean temperature using Brillouin lidar[J]. Chin Opt Lett, 2006, 4(7): 428−431.

    Google Scholar

    [41] 马泳, 梁琨, 林宏, 等. 基于布里渊后向散射的海水温度与盐度同步测量研究[J]. 光学学报, 2008, 28(8): 1508−1512. doi: 10.3321/j.issn:0253-2239.2008.08.015

    CrossRef Google Scholar

    Ma Y, Liang K, Lin H, et al. Study on simultaneous measurement of temperature and salinity based on brillouin scattering[J]. Acta Opt Sin, 2008, 28(8): 1508−1512. doi: 10.3321/j.issn:0253-2239.2008.08.015

    CrossRef Google Scholar

    [42] Liang K, Ma Y, Yu Y, et al. Research on simultaneous measurement of ocean temperature and salinity using Brillouin shift and linewidth[J]. Opt Eng, 2012, 51(6): 066002. doi: 10.1117/1.OE.51.6.066002

    CrossRef Google Scholar

    [43] Yu Y, Ma Y, Li H, et al. Simulation of simultaneously obtaining ocean temperature and salinity using dual-wavelength Brillouin Lidar[J]. Laser Phys Lett, 2014, 11(3): 036001. doi: 10.1088/1612-2011/11/3/036001

    CrossRef Google Scholar

    [44] Hays P B, Richey C J, Hays A B, et al. Optical air data system: 7522291[P]. 2009-04-21.

    Google Scholar

    [45] Witschas B. Analytical model for Rayleigh-Brillouin line shapes in air[J]. Appl Opt, 2011, 50(3): 267−270. doi: 10.1364/AO.50.000267

    CrossRef Google Scholar

    [46] Ma Y, Fan F, Liang K, et al. An analytical model for Rayleigh–Brillouin scattering spectra in gases[J]. J Opt, 2012, 14(9): 095703. doi: 10.1088/2040-8978/14/9/095703

    CrossRef Google Scholar

    [47] Liang K, Xu J Q, Zhang P, et al. Temperature dependence of the Rayleigh brillouin spectrum linewidth in air and nitrogen[J]. Sensors, 2017, 17(7): 1503. doi: 10.3390/s17071503

    CrossRef Google Scholar

    [48] Zhang P, Xu J Q, Zhang R Z, et al. Retrieval of gas temperature and pressure based on Rayleigh–brillouin spectrum[J]. IEEE Access, 2020, 8: 22964−22975. doi: 10.1109/ACCESS.2020.2965643

    CrossRef Google Scholar

    [49] 许佳琪. 气体瑞利布里渊散射光谱特性及光谱检测技术研究[D]. 武汉: 华中科技大学, 2021: 60–83.

    Google Scholar

    Xu J Q. Study on gas Rayleigh-brillouin scattering spectral characteristics and spectral detection technology[D]. Wuhan: Huazhong University of Science and Technology, 2021: 60–83.

    Google Scholar

    [50] 王蓓. 基于瑞利布里渊散射光谱的大气温压廓线同步反演方法研究[D]. 武汉: 华中科技大学, 2023: 21–34.

    Google Scholar

    Wang B. Simultaneous measurement of atmospheric temperature and pressure profiles based on Rayleigh-Brillouin scattering spectrum[D]. Wuhan: Huazhong University of Science and Technology, 2023: 21–34.

    Google Scholar

    [51] Schorstein K, Popescu A, Göbel M, et al. Remote water temperature measurements based on Brillouin scattering with a frequency doubled pulsed Yb: doped fiber amplifier[J]. Sensors, 2008, 8(9): 5820−5831. doi: 10.3390/s8095820

    CrossRef Google Scholar

    [52] Fry E, Katz J, Liu D H, et al. Temperature dependence of the Brillouin linewidth in water[J]. J Mod Opt, 2002, 49(3-4): 411−418. doi: 10.1080/09500340110088551

    CrossRef Google Scholar

    [53] Gu Z Y, Vieitez M O, van Duijn E J, et al. A Rayleigh-Brillouin scattering spectrometer for ultraviolet wavelengths[J]. Rev Sci Instrum, 2012, 83(5): 053112. doi: 10.1063/1.4721272

    CrossRef Google Scholar

    [54] Wang Y Q, Gu Z Y, Liang K, et al. Rayleigh-Brillouin light scattering spectroscopy of air; experiment, predictive model and dimensionless scaling[J]. Mol Phys, 2021, 119(1-2): e1804635. doi: 10.1080/00268976.2020.1804635

    CrossRef Google Scholar

    [55] Shi J, Ouyang M, Gong W, et al. A Brillouin lidar system using F-P etalon and ICCD for remote sensing of the ocean[J]. Appl Phys B, 2008, 90(3-4): 569−571. doi: 10.1007/s00340-007-2866-5

    CrossRef Google Scholar

    [56] Liang K, Ma Y, Huang J, et al. Precise measurement of Brillouin scattering spectrum in the ocean using F–P etalon and ICCD[J]. Appl Phys B, 2011, 105(2): 421−425. doi: 10.1007/s00340-011-4719-5

    CrossRef Google Scholar

    [57] 徐宁, 张博, 罗宁宁, 等. 基于受激布里渊散射的海水温度和盐度同步反演[J]. 光学学报, 2022, 42(24): 2429001. doi: 10.3788/AOS202242.2429001

    CrossRef Google Scholar

    Xu N, Zhang B, Luo N N, et al. Simultaneous inversion of seawater temperature and salinity based on stimulated brillouin scattering[J]. Acta Opt Sin, 2022, 42(24): 2429001. doi: 10.3788/AOS202242.2429001

    CrossRef Google Scholar

    [58] Huang J, Ma Y, Zhou B, et al. Processing method of spectral measurement using F-P etalon and ICCD[J]. Opt Express, 2012, 20(17): 18568. doi: 10.1364/OE.20.018568

    CrossRef Google Scholar

    [59] Liang K, Zhang R, Sun Q, et al. Brillouin shift and linewidth measurement based on double-edge detection technology in seawater[J]. Appl Phys B, 2020, 126(10): 160. doi: 10.1007/s00340-020-07509-1

    CrossRef Google Scholar

    [60] Wang Y Q, Zhang J H, Zheng Y C, et al. Brillouin scattering spectrum for liquid detection and applications in oceanography[J]. Opto-Electron Adv, 2023, 6(1): 220016. doi: 10.29026/oea.2023.220016

    CrossRef Google Scholar

    [61] Xu J Q, Witschas B, Liang K, et al. Characterization of a novel temperature Lidar receiver by means of laboratory Rayleigh-Brillouin scattering measurements[J]. EPJ Web Conf, 2020, 237: 07004. doi: 10.1051/epjconf/202023707004

    CrossRef Google Scholar

    [62] Witschas B, Lemmerz C, Lux O, et al. Airborne temperature profiling in the troposphere during daytime by lidar utilizing Rayleigh–Brillouin scattering[J]. Opt Lett, 2021, 46(17): 4132−4135. doi: 10.1364/OL.431350.

    CrossRef Google Scholar

    [63] Xu J Q, Witschas B, Kableka P, et al. High-spectral-resolution lidar for measuring tropospheric temperature profiles by means of Rayleigh–Brillouin scattering[J]. Opt Lett, 2021, 46(13): 3320−3323. doi: 10.1364/OL.424526

    CrossRef Google Scholar

    [64] Wang Y Q, Xu Y R, Chen P, et al. Remote sensing of seawater temperature and salinity profiles by the Brillouin Lidar based on a Fizeau interferometer and multichannel photomultiplier tube[J]. Sensors, 2023, 23(1): 446. doi: 10.3390/s23010446

    CrossRef Google Scholar

    [65] Meng Z K, Yakovlev V V. Precise determination of Brillouin scattering spectrum using a virtually imaged phase array (VIPA) spectrometer and charge-coupled device (CCD) Camera[J]. Appl Spectrosc, 2016, 70(8): 1356−1363. doi: 10.1177/0003702816654050

    CrossRef Google Scholar

    [66] Yan H D, Wu T, Pi S H, et al. Demonstration of a Rayleigh–Brillouin scattering spectrometer with a high spectral resolution for rapid gas temperature detection[J]. Opt Lett, 2023, 48(22): 5931−5934. doi: 10.1364/OL.506847

    CrossRef Google Scholar

    [67] Marksteiner U, Lemmerz C, Lux O, et al. Calibrations and wind observations of an airborne direct-detection wind LiDAR Supporting ESA’s Aeolus Mission[J]. Remote Sens, 2018, 10(12): 2056. doi: 10.3390/rs10122056

    CrossRef Google Scholar

    [68] Korb C L, Gentry B M, Weng C Y. Edge technique: theory and application to the lidar measurement of atmospheric wind[J]. Appl Opt, 1992, 31(21): 4202. doi: 10.1364/AO.31.004202

    CrossRef Google Scholar

    [69] Guo W X, Shen F H, Shi W J, et al. Data inversion method for dual-frequency Doppler lidar based on Fabry-Perot etalon quad-edge technique[J]. Optik, 2018, 159: 31−38. doi: 10.1016/j.ijleo.2018.01.035

    CrossRef Google Scholar

  • Classical LiDAR based on energy detection was the first to be developed for environmental element detection, employing the lidar equation for the inversion of environmental parameters. In order to enhance the signal-to-noise ratio of the return signal and achieve accurate parameter inversion, high spectral resolution lidar(HSRL) has been identified as a viable approach. Both energy-detection-based lidar and HSRL utilized energy dimension information for remote sensing of environmental elements. However, the information captured solely in the energy dimension is limited. Environmental information is not only manifested in the energy dimension but also in the spectral dimension. Since the environmental information is not only manifested in the energy dimension but also in the spectral dimension, the characteristic information of the scattering spectrum, such as spectral energy, spectral line width, and spectral frequency shift, plays a very important role in the detection of multiple environmental elements. Based on the coupling relationship between the scattering spectral characteristic information and the medium environment, the inversion of multi-environmental elements can be directly carried out. By directly coupling the characteristic information of scattering spectra with the medium's environment parameters, direct scattering spectral lidar (DSSL) can realize the inversion of multiple environmental parameters. DSSL exhibits significant advantages in the detection of multiple environmental elements. However, with the demand for more detailed spectral information, the detection requirements of DSSL have also increased and primarily displayed in two aspects: 1) Spectral characteristic research: Utilizing spectral characteristic information for the detection of multiple environmental elements necessitates in-depth research on the relationship between underwater temperature, salinity, atmospheric temperature, pressure, and other environmental parameters with scattering spectra. This includes a thorough investigation of the spectral characteristics of direct scattering under various temperature, salinity, or pressure conditions, and the establishment of inversion models for multiple environmental elements based on the coupling relationship between direct scattering spectrum and environmental parameters. 2) Spectrum detection methods: As DSSL directly utilizes spectral dimension characteristic information, it places higher demands on the precise detection of scattering spectra. During spectral detection, attention should be paid to the system's sensitivity and accuracy, while considering real-time measurement continuity, vertical profile measurement, and the integrity of spectral detection. Acquiring more accurate scattering spectra is necessary to enhance the accuracy of the final detection results for multiple environmental elements. In this paper, we focus on the development of the inversion theory and various spectral detection methods for direct scattering spectral detection in underwater and atmospheric environments, providing an outlook on its future development.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(29)

Article Metrics

Article views(748) PDF downloads(211) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint