Zhao Y Y, Zhou P F, Xie T P, et al. Development status and trends of single-photon LiDAR technology[J]. Opto-Electron Eng, 2024, 51(3): 240037. doi: 10.12086/oee.2024.240037
Citation: Zhao Y Y, Zhou P F, Xie T P, et al. Development status and trends of single-photon LiDAR technology[J]. Opto-Electron Eng, 2024, 51(3): 240037. doi: 10.12086/oee.2024.240037

Development status and trends of single-photon LiDAR technology

More Information
  • With the rapid development of single-photon detectors and technologies, single-photon LiDAR with photon-level sensitivity has become a popular research topic. It plays an increasingly important role in fields such as remote sensing and mapping, intelligent driving, and consumer electronics. This paper focuses on LiDAR technologies and systems employing single-photon avalanche diode detectors, introducing three single-photon LiDAR detection principles: pulse accumulation, coding modulation and chirp modulation. Considering the importance of detectors and algorithms, it outlines the current development status of single-photon detectors and typical processing algorithms. It also reviews the applications and typical systems of single-photon LiDAR in long-distance detection, complex scene sensing, satellite/airborne remote sensing and mapping, intelligent driving navigation and obstacle avoidance, and 3D sensing in consumer electronics. Lastly, the paper analyzes the future development trends and forecasts the potential challenges of single-photon LiDAR technology in detectors, algorithms, systems, and application domains.
  • 加载中
  • [1] Andersson P. Long-range three-dimensional imaging using range-gated laser radar images[J]. Opt Eng, 2006, 45(3): 034301. doi: 10.1117/1.2183668

    CrossRef Google Scholar

    [2] 刘博, 于洋, 姜朔. 激光雷达探测及三维成像研究进展[J]. 光电工程, 2019, 46(7): 190167. doi: 10.12086/oee.2019.190167

    CrossRef Google Scholar

    Liu B, Yu Y, Jiang S. Review of advances in LiDAR detection and 3D imaging[J]. Opto-Electron Eng, 2019, 46(7): 190167. doi: 10.12086/oee.2019.190167

    CrossRef Google Scholar

    [3] 陈建光, 倪旭翔, 袁波, 等. SiPM激光雷达阳光下探测概率性能分析[J]. 光电工程, 2021, 48(10): 210196. doi: 10.12086/oee.2021.210196

    CrossRef Google Scholar

    Chen J G, Ni X X, Yuan B, et al. Analysis of detection probability performance of SiPM LiDAR under sunlight[J]. Opto-Electron Eng, 2021, 48(10): 210196. doi: 10.12086/oee.2021.210196

    CrossRef Google Scholar

    [4] Becker W. 高级时间相关单光子计数技术[M]. 屈军乐, 译. 北京: 科学出版社, 2009.

    Google Scholar

    Becker W. Advanced time-correlated single photon counting techniques[M]. Qu J L, trans. Beijing: Science Press, 2009.

    Google Scholar

    [5] Kirmani A, Venkatraman D, Shin D, et al. First-photon imaging[J]. Science, 2014, 343(6166): 58−61. doi: 10.1126/science.1246775

    CrossRef Google Scholar

    [6] O’Toole M, Lindell D B, Wetzstein G. Confocal non-line-of-sight imaging based on the light-cone transform[J]. Nature, 2018, 555(7696): 338−341. doi: 10.1038/nature25489

    CrossRef Google Scholar

    [7] Maccarone A, McCarthy A, Ren X M, et al. Underwater depth imaging using time-correlated single-photon counting[J]. Opt Express, 2015, 23(26): 33911−33926. doi: 10.1364/OE.23.033911

    CrossRef Google Scholar

    [8] Niclass C, Gersbach M, Henderson R, et al. A single photon avalanche diode implemented in 130-nm CMOS technology[J]. IEEE J Sel Top Quantum Electron, 2007, 13(4): 863−869. doi: 10.1109/JSTQE.2007.903854

    CrossRef Google Scholar

    [9] 张汉熠, 赵新宇, 张益成, 等. 单光子激光雷达研究进展[J]. 中国激光, 2022, 49(19): 1910003. doi: 10.3788/CJL202249.1910003

    CrossRef Google Scholar

    Zhang H Y, Zhao X Y, Zhang Y C, et al. Review of advances in single-photon LiDAR[J]. Chin J Lasers, 2022, 49(19): 1910003. doi: 10.3788/CJL202249.1910003

    CrossRef Google Scholar

    [10] Goodman J W. Statistical optics[M]. 2nd ed. Hoboken: John Wiley & Sons, Inc. , 2015.

    Google Scholar

    [11] Li Z P, Ye J T, Huang X, et al. Single-photon imaging over 200 km[J]. Optica, 2021, 8(3): 344−349. doi: 10.1364/OPTICA.408657

    CrossRef Google Scholar

    [12] Marino R M, Spitzberg R M, Bohrer M J. A photon counting 3-D imaging laser radar for advanced discriminating interceptor seekers[C]//Annual Interceptor Technology Conference, 1993: 2644. https://doi.org/10.2514/6.1993-2644.

    Google Scholar

    [13] Massa J S, Wallace A M, Buller G S, et al. Laser depth measurement based on time-correlated single-photon counting[J]. Opt Lett, 1997, 22(8): 543−545. doi: 10.1364/OL.22.000543

    CrossRef Google Scholar

    [14] McCarthy A, Collins R J, Krichel N J, et al. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting[J]. Appl Opt, 2009, 48(32): 6241−6251. doi: 10.1364/AO.48.006241

    CrossRef Google Scholar

    [15] Shu R, Huang G H, Hou L B, et al. Multi-channel photon counting three-dimensional imaging laser radar system using fiber array coupled Geiger-mode avalanche photodiode[J]. Proc SPIE, 2012, 8542: 85420C. doi: 10.1117/12.974365

    CrossRef Google Scholar

    [16] Krichel N J, McCarthy A, Buller G S. Resolving range ambiguity in a photon counting depth imager operating at kilometer distances[J]. Opt Express, 2010, 18(9): 9192−9206. doi: 10.1364/OE.18.009192

    CrossRef Google Scholar

    [17] Hiskett P A, Parry C S, McCarthy A, et al. A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates[J]. Opt Express, 2008, 16(18): 13685−13698. doi: 10.1364/OE.16.013685

    CrossRef Google Scholar

    [18] 刘博, 姜朔, 于洋, 等. 宏/子脉冲编码光子计数激光雷达[J]. 光电工程, 2020, 47(10): 200265. doi: 10.12086/oee.2020.200265

    CrossRef Google Scholar

    Liu B, Jiang S, Yu Y, et al. Macro/sub-pulse coded photon counting LiDAR[J]. Opto-Electron Eng, 2020, 47(10): 200265. doi: 10.12086/oee.2020.200265

    CrossRef Google Scholar

    [19] Hu Z H, Jiang C H, Zhu J G, et al. Chaos single photon LIDAR and the ranging performance analysis based on Monte Carlo simulation[J]. Opt Express, 2022, 30(23): 41658−41670. doi: 10.1364/OE.474228

    CrossRef Google Scholar

    [20] Hu Z H, Zhu J G, Jiang C H, et al. Improving the ranging performance of chaos LiDAR[J]. Appl Opt, 2023, 62(14): 3598−3605. doi: 10.1364/AO.487503

    CrossRef Google Scholar

    [21] Hu Z H, Jiang C H, Zhu J G, et al. Efficient and robust chaos single photon LiDAR[J]. Opt Laser Technol, 2024, 174: 110623. doi: 10.1016/j.optlastec.2024.110623

    CrossRef Google Scholar

    [22] Luu J X, Jiang L A. Coherent photon counting ladar[C]//Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications, 2006: CWB5. https://doi.org/10.1364/COTA.2006.CWB5.

    Google Scholar

    [23] Redman B C, Stann B L. Photon counting chirped amplitude modulation ladar[R]. Affiliation: Army Research Laboratory, 2008.

    Google Scholar

    [24] 陈效双, 何家乐, 李庆, 等. 中红外波段雪崩光子探测器研究进展[J]. 红外技术, 2018, 40(9): 825−836.

    Google Scholar

    Chen X S, He J L, Li Q, et al. Research progress of mid-infrared avalanche photodiode detectors[J]. Infrared Technol, 2018, 40(9): 825−836.

    Google Scholar

    [25] 尤立星. 超导纳米线单光子探测现状与展望[J]. 红外与激光工程, 2018, 47(12): 1202001. doi: 10.3788/IRLA201847.1202001

    CrossRef Google Scholar

    You L X. Status and prospect of superconducting nanowire single photon detection[J]. Infrared Laser Eng, 2018, 47(12): 1202001. doi: 10.3788/IRLA201847.1202001

    CrossRef Google Scholar

    [26] 霍晓培, 杨德振, 喻松林, 等. 单光子探测器研究现状与发展[J]. 激光与红外, 2023, 53(1): 3−11. doi: 10.3969/j.issn.1001-5078.2023.01.001

    CrossRef Google Scholar

    Huo X P, Yang D Z, Yu S L, et al. Research on status and development of single photon detector[J]. Laser Infrared, 2023, 53(1): 3−11. doi: 10.3969/j.issn.1001-5078.2023.01.001

    CrossRef Google Scholar

    [27] 程碑彤, 代千, 谢修敏, 等. 单光子探测器的研究进展[J]. 激光技术, 2022, 46(5): 601−609. doi: 10.7510/jgjs.issn.1001-3806.2022.05.004

    CrossRef Google Scholar

    Cheng B T, Dai Q, Xie X M, et al. Research progress of single-photon detectors[J]. Laser Technol, 2022, 46(5): 601−609. doi: 10.7510/jgjs.issn.1001-3806.2022.05.004

    CrossRef Google Scholar

    [28] Veerappan C, Charbon E. A substrate isolated CMOS SPAD enabling wide spectral response and low electrical crosstalk[J]. IEEE J Sel Top Quantum Electron, 2014, 20(6): 299−305. doi: 10.1109/JSTQE.2014.2318436

    CrossRef Google Scholar

    [29] Shin D, Park B, Chae Y, et al. The effect of a deep virtual guard ring on the device characteristics of silicon single photon avalanche diodes[J]. IEEE Trans Electron Devices, 2019, 66(7): 2986−2991. doi: 10.1109/TED.2019.2913714

    CrossRef Google Scholar

    [30] Lee M J, Ximenes A R, Padmanabhan P, et al. High-performance back-illuminated three-dimensional stacked single-photon avalanche diode implemented in 45-nm CMOS technology[J]. IEEE J Sel Top Quantum Electron, 2018, 24(6): 3801809. doi: 10.1109/JSTQE.2018.2827669

    CrossRef Google Scholar

    [31] Vines P, Kuzmenko K, Kirdoda J, et al. High performance planar germanium-on-silicon single-photon avalanche diode detectors[J]. Nat Commun, 2019, 10: 1086. doi: 10.1038/s41467-019-08830-w

    CrossRef Google Scholar

    [32] Bai P, Zhang Y H, Shen W Z. Infrared single photon detector based on optical up-converter at 1550 nm[J]. Sci Rep, 2017, 7: 15341. doi: 10.1038/s41598-017-15613-0

    CrossRef Google Scholar

    [33] 胡志宏. 基于随机编码的单光子探测关键技术研究[D]. 北京: 中国科学院微电子研究所, 2023.

    Google Scholar

    Hu Z H. Research on key technologies of single-photon detection based on random coding[D]. Beijng: Institute of Microelectronics of the Chinese Academy of Sciences, 2023.

    Google Scholar

    [34] Acerbi F, Gundacker S. Understanding and simulating SiPMs[J]. Nucl Instrum Methods Phys Res A Accel Spectrom Detect Assoc Equip, 2019, 926: 16−35. doi: 10.1016/j.nima.2018.11.118

    CrossRef Google Scholar

    [35] Song H Z. Avalanche photodiode focal plane arrays and their application to laser detection and ranging[M]//Chee K. Advances in Photodetectors-Research and Applications. London: IntechOpen, 2018. https://doi.org/10.5772/intechopen.81294.

    Google Scholar

    [36] Morimoto K, Ardelean A, Wu M L, et al. Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications[J]. Optica, 2020, 7(4): 346−354. doi: 10.1364/OPTICA.386574

    CrossRef Google Scholar

    [37] Morimoto K, Iwata J, Shinohara M, et al. 3.2 Megapixel 3D-stacked charge focusing SPAD for low-light imaging and depth sensing[C]//2021 IEEE International Electron Devices Meeting (IEDM), 2021: 20.2. 1–20.2. 4. https://doi.org/10.1109/IEDM19574.2021.9720605.

    Google Scholar

    [38] Nolet F, Parent S, Roy N, et al. Quenching circuit and SPAD integrated in CMOS 65 nm with 7.8 ps FWHM single photon timing resolution[J]. Instruments, 2018, 2(4): 19. doi: 10.3390/instruments2040019

    CrossRef Google Scholar

    [39] Jiang W, Scott R, Deen M J. High-speed active quench and reset circuit for SPAD in a standard 65 nm CMOS technology[J]. IEEE Photonics Technol Lett, 2021, 33(24): 1431−1434. doi: 10.1109/LPT.2021.3124989

    CrossRef Google Scholar

    [40] Erdogan A T, Walker R, Finlayson N, et al. A CMOS SPAD line sensor with per-pixel histogramming TDC for time-resolved multispectral imaging[J]. IEEE J Solid-State Circuits, 2019, 54(6): 1705−1719. doi: 10.1109/JSSC.2019.2894355

    CrossRef Google Scholar

    [41] Gramuglia F, Wu M L, Bruschini C, et al. A low-noise CMOS SPAD pixel with 12.1 ps SPTR and 3 Ns dead time[J]. IEEE J Sel Top Quantum Electron, 2022, 28(2: Optical Detectors): 3800809. https://doi.org/10.1109/JSTQE.2021.3088216.

    Google Scholar

    [42] Lee M J, Karaca U, Kizilkan E, et al. A 73% peak PDP single-photon avalanche diode implemented in 110 nm CIS technology with doping compensation[J]. IEEE J Sel Top Quantum Electron, 2024, 30(1: Single-Photon Technologies and Applications): 3800310. https://doi.org/10.1109/JSTQE.2023.3288674.

    Google Scholar

    [43] Severini F, Cusini I, Berretta D, et al. SPAD pixel with sub-ns dead-time for high-count rate applications[J]. IEEE J Sel Top Quantum Electron, 2022, 28(2: Optical Detectors): 3802808. https://doi.org/10.1109/JSTQE.2021.3124825.

    Google Scholar

    [44] Gramuglia F, Keshavarzian P, Kizilkan E, et al. Engineering breakdown probability profile for PDP and DCR optimization in a SPAD fabricated in a standard 55 nm BCD process[J]. IEEE J Sel Top Quantum Electron, 2022, 28(2: Optical Detectors): 3802410. https://doi.org/10.1109/JSTQE.2021.3114346.

    Google Scholar

    [45] Ha W Y, Park E, Eom D, et al. SPAD developed in 55 nm bipolar-CMOS-DMOS technology achieving near 90% peak PDP[J]. IEEE J Sel Top Quantum Electron, 2024, 30(1: Single-Photon Technologies and Applications): 3800410. https://doi.org/10.1109/JSTQE.2023.3303678.

    Google Scholar

    [46] 史衍丽, 李云雪, 白容, 等. 短波红外单光子探测器的发展(特邀)[J]. 红外与激光工程, 2023, 52(3): 20220908. doi: 10.3788/IRLA20220908

    CrossRef Google Scholar

    Shi Y L, Li Y X, Bai R, et al. Advancement of shortwave infrared single-photon detectors (invited)[J]. Infrared Laser Eng, 2023, 52(3): 20220908. doi: 10.3788/IRLA20220908

    CrossRef Google Scholar

    [47] Meng X, Tan C H, Dimler S, et al. 1550 nm InGaAs/InAlAs single photon avalanche diode at room temperature[J]. Opt Express, 2014, 22(19): 22608−22615. doi: 10.1364/OE.22.022608

    CrossRef Google Scholar

    [48] Seo H S, Park S H, Kwak S, et al. A model for the InGaAs/InP single photon avalanche diodes with multiple-quantum wells in the charge multiplication region[J]. J Korean Phys Soc, 2018, 72(2): 289−293. doi: 10.3938/jkps.72.289

    CrossRef Google Scholar

    [49] Signorelli F, Telesca F, Conca E, et al. Low-noise InGaAs/InP single-photon avalanche diodes for fiber-based and free-space applications[J]. IEEE J Sel Top Quantum Electron, 2022, 28(2: Optical Detectors): 3801310. https://doi.org/10.1109/JSTQE.2021.3104962.

    Google Scholar

    [50] Fang Y Q, Chen W, Ao T H, et al. InGaAs/InP single-photon detectors with 60% detection efficiency at 1550 nm[J]. Rev Sci Instrum, 2020, 91(8): 083102. doi: 10.1063/5.0014123

    CrossRef Google Scholar

    [51] 崔大健, 敖天宏, 奚水清, 等. InGaAs单光子雪崩焦平面研究进展(特邀)[J]. 红外与激光工程, 2023, 52(3): 20230016. doi: 10.3788/IRLA20230016

    CrossRef Google Scholar

    Cui D J, Ao T H, Xi S Q, et al. Research progress of InGaAs single-photon avalanche focal plane (invited)[J]. Infrared Laser Eng, 2023, 52(3): 20230016. doi: 10.3788/IRLA20230016

    CrossRef Google Scholar

    [52] Diagne M, McIntosh A, Donnelly J, et al. Advances in InP/InGaAs Geiger-mode APD focal plane arrays (Conference Presentation)[J]. Proc SPIE, 2018, 10659: 1065904. doi: 10.1117/12.2306423

    CrossRef Google Scholar

    [53] Signorelli F, Telesca F, Conca E, et al. InGaAs/InP SPAD detecting single photons at 1550 nm with up to 50% efficiency and low noise[C]//2021 IEEE International Electron Devices Meeting (IEDM), 2021: 20.3. 1–20.3. 4. https://doi.org/10.1109/IEDM19574.2021.9720559.

    Google Scholar

    [54] He T T, Yang X H, Tang Y S, et al. High photon detection efficiency InGaAs/InP single photon avalanche diode at 250 K[J]. J Semicond, 2022, 43(10): 102301. doi: 10.1088/1674-4926/43/10/102301

    CrossRef Google Scholar

    [55] Wang S, Ye H, Geng L Y, et al. Design, fabrication, and characteristic analysis of 64×64 InGaAs/InP single-photon avalanche diode array[J]. J Electron Mater, 2022, 51(5): 2692−2697. doi: 10.1007/s11664-022-09531-9

    CrossRef Google Scholar

    [56] He D Y, Wang S, Chen J L, et al. 2.5 GHz gated InGaAs/InP single-photon avalanche diode with 44 ps time jitter[J]. Adv Devices Instrum, 2023, 4: 0020. doi: 10.34133/adi.0020

    CrossRef Google Scholar

    [57] Brown R, Hartzell P, Glennie C. Evaluation of SPL100 single photon lidar data[J]. Remote Sens, 2020, 12(4): 722. doi: 10.3390/rs12040722

    CrossRef Google Scholar

    [58] Shin D, Xu F H, Venkatraman D, et al. Photon-efficient imaging with a single-photon camera[J]. Nat Commun, 2016, 7: 12046. doi: 10.1038/ncomms12046

    CrossRef Google Scholar

    [59] Rapp J, Goyal V K. A few photons among many: unmixing signal and noise for photon-efficient active imaging[J]. IEEE Trans Comput Imaging, 2017, 3(3): 445−459. doi: 10.1109/TCI.2017.2706028

    CrossRef Google Scholar

    [60] Chen S M, Halimi A, Ren X M, et al. Learning non-local spatial correlations to restore sparse 3D single-photon data[J]. IEEE Trans Image Process, 2020, 29: 3119−3131. doi: 10.1109/TIP.2019.2957918

    CrossRef Google Scholar

    [61] Huang X, Hong Y, Li Z P, et al. Frequency-modulated continuous-wave 3D imaging with high photon efficiency[J]. Opt Lett, 2022, 47(14): 3568−3571. doi: 10.1364/OL.463007

    CrossRef Google Scholar

    [62] Lee J, Ingle A, Chacko J V, et al. CASPI: collaborative photon processing for active single-photon imaging[J]. Nat Commun, 2023, 14(1): 3158. doi: 10.1038/s41467-023-38893-9

    CrossRef Google Scholar

    [63] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//18th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234–241. https://doi.org/10.1007/978-3-319-24574-4_28.

    Google Scholar

    [64] Lindell D B, O'Toole M, Wetzstein G. Single-photon 3D imaging with deep sensor fusion[J]. ACM Trans Graph, 2018, 37(4): 113. doi: 10.1145/3197517.3201316

    CrossRef Google Scholar

    [65] Zhao X C, Jiang X D, Han A J, et al. Photon-efficient 3D reconstruction employing a edge enhancement method[J]. Opt Express, 2022, 30(2): 1555−1569. doi: 10.1364/OE.446369

    CrossRef Google Scholar

    [66] Peng J Y, Xiong Z W, Huang X, et al. Photon-efficient 3D imaging with a non-local neural network[C]//16th European Conference Computer Vision, 2020: 225–241. https://doi.org/10.1007/978-3-030-58539-6_14.

    Google Scholar

    [67] Yang X, Tong ZY, Jiang P F, et al. Deep-learning based photon-efficient 3D and reflectivity imaging with a 64×64 single-photon avalanche detector array[J]. Opt Express, 2022, 30(18): 32948−32964. doi: 10.1364/OE.465918

    CrossRef Google Scholar

    [68] 方照勋, 张华, 刘鹏鹏, 等. 基于盖革模式APD的啁啾调幅激光雷达分析[J]. 激光与红外, 2012, 42(6): 620−625. doi: 10.3969/j.issn.1001-5078.2012.06.005

    CrossRef Google Scholar

    Fang Z X, Zhang H, Liu P P, et al. Analysis of chirped AM ladar based on Geiger-mode APD[J]. Laser Infrared, 2012, 42(6): 620−625. doi: 10.3969/j.issn.1001-5078.2012.06.005

    CrossRef Google Scholar

    [69] Pawlikowska A M, Halimi A, Lamb R A, et al. Single-photon three-dimensional imaging at up to 10 kilometers range[J]. Opt Express, 2017, 25(10): 11919−11931. doi: 10.1364/OE.25.011919

    CrossRef Google Scholar

    [70] Du B C, Pang C K, Wu D, et al. High-speed photon-counting laser ranging for broad range of distances[J]. Sci Rep, 2018, 8(1): 4198. doi: 10.1038/s41598-018-22675-1

    CrossRef Google Scholar

    [71] Li Z P, Huang X, Jiang P Y, et al. Super-resolution single-photon imaging at 8.2 kilometers[J]. Opt Express, 2020, 28(3): 4076−4087. doi: 10.1364/OE.383456

    CrossRef Google Scholar

    [72] 黄远建, 李晓银, 叶文怡, 等. 基于共聚焦亚像素扫描的高分辨三维成像[J]. 光学学报, 2023, 43(8): 0822014. doi: 10.3788/AOS221974

    CrossRef Google Scholar

    Huang Y J, Li X Y, Ye W Y, et al. High resolution 3D imaging based on confocal sub-pixel scanning[J]. Acta Opt Sin, 2023, 43(8): 0822014. doi: 10.3788/AOS221974

    CrossRef Google Scholar

    [73] Li Z P, Huang X, Cao Y, et al. Single-photon computational 3D imaging at 45 km[J]. Photonics Res, 2020, 8(9): 1532−1540. doi: 10.1364/PRJ.390091

    CrossRef Google Scholar

    [74] McCarthy A, Ren X M, Della Frera A, et al. Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector[J]. Opt Express, 2013, 21(19): 22098−22113. doi: 10.1364/OE.21.022098

    CrossRef Google Scholar

    [75] Yang F, Zhang X, He Y, et al. High speed pseudorandom modulation fiber laser ranging system[J]. Chin Opt Lett, 2014, 12(8): 082801. doi: 10.3788/COL201412.082801

    CrossRef Google Scholar

    [76] Li Z H, Wu E, Pang C K, et al. Multi-beam single-photon-counting three-dimensional imaging lidar[J]. Opt Express, 2017, 25(9): 10189−10195. doi: 10.1364/OE.25.010189

    CrossRef Google Scholar

    [77] Dai C, Ye W L, Yu C, et al. Long-range photon-efficient 3D imaging without range ambiguity[J]. Opt Lett, 2023, 48(6): 1542−1545. doi: 10.1364/OL.485127

    CrossRef Google Scholar

    [78] Maccarone A, Della Rocca F M, McCarthy A, et al. Three-dimensional imaging of stationary and moving targets in turbid underwater environments using a single-photon detector array[J]. Opt Express, 2019, 27(20): 28437−28456. doi: 10.1364/OE.27.028437

    CrossRef Google Scholar

    [79] Hua K J, Liu B, Fang L, et al. Correction of range walk error for underwater photon-counting imaging[J]. Opt Express, 2020, 28(24): 36260−36273. doi: 10.1364/OE.404539

    CrossRef Google Scholar

    [80] Maccarone A, Drummond K, McCarthy A, et al. Submerged single-photon LiDAR imaging sensor used for real-time 3D scene reconstruction in scattering underwater environments[J]. Opt Express, 2023, 31(10): 16690−16708. doi: 10.1364/OE.487129

    CrossRef Google Scholar

    [81] Tobin R, Halimi A, McCarthy A, et al. Three-dimensional single-photon imaging through obscurants[J]. Opt Express, 2019, 27(4): 4590−4611. doi: 10.1364/OE.27.004590

    CrossRef Google Scholar

    [82] Shi H T, Shen G Y, Qi H Y, et al. Noise-tolerant Bessel-beam single-photon imaging in fog[J]. Opt Express, 2022, 30(7): 12061−12068. doi: 10.1364/OE.454669

    CrossRef Google Scholar

    [83] Qi H Y, Shen G Y, Li Z H, et al. Noise-tolerant single-photon imaging by using non-diffractive pulsed laser beams[J]. Opt Commun, 2023, 527: 128978. doi: 10.1016/j.optcom.2022.128978

    CrossRef Google Scholar

    [84] Jiang P Y, Li Z P, Ye W L, et al. Long range 3D imaging through atmospheric obscurants using array-based single-photon LiDAR[J]. Opt Express, 2023, 31(10): 16054−16066. doi: 10.1364/OE.487560

    CrossRef Google Scholar

    [85] Shen S S, Chen Q, He W J, et al. Approach for Pseudo-random bit-stream multi-depth imaging[J]. Opt Quantum Electron, 2020, 52(2): 76. doi: 10.1007/s11082-019-2135-y

    CrossRef Google Scholar

    [86] Halimi A, Tobin R, McCarthy A, et al. Restoration of multilayered single-photon 3D lidar images[C]//2017 25th European Signal Processing Conference (EUSIPCO), 2017: 708–712. https://doi.org/10.23919/EUSIPCO.2017.8081299.

    Google Scholar

    [87] 赵浴阳. 基于单光子激光雷达的嵌入式实时处理系统设计与实现[D]. 北京: 中国科学院微电子研究所, 2023.

    Google Scholar

    Zhao Y Y. Design and implementation of embedded real-time processing system based on single-photon LiDAR[D]. Beijng: Institute of Microelectronics of the Chinese Academy of Sciences, 2023.

    Google Scholar

    [88] 李雨佳, 周晓青, 李国元, 等. 星载单光子激光雷达浅水测深技术研究进展和展望[J]. 红外与激光工程, 2022, 51(10): 20220003. doi: 10.3788/IRLA20220003

    CrossRef Google Scholar

    Li Y J, Zhou X Q, Li G Y, et al. Progress and prospect of space-borne photon-counting lidar shallow water bathymetry technology[J]. Infrared Laser Eng, 2022, 51(10): 20220003. doi: 10.3788/IRLA20220003

    CrossRef Google Scholar

    [89] Markus T, Neumann T, Martino A, et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation[J]. Remote Sens Environ, 2017, 190: 260−273. doi: 10.1016/j.rse.2016.12.029

    CrossRef Google Scholar

    [90] Yu A W, Krainak M A, Harding D J, et al. Sixteen channel, non-scanning airborne lidar surface topography (list) simulator[C]//2011 IEEE International Geoscience and Remote Sensing Symposium, 2011: 4119–4121. https://doi.org/10.1109/IGARSS.2011.6050139.

    Google Scholar

    [91] Shi Y F, Li Z H, Feng B C, et al. Enhanced solar-blind ultraviolet single-photon detection with a Geiger-mode silicon avalanche photodiode[J]. Chin Opt Lett, 2016, 14(3): 030401. doi: 10.3788/COL201614.030401

    CrossRef Google Scholar

    [92] Degnan J J, McGarry J F, Zagwodzki T W, et al. Design and performance of a 3D imaging photon-counting microlaser altimeter operating from aircraft cruise altitudes under day or night conditions[J]. Proc SPIE, 2002, 4546: 1−10. doi: 10.1117/12.453978

    CrossRef Google Scholar

    [93] Marino R M, Davis W R, Jr. Jigsaw: a foliage-penetrating 3D imaging laser radar system[J]. Lincoln Lab J, 2005, 15(1): 23−36.

    Google Scholar

    [94] Knowlton R. Airborne ladar imaging research testbed[R]. Lexington: MIT Lincoln Laboratory, 2011.

    Google Scholar

    [95] Li Q H, Degnan J, Barrett T, et al. First evaluation on single photon-sensitive lidar data[J]. Photogramm Eng Remote Sens, 2016, 82(7): 455−463. doi: 10.14358/PERS.82.7.455

    CrossRef Google Scholar

    [96] 胡国军, 朱精果, 刘汝卿. Mars-LiDAR系统误差分析及安置角误差飞行检校[J]. 红外与激光工程, 2016, 45(12): 1217009. doi: 10.3788/IRLA201645.1217009

    CrossRef Google Scholar

    Hu G J, Zhu J G, Liu R Q. Error analysis of Mars-LiDAR system and calibration of installation angle error[J]. Infrared Laser Eng, 2016, 45(12): 1217009. doi: 10.3788/IRLA201645.1217009

    CrossRef Google Scholar

    [97] Yu C, Qiu J W, Xia H Y, et al. Compact and lightweight 1.5 μm lidar with a multi-mode fiber coupling free-running InGaAs/InP single-photon detector[J]. Rev Sci Instrum, 2018, 89(10): 103106. doi: 10.1063/1.5047472

    CrossRef Google Scholar

    [98] Xie S Y, Zhang S Y, Tan C H. InGaAs/InAlAs avalanche photodiode with low dark current for high-speed operation[J]. IEEE Photonics Technol Lett, 2015, 27(16): 1745−1748. doi: 10.1109/LPT.2015.2439153

    CrossRef Google Scholar

    [99] 张秀川, 蒋利群, 高新江, 等. InGaAs/InP盖革模式雪崩焦平面阵列的研制[J]. 半导体光电, 2015, 36(3): 356−360,391. doi: 10.16818/j.issn1001-5868.2015.03.003

    CrossRef Google Scholar

    Zhang X C, Jiang L Q, Gao X J, et al. Fabrication of InGaAs/InP Geiger-mode avalanche focal plane arrays[J]. Semicond Optoelectron, 2015, 36(3): 356−360,391. doi: 10.16818/j.issn1001-5868.2015.03.003

    CrossRef Google Scholar

    [100] Osrečki Ž, Knežević T, Nanver L K, et al. Indirect optical crosstalk reduction by highly-doped backside layer in single-photon avalanche diode arrays[J]. Opt Quantum Electron, 2018, 50(3): 152. doi: 10.1007/s11082-018-1415-2

    CrossRef Google Scholar

    [101] Zhao X C, Wu M, Zhang Y, et al. Robust single-photon 3D imaging based on full-scale feature integration and intensity edge guidance[J]. Opt Lasers Eng, 2024, 172: 107850. doi: 10.1016/j.optlaseng.2023.107850

    CrossRef Google Scholar

    [102] Lindner S, Zhang C, Antolovic I M, et al. A 252×144 SPAD pixel FLASH LiDAR with 1728 dual-clock 48.8 ps TDCs, integrated histogramming and 14.9-to-1 compression in 180nm CMOS technology[C]//2018 IEEE Symposium on VLSI Circuits, 2018: 69–70. https://doi.org/10.1109/VLSIC.2018.8502386.

    Google Scholar

    [103] Yang X, Yao C H, Kang L, et al. A bio-inspired spiking vision chip based on SPAD imaging and direct spike computing for versatile edge vision[J]. IEEE J Solid-State Circuits, 2023. https://doi.org/10.1109/JSSC.2023.3340018.

    Google Scholar

    [104] Mora-Martín G, Turpin A, Ruget A, et al. High-speed object detection with a single-photon time-of-flight image sensor[J]. Opt Express, 2021, 29(21): 33184−33196. doi: 10.1364/OE.435619

    CrossRef Google Scholar

    [105] Kwok R, Cunningham G F, Zwally H J, et al. Ice, Cloud, and land Elevation Satellite (ICESat) over Arctic sea ice: retrieval of freeboard[J]. J Geophys Res Oceans, 2007, 112(C12): C12013. doi: 10.1029/2006JC003978

    CrossRef Google Scholar

    [106] Li Y, Peng J Y, Ye J T, et al. NLOST: non-line-of-sight imaging with transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 13313–13322. https://doi.org/10.1109/CVPR52729.2023.01279.

    Google Scholar

  • LiDAR (Light Detection and Ranging) is an active remote sensing technology that can accurately and quickly acquire the three-dimensional spatial information of objects. Compared with traditional linear-mode LiDAR, single-photon LiDAR, especially those based on Single-Photon Avalanche Diodes (SPAD), represents an emerging technology with high temporal resolution, high sensitivity, and ease of integration. Due to its unique technological advantages in capturing weak signals and high-precision 3D imaging, it is widely applied in military, aerospace, and autonomous driving fields. In recent years, the continuous development of SPAD detectors has driven the vigorous development and rapid performance improvement of various single-photon LiDAR systems. Furthermore, the single-photon imaging algorithm has evolved from single-point signal processing to array image reconstruction. By exploring the spatiotemporal correlation between pixels, it can accurately restore the depth information carried by weak signals from high background noise. The introduction of deep-learning-based approaches with single-photon imaging prior knowledge has also become one of the current research hotspots. Meanwhile, thanks to powerful imaging algorithms, advanced optomechanical structures, and efficient system designs, they have significantly improved detection accuracy and speed and promoted the application scope of single-photon imaging systems from traditional satellite and airborne applications to vehicle-mounted and consumer electronics fields.

    This article focuses on LiDAR technology based on SPAD. Starting from the basic principles, it introduces single-photon LiDAR technology and three typical technical systems, including pulse accumulation time-of-flight technology, coded modulation time-of-flight technology, and chirp modulation coherent detection technology. Based on this, the article highlights SPAD detectors, illustrates the research progress of Si SPAD and InGaAs/InP SPAD, and discusses classical imaging algorithms and typical prior assumptions. Moreover, this review looks back on the current development of single-photon LiDAR in long-distance detection, complex scene sensing, satellite/airborne mapping remote sensing, intelligent driving navigation and obstacle avoidance, and consumer electronics 3D perception, organizing typical systems in different application fields and platforms. Finally, based on current research hotspots and pain points, this article summarizes the main development trends of single-photon detection technology in detectors, imaging algorithms, system integration, and application fields. Of course, single-photon LiDAR also faces challenges such as distance ambiguity and pile-up effects. Therefore, in the design of single-photon LiDAR systems, adopting the concept of computational imaging based on application needs and jointly optimizing the system architecture, optical transmission and reception system, and 3D imaging algorithms might be a beneficial approach. It is hoped that this paper can provide some references for readers to understand the development and design of single-photon LiDAR systems.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(18)

Tables(4)

Article Metrics

Article views(3034) PDF downloads(1083) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint