Xu C, Jin K, Wei K. Research progress of synthetic aperture ladar techniques[J]. Opto-Electron Eng, 2024, 51(3): 240007. doi: 10.12086/oee.2024.240007
Citation: Xu C, Jin K, Wei K. Research progress of synthetic aperture ladar techniques[J]. Opto-Electron Eng, 2024, 51(3): 240007. doi: 10.12086/oee.2024.240007

Research progress of synthetic aperture ladar techniques

More Information
  • Synthetic aperture ladar is an advanced active optical imaging technology that overcomes the diffraction limit of the traditional optical system. This technology is inspired by the working principles of synthetic aperture radar in the microwave band. Compared with synthetic aperture radar, synthetic aperture ladar has several advantages such as fast imaging speed, high resolution, and its images being similar to what the eye is used to seeing, thanks to its operation wavelength, which makes synthetic aperture ladar potentially valuable. This paper aims to provide a comprehensive review of the progress made in key technologies related to synthetic aperture ladar, including its system model and basic theory, system design and structures, laser phase noise suppression technology, motion compensation technologies, and imaging algorithms. Furthermore, some important outdoor experiments at home and abroad were summarized. At last, the difficulties and challenges for the subsequent implementation of engineering were discussed.
  • 加载中
  • [1] 李晟, 王博文, 管海涛, 等. 远场合成孔径计算光学成像技术: 文献综述与最新进展[J]. 光电工程, 2023, 50(10): 230090. doi: 10.12086/oee.2023.230090

    CrossRef Google Scholar

    Li S, Wang B W, Guan H T, et al. Far-field computational optical imaging techniques based on synthetic aperture: a review[J]. Opto-Electron Eng, 2023, 50(10): 230090. doi: 10.12086/oee.2023.230090

    CrossRef Google Scholar

    [2] Cumming I G, Wong F H. Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston: Artech House, 2004.

    Google Scholar

    [3] Brown W M. Synthetic aperture radar[J]. IEEE Trans Aerosp Electron Syst, 1967, AES-3(2): 217−229. doi: 10.1109/TAES.1967.5408745

    CrossRef Google Scholar

    [4] Wiley C A. Pulsed Doppler radar methods and apparatus: 3196436[P]. 1965-07-20.

    Google Scholar

    [5] 丁俊华, 袁明辉. 基于双分支多尺度融合网络的毫米波SAR图像多目标语义分割方法[J]. 光电工程, 2023, 50(12): 230242. doi: 10.12086/oee.2023.230242

    CrossRef Google Scholar

    Ding J H, Yuan M H. A multi-target semantic segmentation method for millimetre wave SAR images based on a dual-branch multi-scale fusion network[J]. Opto-Electron Eng, 2023, 50(12): 230242. doi: 10.12086/oee.2023.230242

    CrossRef Google Scholar

    [6] 赵洪强, 张星祥, 王夺, 等. SAR实时成像光学处理器光机系统设计[J]. 光电工程, 2022, 49(9): 210421. doi: 10.12086/oee.2022.210421

    CrossRef Google Scholar

    Zhao H Q, Zhang X X, Wang D, et al. Optical-mechanical system design of SAR real-time imaging optical processor[J]. Opto-Electron Eng, 2022, 49(9): 210421. doi: 10.12086/oee.2022.210421

    CrossRef Google Scholar

    [7] 刘立人. 高分辨率遥感新途径−合成孔径激光成像雷达[J]. 科学, 2014, 66(6): 25−29. doi: 10.3969/j.issn.0368-6396.2014.06.006

    CrossRef Google Scholar

    Liu L R. A new way to high-resolution remote sensing: synthetic aperture imaging ladar[J]. Science, 2014, 66(6): 25−29. doi: 10.3969/j.issn.0368-6396.2014.06.006

    CrossRef Google Scholar

    [8] 吴谨. 关于合成孔径激光雷达成像研究[J]. 雷达学报, 2012, 1(4): 353−360. doi: 10.3724/SP.J.1300.2012.20076

    CrossRef Google Scholar

    Wu J. On the development of synthetic aperture ladar imaging[J]. J Radars, 2012, 1(4): 353−360. doi: 10.3724/SP.J.1300.2012.20076

    CrossRef Google Scholar

    [9] Lucke R L, Rickard L, Bashkansky M, et al. Synthetic aperture ladar (SAL): fundamental theory, design equations for a satellite system, and laboratory demonstration[R]. Washington: Naval Research Laboratory, 2002.

    Google Scholar

    [10] 李道京, 高敬涵, 崔岸婧, 等. 成像探测相干激光雷达技术研究进展[J]. 现代雷达, 2023, 45(11): 1−6. doi: 10.16592/j.cnki.1004-7859.2023.11.001

    CrossRef Google Scholar

    Li D J, Gao J H, Cui A J, et al. Research progress of coherent ladar technology for imaging and detection[J]. Mod Radar, 2023, 45(11): 1−6. doi: 10.16592/j.cnki.1004-7859.2023.11.001

    CrossRef Google Scholar

    [11] Aleksoff C C, Accetta J S, Peterson L M, et al. Synthetic aperture imaging with a pulsed Co2 tea laser[J]. Proc SPIE, 1987, 783: 29−41. doi: 10.1117/12.940575

    CrossRef Google Scholar

    [12] Aleksoff C C. Interferometric two-dimensional imaging of rotating objects[J]. Opt Lett, 1977, 1(2): 54−55. doi: 10.1364/OL.1.000054

    CrossRef Google Scholar

    [13] Aleksoff C C. Synthetic interferometric imaging technique for moving objects[J]. Appl Opt, 1976, 15(8): 1923−1929. doi: 10.1364/AO.15.001923

    CrossRef Google Scholar

    [14] Aleksoff C C, Christensen C R. Holographic Doppler imaging of rotating objects[J]. Appl Opt, 1975, 14(1): 134−141. doi: 10.1364/AO.14.000134

    CrossRef Google Scholar

    [15] Lewis T S, Hutchins H S. A synthetic aperture at 10.6 microns[J]. Proc IEEE, 1970, 58(10): 1781−1782. doi: 10.1109/PROC.1970.8012

    CrossRef Google Scholar

    [16] Marcus S, Colella B D, Green T J. Solid-state laser synthetic aperture radar[J]. Appl Opt, 1994, 33(6): 960−964. doi: 10.1364/AO.33.000960

    CrossRef Google Scholar

    [17] Green T J, Marcus S, Colella B D. Synthetic-aperture-radar imaging with a solid-state laser[J]. Appl Opt, 1995, 34(30): 6941−6949. doi: 10.1364/AO.34.006941

    CrossRef Google Scholar

    [18] Yoshikado S, Aruga T. Short-range verification experiment of a trial one-dimensional synthetic aperture infrared laser radar operated in the 10-µm band[J]. Appl Opt, 2000, 39(9): 1421−1425. doi: 10.1364/AO.39.001421

    CrossRef Google Scholar

    [19] Yoshikado S, Aruga T. Feasibility study of synthetic aperture infrared laser radar techniques for imaging of static and moving objects[J]. Appl Opt, 1998, 37(24): 5631−5639. doi: 10.1364/AO.37.005631

    CrossRef Google Scholar

    [20] Bashkansky M, Lucke R L, Funk E E, et al. Synthetic aperture imaging at 1.5μ: laboratory demonstration and potential application to planet surface studies[J]. Proc SPIE, 2002, 4849: 48−56. doi: 10.1117/12.460767

    CrossRef Google Scholar

    [21] Bashkansky M, Lucke R L, Funk E, et al. Two-dimensional synthetic aperture imaging in the optical domain[J]. Opt Lett, 2002, 27(22): 1983−1985. doi: 10.1364/OL.27.001983

    CrossRef Google Scholar

    [22] Karr T J. Synthetic aperture ladar resolution through turbulence[J]. Proc SPIE, 2003, 4976: 22−33. doi: 10.1117/12.479209

    CrossRef Google Scholar

    [23] Lucke R L. Synthetic aperture ladar simulations with phase screens and Fourier propagation[C]//Proceedings of 2004 IEEE Aerospace Conference Proceedings, 2004. https://doi.org/10.1109/AERO.2004.1367959.

    Google Scholar

    [24] Schumm B E, Dierking M P. Wave optics simulations of synthetic aperture ladar performance through turbulence[J]. J Opt Soc Am A, 2017, 34(10): 1888−1895. doi: 10.1364/JOSAA.34.001888

    CrossRef Google Scholar

    [25] Rustowicz R M, Ross J W, Barnes L J, et al. Atmospheric effects and impact on target classification for Synthetic Aperture Ladar (SAL) imagery[J]. Proc SPIE, 2018, 10636: 1063609. doi: 10.1117/12.2303925

    CrossRef Google Scholar

    [26] 艾则孜姑丽·阿不都克热木, 陶志炜, 刘世韦, 等. 大气湍流对接收光场时间相干特性的影响[J]. 物理学报, 2022, 71(23): 234201. doi: 10.7498/aps.71.20221202

    CrossRef Google Scholar

    Azizigul A, Tao Z W, Liu S W, et al. Influence of atmospheric turbulence on temporal coherence characteristics of received optical field[J]. Acta Phys Sin, 2022, 71(23): 234201. doi: 10.7498/aps.71.20221202

    CrossRef Google Scholar

    [27] Barber Z W, Dahl J R. Sensitivity in synthetic aperture ladar imaging[C]//Proceedings of 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications, 2014.

    Google Scholar

    [28] Barber Z W, Dahl J R. Synthetic aperture ladar imaging demonstrations and information at very low return levels[J]. Appl Opt, 2014, 53(24): 5531−5537. doi: 10.1364/AO.53.005531

    CrossRef Google Scholar

    [29] Cai G Y, Hou P P, Ma X P, et al. The laser linewidth effect on the image quality of phase coded synthetic aperture ladar[J]. Opt Commun, 2015, 356: 495−499. doi: 10.1016/j.optcom.2015.08.033

    CrossRef Google Scholar

    [30] 许倩, 周煜, 孙建锋, 等. 合成孔径激光成像雷达时空散斑效应模拟与分析[J]. 光学学报, 2013, 33(10): 1028002. doi: 10.3788/AOS201333.1028002

    CrossRef Google Scholar

    Xu Qian, Zhou Yu, Sun Jianfeng, et al. Analysis and Simulation of Space-Time Speckle Effect Based on Synthetic Aperture Imaging Ladar[J]. Acta Optica Sinica, 2013, 33(10): 1028002. doi: 10.3788/AOS201333.1028002

    CrossRef Google Scholar

    [31] 刘立人. 合成孔径激光成像雷达(VI): 时空散斑效应和外差探测信噪比[J]. 光学学报, 2009, 29(8): 2326−2332. doi: 10.3788/AOS20092908.2326

    CrossRef Google Scholar

    Liu L R. Synthetic aperture imaging ladar (VI): space-time speckle effect and heterodyne signal-to-noise ratio[J]. Acta Opt Sin, 2009, 29(8): 2326−2332. doi: 10.3788/AOS20092908.2326

    CrossRef Google Scholar

    [32] 许倩, 周煜, 孙建锋, 等. 合成孔径激光成像雷达散斑天线接收特性分析[J]. 光学学报, 2014, 34(3): 0328002. doi: 10.3788/AOS201434.0328002

    CrossRef Google Scholar

    Xu Q, Zhou Y, Sun J F, et al. Analysis of integrated speckle receiving characteristics based on synthetic aperture imaging ladar[J]. Acta Opt Sin, 2014, 34(3): 0328002. doi: 10.3788/AOS201434.0328002

    CrossRef Google Scholar

    [33] Xu Q, Zhou Y, Sun J F, et al. Influence of space–time speckle effect on the image quality in a synthetic aperture imaging ladar[J]. Opt Commun, 2014, 333: 265−273. doi: 10.1016/j.optcom.2014.07.034

    CrossRef Google Scholar

    [34] Xu Q, Sun Z W, Sun J F, et al. Speckle reduction of synthetic aperture imaging ladar based on wavelength characteristics[J]. Chin Opt Lett, 2014, 12(8): 080301. doi: 10.3788/COL201412.080301

    CrossRef Google Scholar

    [35] 党文佳, 曾晓东, 冯喆珺. 目标粗糙对合成孔径激光雷达回波的退相干效应[J]. 物理学报, 2013, 62(2): 024204. doi: 10.7498/aps.62.024204

    CrossRef Google Scholar

    Dang W J, Zeng X D, Feng Z J. Decoherence effect of target roughness in synthetic aperture ladar[J]. Acta Phys Sin, 2013, 62(2): 024204. doi: 10.7498/aps.62.024204

    CrossRef Google Scholar

    [36] 卢炤宇, 葛春风, 王肇颖, 等. 频率调制连续波激光雷达技术基础与研究进展[J]. 光电工程, 2019, 46(7): 190038. doi: 10.12086/oee.2019.190038

    CrossRef Google Scholar

    Lu Z Y, Ge C F, Wang Z Y, et al. Basics and developments of frequency modulation continuous wave LiDAR[J]. Opto-Electron Eng, 2019, 46(7): 190038. doi: 10.12086/oee.2019.190038

    CrossRef Google Scholar

    [37] Buell W, Marechal N, Buck J, et al. Demonstration of synthetic aperture imaging ladar[J]. Proc SPIE, 2005, 5791: 152−166. doi: 10.1117/12.609682

    CrossRef Google Scholar

    [38] Beck S M, Buck J R, Buell W F, et al. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing[J]. Appl Opt, 2005, 44(35): 7621−7629. doi: 10.1364/AO.44.007621

    CrossRef Google Scholar

    [39] 邢孟道, 郭亮, 唐禹, 等. 合成孔径成像激光雷达实验系统设计[J]. 红外与激光工程, 2009, 38(2): 290−294. doi: 10.3969/j.issn.1007-2276.2009.02.022

    CrossRef Google Scholar

    Xing M D, Guo L, Tang Y, et al. Design on the experiment optical system of synthetic aperture imaging lidar[J]. Infrared Laser Eng, 2009, 38(2): 290−294. doi: 10.3969/j.issn.1007-2276.2009.02.022

    CrossRef Google Scholar

    [40] 郭亮, 马瑜杰, 邢孟道, 等. 合成孔径成像激光雷达旋转目标成像[J]. 红外与激光工程, 2009, 38(4): 637−641. doi: 10.3969/j.issn.1007-2276.2009.04.014

    CrossRef Google Scholar

    Guo L, Ma Y J, Xing M D, et al. Rotating objects imaging of synthetic aperture imaging lidar[J]. Infrared Laser Eng, 2009, 38(4): 637−641. doi: 10.3969/j.issn.1007-2276.2009.04.014

    CrossRef Google Scholar

    [41] Guo L, Xing M D, Zhang L, et al. Research on indoor experimentation of range SAL imaging system[J]. Sci China Ser E:Technol Sci, 2009, 52(10): 3098−3104. doi: 10.1007/s11431-009-0157-6

    CrossRef Google Scholar

    [42] 刘立人, 周煜, 职亚楠, 等. 大口径合成孔径激光成像雷达演示样机及其实验室验证[J]. 光学学报, 2011, 31(9): 0900112. doi: 10.3788/AOS201131.0900112

    CrossRef Google Scholar

    Liu L R, Zhou Y, Zhi Y N, et al. A large-aperture synthetic aperture imaging ladar demonstrator and its verification in laboratory space[J]. Acta Opt Sin, 2011, 31(9): 0900112. doi: 10.3788/AOS201131.0900112

    CrossRef Google Scholar

    [43] Adany P, Allen C, Hui R Q. Chirped lidar using simplified homodyne detection[J]. J Lightwave Technol, 2009, 27(16): 3351−3357. doi: 10.1109/JLT.2009.2016220

    CrossRef Google Scholar

    [44] Wang N, Wang R, Li G Z, et al. Experiment of inverse synthetic aperture ladar at 1.1 km[J]. Proc SPIE, 2016, 10155: 101551G. doi: 10.1117/12.2246531

    CrossRef Google Scholar

    [45] Song Z Q, Mo D, Wang N, et al. Inverse synthetic aperture ladar autofocus imaging algorithm for micro-vibrating satellites based on two prominent points[J]. Appl Opt, 2019, 58(25): 6775−6783. doi: 10.1364/AO.58.006775

    CrossRef Google Scholar

    [46] Wang N, Wang R, Mo D, et al. Inverse synthetic aperture LADAR demonstration: system structure, imaging processing, and experiment result[J]. Appl Opt, 2018, 57(2): 230−236. doi: 10.1364/AO.57.000230

    CrossRef Google Scholar

    [47] Mo D, Wang R, Wang N, et al. Three-dimensional inverse synthetic aperture lidar imaging for long-range spinning targets[J]. Opt Lett, 2018, 43(4): 839−842. doi: 10.1364/OL.43.000839

    CrossRef Google Scholar

    [48] 张珂殊, 李光祚, 王然, 等. 机载激光合成孔径雷达研究[C]//第四届高分辨率对地观测学术年会论文集, 2017: 12.

    Google Scholar

    Zhang K S, Li G Z, Wang R, et al. The study on airborne laser synthetic aperture radar[C]//Proceedings of the 4th China High Resolution Earth Observation Conference, 2017: 12.

    Google Scholar

    [49] Mo D, Wang R, Wang N, et al. Experiment of inverse synthetic aperture LADAR on real target[C]//Proceedings of 2017 7th IEEE International Conference on Electronics Information and Emergency Communication, 2017: 319–321. https://doi.org/10.1109/ICEIEC.2017.8076572.

    Google Scholar

    [50] Li G Z, Wang N, Wang R, et al. Imaging method for airborne SAL data[J]. Electron Lett, 2017, 53(5): 351−353. doi: 10.1049/el.2016.4205

    CrossRef Google Scholar

    [51] Li G Z, Wang R, Song Z Q, et al. Linear frequency-modulated continuous-wave ladar system for synthetic aperture imaging[J]. Appl Opt, 2017, 56(12): 3257−3262. doi: 10.1364/AO.56.003257

    CrossRef Google Scholar

    [52] Krause B W, Buck J, Ryan C, et al. Synthetic aperture ladar flight demonstration[C]//Proceedings of 2011 - Laser Science to Photonic Applications, 2011.

    Google Scholar

    [53] 黄宇翔, 张鸿翼, 李飞, 等. 相位调制激光雷达成像设计及仿真[J]. 红外与激光工程, 2017, 46(5): 0506003. doi: 10.3788/IRLA201746.0506003

    CrossRef Google Scholar

    Huang Y X, Zhang H Y, Li F, et al. Phase modulated lidar imaging design and simulation[J]. Infrared Laser Eng, 2017, 46(5): 0506003. doi: 10.3788/IRLA201746.0506003

    CrossRef Google Scholar

    [54] 黄宇翔, 宋盛, 徐卫明, 等. 连续m序列相位调制的实时逆合成孔径激光雷达系统[J]. 激光与光电子学进展, 2017, 54(7): 072801. doi: 10.3788/LOP54.072801

    CrossRef Google Scholar

    Huang Y X, Song S, Xu W M, et al. Real-time inverse synthetic aperture ladar system based on continuous m-sequence phase modulation[J]. Laser Optoelectron Prog, 2017, 54(7): 072801. doi: 10.3788/LOP54.072801

    CrossRef Google Scholar

    [55] Gao S, Zhang Z H, Yu W X, et al. Inverse synthetic aperture ladar imaging based on modified cubic phase function[J]. Appl Opt, 2021, 60(7): 2014−2021. doi: 10.1364/AO.413512

    CrossRef Google Scholar

    [56] Xu X W, Gao S, Zhang Z H. Inverse synthetic aperture ladar demonstration and outdoor experiments[C]//Proceedings of 2018 China International SAR Symposium, 2018: 1–4. https://doi.org/10.1109/SARS.2018.8551972.

    Google Scholar

    [57] Gao S, Zhang Z H, Xu X W, et al. The laboratory demonstration and signal processing of the inverse synthetic aperture imaging ladar[J]. Proc SPIE, 2017, 10427: 104271I. doi: 10.1117/12.2278055

    CrossRef Google Scholar

    [58] Cui A J, Li D J, Wu J, et al. Moving target imaging of a dual-channel ISAL with binary phase shift keying signals and large squint angles[J]. Appl Opt, 2022, 61(18): 5466−5473. doi: 10.1364/AO.458595

    CrossRef Google Scholar

    [59] Song A P, Jin K, Xu C, et al. Subcarrier modulation based phase-coded coherent lidar[J]. Opt Express, 2024, 32(1): 52−61. doi: 10.1364/OE.504166

    CrossRef Google Scholar

    [60] Wahl D E, Eichel P H, Ghiglia D C, et al. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Trans Aerosp Electron Syst, 1994, 30(3): 827−835. doi: 10.1109/7.303752

    CrossRef Google Scholar

    [61] Eichel P H, Jakowatz C V. Phase-gradient algorithm as an optimal estimator of the phase derivative[J]. Opt Lett, 1989, 14(20): 1101−1103. doi: 10.1364/OL.14.001101

    CrossRef Google Scholar

    [62] Chen V C. Adaptive time-frequency ISAR processing[J]. Proc SPIE, 1996, 2845: 133−140. doi: 10.1117/12.257216

    CrossRef Google Scholar

    [63] Högbom J A. Aperture synthesis with a non-regular distribution of interferometer baselines[J]. Astron Astrophys Suppl, 1974, 15: 417−426.

    Google Scholar

    [64] Pellizzari C J, Bos J, Spencer M F, et al. Performance characterization of Phase Gradient Autofocus for inverse synthetic aperture LADAR[C]//Proceedings of 2014 IEEE Aerospace Conference, 2014: 1–11. https://doi.org/10.1109/AERO.2014.6836491.

    Google Scholar

    [65] 李明磊, 吴谨, 白涛, 等. 大随机相位误差下条带模式合成孔径激光雷达成像实验[J]. 中国光学, 2019, 12(1): 130−137. doi: 10.3788/co.20191201.0130

    CrossRef Google Scholar

    Li M L, Wu J, Bai T, et al. Stripmap mode synthetic aperture ladar imaging under large random phase errors condition[J]. Chin Opt, 2019, 12(1): 130−137. doi: 10.3788/co.20191201.0130

    CrossRef Google Scholar

    [66] 张洁, 王然, 张珂殊. 相位梯度自聚焦算法在合成孔径激光雷达中的应用与改进[J]. 激光与光电子学进展, 2016, 53(6): 062801. doi: 10.3788/LOP53.062801

    CrossRef Google Scholar

    Zhang J, Wang R, Zhang K S. Application and improvement of phase gradient autofocus algorithm in synthetic aperture lidar[J]. Laser Optoelectron Prog, 2016, 53(6): 062801. doi: 10.3788/LOP53.062801

    CrossRef Google Scholar

    [67] Song Z, Mo D, Li B, et al. Phase gradient matrix autofocus for ISAL Space-time-varied phase error correction[J]. IEEE Photonics Technol Lett, 2020, 32(6): 353−356. doi: 10.1109/LPT.2020.2974505

    CrossRef Google Scholar

    [68] Xu G, Xing M D, Yang L, et al. Joint approach of translational and rotational phase error corrections for high-resolution inverse synthetic aperture radar imaging using minimum-entropy[J]. IET Radar Sonar Navig, 2016, 10(3): 586−594. doi: 10.1049/iet-rsn.2015.0356

    CrossRef Google Scholar

    [69] 刘盛捷, 付翰初, 魏凯, 等. 基于Nelder-Mead单纯形法的逆合成孔径激光雷达联合补偿成像算法[J]. 光学学报, 2018, 38(7): 0711002. doi: 10.3788/AOS201838.0711002

    CrossRef Google Scholar

    Liu S J, Fu H C, Wei K, et al. Jointly compensated imaging algorithm of inverse synthetic aperture lidar based on nelder-mead simplex method[J]. Acta Opt Sin, 2018, 38(7): 0711002. doi: 10.3788/AOS201838.0711002

    CrossRef Google Scholar

    [70] 李建, 王鲲鹏, 晋凯, 等. 逆合成孔径激光雷达机动目标运动补偿成像算法[J]. 光学学报, 2021, 41(19): 1928001. doi: 10.3788/AOS202141.1928001

    CrossRef Google Scholar

    Li J, Wang K P, Jin K, et al. Inverse synthetic aperture lidar motion compensation imaging algorithm for maneuvering targets[J]. Acta Opt Sin, 2021, 41(19): 1928001. doi: 10.3788/AOS202141.1928001

    CrossRef Google Scholar

    [71] Li J, Jin K, Xu C, et al. Adaptive motion error compensation method based on bat algorithm for maneuvering targets in inverse synthetic aperture LiDAR imaging[J]. Opt Eng, 2023, 62(9): 093103. doi: 10.1117/1.OE.62.9.093103

    CrossRef Google Scholar

    [72] 阮航, 张强, 杨雨昂, 等. 非均匀转动空间目标天基逆合成孔径激光雷达成像[J]. 红外与激光工程, 2023, 52(2): 20220406. doi: 10.3788/IRLA20220406

    CrossRef Google Scholar

    Ruan H, Zhang Q, Yang Y A, et al. Spaceborne inverse synthetic aperture lidar imaging of nonuniformly rotating orbit object[J]. Infrared Laser Eng, 2023, 52(2): 20220406. doi: 10.3788/IRLA20220406

    CrossRef Google Scholar

    [73] Yin H F, Li Y C, Guo L, et al. Spaceborne ISAL imaging algorithm for high-speed moving targets[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2023, 16: 7486−7496. doi: 10.1109/JSTARS.2023.3302570

    CrossRef Google Scholar

    [74] 阮航, 吴彦鸿, 叶伟, 等. 逆合成孔径激光雷达相位误差补偿算法[J]. 激光与光电子学进展, 2013, 50(10): 102801. doi: 10.3788/LOP50.102801

    CrossRef Google Scholar

    Ruan H, Wu Y H, Ye W, et al. Algorithm of phase error compensation for inverse synthetic aperture ladar[J]. Laser Optoelectron Prog, 2013, 50(10): 102801. doi: 10.3788/LOP50.102801

    CrossRef Google Scholar

    [75] 张鸿翼, 李飞, 徐卫明, 等. 利用优化算法对合成孔径激光雷达相位误差补偿的研究[J]. 电子学报, 2016, 44(9): 2100−2105. doi: 10.3969/j.issn.0372-2112.2016.09.012

    CrossRef Google Scholar

    Zhang H Y, Li F, Xu W M, et al. Research on the phase error compensation in synthetic aperture ladar by using optimization algorithm[J]. Acta Electron Sin, 2016, 44(9): 2100−2105. doi: 10.3969/j.issn.0372-2112.2016.09.012

    CrossRef Google Scholar

    [76] Graham L C. Synthetic interferometer radar for topographic mapping[J]. Proc IEEE, 1974, 62(6): 763−768. doi: 10.1109/PROC.1974.9516

    CrossRef Google Scholar

    [77] 刘立人. 自干涉合成孔径激光三维成像雷达原理[J]. 光学学报, 2014, 34(5): 0528001. doi: 10.3788/AOS201434.0528001

    CrossRef Google Scholar

    Liu L R. Principle of self-interferometric synthetic aperture ladar for 3D imaging[J]. Acta Opt Sin, 2014, 34(5): 0528001. doi: 10.3788/AOS201434.0528001

    CrossRef Google Scholar

    [78] 马萌, 李道京, 杜剑波. 振动条件下机载合成孔径激光雷达成像处理[J]. 雷达学报, 2014, 3(5): 591−602. doi: 10.3724/SP.J.1300.2014.13132

    CrossRef Google Scholar

    Ma M, Li D J, Du J B. Imaging of airborne synthetic aperture ladar under platform vibration condition[J]. J Radars, 2014, 3(5): 591−602. doi: 10.3724/SP.J.1300.2014.13132

    CrossRef Google Scholar

    [79] 杜剑波, 李道京, 马萌, 等. 基于干涉处理的机载合成孔径激光雷达振动估计和成像[J]. 中国激光, 2016, 43(9): 0910003. doi: 10.3788/CJL201643.0910003

    CrossRef Google Scholar

    Du J B, Li D J, Ma M, et al. Vibration estimation and imaging of airborne synthetic aperture ladar based on interferometry processing[J]. Chin J Lasers, 2016, 43(9): 0910003. doi: 10.3788/CJL201643.0910003

    CrossRef Google Scholar

    [80] Hu X, Li D J. Vibration phases estimation based on multi-channel interferometry for ISAL[J]. Appl Opt, 2018, 57(22): 6481−6490. doi: 10.1364/AO.57.006481

    CrossRef Google Scholar

    [81] Zhou K, Li D J, Gao J H, et al. Vibration phases estimation based on orthogonal interferometry of inner view field for ISAL imaging and detection[J]. Appl Opt, 2023, 62(11): 2845−2854. doi: 10.1364/AO.481186

    CrossRef Google Scholar

    [82] Gallion P, Debarge G. Quantum phase noise and field correlation in single frequency semiconductor laser systems[J]. IEEE J Quantum Electron, 1984, 20(4): 343−349. doi: 10.1109/JQE.1984.1072399

    CrossRef Google Scholar

    [83] 胡烜, 李道京, 赵绪锋. 基于本振数字延时的合成孔径激光雷达信号相干性保持方法[J]. 中国激光, 2018, 45(5): 0510003. doi: 10.3788/CJL201845.0510003

    CrossRef Google Scholar

    Hu X, Li D J, Zhao X F. Maintaining method of signal coherence in synthetic aperture ladar based on local oscillator digital delay[J]. Chin J Lasers, 2018, 45(5): 0510003. doi: 10.3788/CJL201845.0510003

    CrossRef Google Scholar

    [84] 胡烜, 李道京, 田鹤, 等. 激光雷达信号相位误差对合成孔径成像的影响和校正[J]. 红外与激光工程, 2018, 47(3): 0306001. doi: 10.3788/IRLA201847.0306001

    CrossRef Google Scholar

    Hu X, Li D J, Tian H, et al. Impact and correction of phase error in ladar signal on synthetic aperture imaging[J]. Infrared Laser Eng, 2018, 47(3): 0306001. doi: 10.3788/IRLA201847.0306001

    CrossRef Google Scholar

    [85] Gao J H, Li D J, Zhou K, et al. Maintenance method of signal coherence in lidar and experimental validation[J]. Opt Lett, 2022, 47(20): 5356−5359. doi: 10.1364/OL.470127

    CrossRef Google Scholar

    [86] Ke J Y, Song Z Q, Wang P S, et al. Long distance high resolution FMCW laser ranging with phase noise compensation and 2D signal processing[J]. Appl Opt, 2022, 61(12): 3443−3454. doi: 10.1364/AO.454001

    CrossRef Google Scholar

    [87] Ke J Y, Song Z Q, Cui Z M, et al. Phase noise compensation experiment with frequency modulated continuous wave laser in atmospheric propagation[J]. Opt Eng, 2022, 61(7): 073101. doi: 10.1117/1.OE.61.7.073101

    CrossRef Google Scholar

    [88] Ito F, Fan X Y, Koshikiya Y. Long-range coherent OFDR with light source phase noise compensation[J]. J Lightwave Technol, 2012, 30(8): 1015−1024. doi: 10.1109/JLT.2011.2167598

    CrossRef Google Scholar

    [89] Fan X Y, Koshikiya Y, Ito F. Phase-noise-compensated optical frequency domain reflectometry with measurement range beyond laser coherence length realized using concatenative reference method[J]. Opt Lett, 2007, 32(22): 3227−3229. doi: 10.1364/OL.32.003227

    CrossRef Google Scholar

    [90] Wu S B, Mo D, Wang R, et al. Surpassing the limitation of a coherence length in lidar by digital coherence[J]. Opt Lett, 2023, 48(21): 5455−5458. doi: 10.1364/OL.498990

    CrossRef Google Scholar

    [91] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.

    Google Scholar

    Bao Z, Xing M D, Wang T. Radar Imaging Technology[M]. Beijing: Publishing House of Electronics Industry, 2005.

    Google Scholar

    [92] Yegulalp A F. Fast backprojection algorithm for synthetic aperture radar[C]//Proceedings of the 1999 IEEE Radar Conference. Radar into the Next Millennium, 1999: 60–65. https://doi.org/10.1109/NRC.1999.767270.

    Google Scholar

    [93] Pellizzari C J, Trahan R, Zhou H Y, et al. Synthetic aperature LADAR: a model-based approach[J]. IEEE Trans Comput Imaging, 2017, 3(4): 901−916. doi: 10.1109/TCI.2017.2663320

    CrossRef Google Scholar

    [94] Pellizzari C J, Bouman C A. Inverse synthetic aperture LADAR image construction: an inverse model-based approach[J]. Proc SPIE, 2016, 9982: 99820F. doi: 10.1117/12.2236133

    CrossRef Google Scholar

    [95] 徐晨, 宋岸鹏, 晋凯, 等. 改进的基于光学成像模型的逆合成孔径激光雷达成像算法[J]. 激光与光电子学进展, 2023, 60(12): 1228001. doi: 10.3788/LOP221548

    CrossRef Google Scholar

    Xu C, Song A P, Jin K, et al. Modified imaging algorithm for inverse synthetic aperture LiDAR based on optical imaging model[J]. Laser Optoelectron Prog, 2023, 60(12): 1228001. doi: 10.3788/LOP221548

    CrossRef Google Scholar

    [96] Buck J R, Krause B W, Malm A I R, et al. Synthetic aperture imaging at optical wavelengths[C]//Proceedings of the International Quantum Electronics Conference 2009, 2009. https://doi.org/10.1364/IQEC.2009.PThB3.

    Google Scholar

    [97] Luan Z, Sun J F, Zhou Y, et al. Down-looking synthetic aperture imaging ladar demonstrator and its experiments over 1.2 km outdoor[J]. Chin Opt Lett, 2014, 12(11): 111101. doi: 10.3788/COL201412.111101

    CrossRef Google Scholar

    [98] 卢智勇, 周煜, 孙建峰, 等. 机载直视合成孔径激光成像雷达外场及飞行实验[J]. 中国激光, 2017, 44(1): 0110001. doi: 10.3788/CJL201744.0110001

    CrossRef Google Scholar

    Lu Z Y, Zhou Y, Sun J F, et al. Airborne down-looking synthetic aperture imaging ladar field experiment and its flight testing[J]. Chine J Lasers, 2017, 44(1): 0110001. doi: 10.3788/CJL201744.0110001

    CrossRef Google Scholar

    [99] Li G Y, Sun J F, Zhou Y, et al. Attitude-error compensation for airborne down-looking synthetic-aperture imaging lidar[J]. Opt Commun, 2017, 402: 355−361. doi: 10.1016/j.optcom.2017.05.010

    CrossRef Google Scholar

    [100] 李光远, 卢智勇, 周煜, 等. 直视逆合成孔径激光成像雷达外场实验[J]. 光学学报, 2018, 38(4): 0401001. doi: 10.3788/LOP202158.1811017

    CrossRef Google Scholar

    Li G Y, Lu Z Y, Zhou Y, et al. Outdoor experiment of down-looking inverse synthetic aperture imaging lidar[J]. Acta Opt Sin, 2018, 38(4): 0401001. doi: 10.3788/LOP202158.1811017

    CrossRef Google Scholar

    [101] Wang S, Xiang M S, Wang B N, et al. A channel phase error compensation method for multi-channel synthetic aperture ladar[J]. Optik, 2019, 178: 830−840. doi: 10.1016/j.ijleo.2018.10.074

    CrossRef Google Scholar

    [102] Wang S, Wang B N, Xiang M S, et al. Analysis and compensation of telescopes' gaps effect on aperture synthesis in a multi-channel synthetic aperture ladar system[J]. Appl Opt, 2019, 58(18): 4884−4891. doi: 10.1364/AO.58.004884

    CrossRef Google Scholar

    [103] Wang R R, Xiang M S, Li C. Denoising FMCW ladar signals via EEMD with singular spectrum constraint[J]. IEEE Geosci Remote Sens Lett, 2020, 17(6): 983−987. doi: 10.1109/LGRS.2019.2936603

    CrossRef Google Scholar

    [104] Wang S, Wang B N, Xiang M S, et al. Synthetic aperture ladar motion compensation method based on symmetrical triangular linear frequency modulation continuous wave[J]. Opt Commun, 2020, 471: 125901. doi: 10.1016/j.optcom.2020.125901

    CrossRef Google Scholar

    [105] Wang R R, Xiang M S, Wang B N, et al. Time-frequency domain nonlinear phase compensation for FMCW ladar signals[C]//Proceedings of 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020. https://doi.org/10.1109/IGARSS39084.2020.9323798.

    Google Scholar

    [106] Wang R R, Xiang M S, Wang B N, et al. Nonlinear phase estimation and compensation for FMCW ladar based on synchrosqueezing wavelet transform[J]. IEEE Geosci Remote Sens Lett, 2021, 18(7): 1174−1178. doi: 10.1109/LGRS.2020.2997999

    CrossRef Google Scholar

    [107] Wang R R, Wang B N, Xiang M S, et al. Simultaneous time-varying vibration and nonlinearity compensation for one-period triangular-FMCW lidar signal[J]. Remote Sens, 2021, 13(9): 1731. doi: 10.3390/rs13091731

    CrossRef Google Scholar

    [108] 汪丙南, 赵娟莹, 李威, 等. 阵列激光合成孔径雷达高分辨成像技术研究[J]. 雷达学报, 2022, 11(6): 1110−1118. doi: 10.12000/JR22204

    CrossRef Google Scholar

    Wang B N, Zhao J Y, Li W, et al. Array synthetic aperture ladar with high spatial resolution technology[J]. J Radars, 2022, 11(6): 1110−1118. doi: 10.12000/JR22204

    CrossRef Google Scholar

    [109] Xu C, Jin K, Jiang C C, et al. Amplitude compensation using homodyne detection for inverse synthetic aperture LADAR[J]. Appl Opt, 2021, 60(34): 10594−10599. doi: 10.1364/AO.440764

    CrossRef Google Scholar

    [110] Hong K, Jin K, Song A P, et al. Low sampling rate digital dechirp for Inverse Synthetic Aperture Ladar imaging processing[J]. Opt Commun, 2023, 540: 129482. doi: 10.1016/j.optcom.2023.129482

    CrossRef Google Scholar

    [111] Brown W M, Palermo C J. Theory of coherent systems[J]. IRE Trans Mil Electron, 1962, MIL-6(2): 187−196. doi: 10.1109/IRET-MIL.1962.5008427

    CrossRef Google Scholar

  • Ladar is an active sensing technology employing laser for detecting, measuring and imaging. According to the detection modes, ladars are usually divided into two types: non-coherent ladar and coherent ladar. Coherent ladar employing heterodyne detection can provide more information, such as frequency shift and phase. This combination of features enables multi-functional, high-precision, and operationally important detection and sensing applications.

    Synthetic aperture ladar (SAL) is a special type of coherent ladar whose principle is similar to synthetic aperture radar (SAR) operating in the microwave band. It utilizes a wideband modulated signal to obtain a high axial resolution, which is called range resolution. In another dimension called cross-range direction or azimuth direction, the moving ladar platform transmits and receives a series of coherent pulses, and then these pulses are coherently accumulated to achieve an equivalent large aperture. Thus, its resolution is independent of the optical aperture. Compared with SAR, it has higher imaging speed and higher imaging resolution. It can obtain images similar to what the human is used to seeing, thanks to the operation wavelength of SAL. These characteristics make SAL become a potentially valuable technology in the field of remote sensing and object identification.

    Although SAL is a kind of coherent ladar, it has higher coherence requirements than other systems, which makes SAL face many technical problems like atmosphere disturbance, laser phase noise, motion errors, etc. To address these issues, considerable efforts have been undertaken by a wide array of research professionals and collaborative teams across the field. The main goal of this paper is to provide a review of the progress of these efforts and point out the challenges faced in future development. First, this paper will briefly introduce the working principle of SAL. The second part introduces the research progress of the key technologies in the field of SAL. These key technologies include the system model and basic theoretical problems, system design and architecture, laser phase noise suppression technology, motion error compensation method, and imaging algorithms. The third part reviews the progress of the outdoor experiments at home and abroad. Outdoor experiment is an important step before practical application, which is able to reveal the defects and deficiencies of the system in the real environment. Finally, we summarized the challenges that prevent SAL systems from becoming practical and provided some future directions.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(24)

Article Metrics

Article views(1682) PDF downloads(518) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint