Wang L, Liu B, Wu C, et al. Characteristics analysis and test of LiDAR based on diffraction lens receiving[J]. Opto-Electron Eng, 2024, 51(3): 240032. doi: 10.12086/oee.2024.240032
Citation: Wang L, Liu B, Wu C, et al. Characteristics analysis and test of LiDAR based on diffraction lens receiving[J]. Opto-Electron Eng, 2024, 51(3): 240032. doi: 10.12086/oee.2024.240032

Characteristics analysis and test of LiDAR based on diffraction lens receiving

More Information
  • The optimization and design of optical systems is an important research direction in LiDAR. In this paper, the advantages of diffractive optical elements (DOE), such as high design degree of freedom and large dispersion, are used in the receiving end of LiDAR. The focusing and filtering effects are realized at the same time, which reduces the complexity of the optical system. Based on the principle of diffractive optical elements, the optical characteristics of diffractive optical elements are simulated and analyzed. The LiDAR ranging experiment is completed by using the diffractive optical element as the optical receiving end of the LiDAR. It proved that the diffractive optical elements have both a focusing effect and a narrow-band filtering effect. The experimental results are basically consistent with the simulation. Using the advantages of diffractive optical elements in LiDAR, the lightweight, integration, and high efficiency of LiDAR can be realized.
  • 加载中
  • [1] Gargoum S, El-Basyouny K. Automated extraction of road features using LiDAR data: a review of LiDAR applications in transportation[C]//2017 4th International Conference on Transportation Information and Safety (ICTIS), Banff, AB, Canada, 2017: 563–574. https://doi.org/10.1109/ICTIS.2017.8047822.

    Google Scholar

    [2] Dassot M, Constant T, Fournier M. The use of terrestrial LiDAR technology in forest science: application fields, benefits and challenges[J]. Ann For Sci, 2011, 68(5): 959−974. doi: 10.1007/s13595-011-0102-2

    CrossRef Google Scholar

    [3] Rivera G, Porras R, Florencia R, et al. LiDAR applications in precision agriculture for cultivating crops: a review of recent advances[J]. Comput Electron Agric, 2023, 207: 107737. doi: 10.1016/j.compag.2023.107737

    CrossRef Google Scholar

    [4] 刘博, 于洋, 姜朔. 激光雷达探测及三维成像研究进展[J]. 光电工程, 2019, 46(7): 15−27. doi: 10.12086/oee.2019.190167

    CrossRef Google Scholar

    Liu B, Yu Y, Jiang S. Review of advances in LiDAR detection and 3D imaging[J]. Opto-Electron Eng, 2019, 46(7): 15−27. doi: 10.12086/oee.2019.190167

    CrossRef Google Scholar

    [5] 马愈昭, 张岩峰, 冯帅. 基于神经网络的侧向激光雷达信号去噪算法[J]. 光电工程, 2023, 50(6): 220341. doi: 10.12086/oee.2023.220341

    CrossRef Google Scholar

    Ma Y Z, Zhang Y F, Feng S. A denoising algorithm based on neural network for side-scatter lidar signal[J]. Opto-Electron Eng, 2023, 50(6): 220341. doi: 10.12086/oee.2023.220341

    CrossRef Google Scholar

    [6] 陈海平, 李萌阳, 曹庭分, 等. 基于激光雷达数据的火星表面障碍物识别[J]. 光电工程, 2023, 50(2): 220240. doi: 10.12086/oee.2023.220240

    CrossRef Google Scholar

    Chen H P, Li M Y, Cao T F, et al. Obstacle recognition on Mars surface based on LiDAR data[J]. Opto-Electron Eng, 2023, 50(2): 220240. doi: 10.12086/oee.2023.220240

    CrossRef Google Scholar

    [7] 闫德立, 高尚, 李韶华, 等. 基于激光雷达的道路不平度及可行驶区域检测[J]. 激光技术, 2022, 46(5): 624−629. doi: 10.7510/jgjs.issn.1001-3806.2022.05.007

    CrossRef Google Scholar

    Yan D L, Gao S, Li S H, et al. Detection of road roughness and drivable area based on LiDAR[J]. Laser Technol, 2022, 46(5): 624−629. doi: 10.7510/jgjs.issn.1001-3806.2022.05.007

    CrossRef Google Scholar

    [8] Jaboyedoff M, Oppikofer T, Abellán A, et al. Use of LIDAR in landslide investigations: a review[J]. Nat Hazards, 2012, 61(1): 5−28. doi: 10.1007/s11069-010-9634-2

    CrossRef Google Scholar

    [9] 李孟麟, 朱精果, 孟柘, 等. 轻小型机载激光扫描仪设计[J]. 红外与激光工程, 2015, 44(5): 1426−1431. doi: 10.3969/j.issn.1007-2276.2015.05.006

    CrossRef Google Scholar

    Li M L, Zhu J G, Meng Z, et al. Design of lightweight and small sized airborne laser scanner[J]. Infrared Laser Eng, 2015, 44(5): 1426−1431. doi: 10.3969/j.issn.1007-2276.2015.05.006

    CrossRef Google Scholar

    [10] 刘博, 蒋贇, 王瑞, 等. 全天时单光子激光雷达技术进展与系统评价[J]. 红外与激光工程, 2023, 52(1): 20220748. doi: 10.3788/IRLA20220748

    CrossRef Google Scholar

    Liu B, Jiang Y, Wang R, et al. Technical progress and system evaluation of all-time single photon Lidar[J]. Infrared Laser Eng, 2023, 52(1): 20220748. doi: 10.3788/IRLA20220748

    CrossRef Google Scholar

    [11] 李瑞琛, 邹毅军, 陈天航, 等. 宽频消色散超表面全息成像[J]. 光电工程, 2023, 50(8): 230118. doi: 10.12086/oee.2023.230118

    CrossRef Google Scholar

    Li R C, Zou Y J, Chen T H, et al. Broadband achromatic metasurface holography[J]. Opto-Electron Eng, 2023, 50(8): 230118. doi: 10.12086/oee.2023.230118

    CrossRef Google Scholar

    [12] 柯岚, 章思梦, 李晨霞, 等. 超表面实现复杂矢量涡旋光束的研究进展[J]. 光电工程, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117

    CrossRef Google Scholar

    Ke L, Zhang S M, Li C X, et al. Research progress on hybrid vector beam implementation by metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117

    CrossRef Google Scholar

    [13] 俞建杰, 韩琦琦, 马晶, 等. 衍射光学元件在卫星激光通信终端中的潜在应用[J]. 红外与激光工程, 2013, 42(1): 130−137. doi: 10.3969/j.issn.1007-2276.2013.01.024

    CrossRef Google Scholar

    Yu J J, Han Q Q, Ma J, et al. Potential application of diffractive optical elements in satellite laser communication terminals[J]. Infrared Laser Eng, 2013, 42(1): 130−137. doi: 10.3969/j.issn.1007-2276.2013.01.024

    CrossRef Google Scholar

    [14] 李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    CrossRef Google Scholar

    Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electron Eng, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    CrossRef Google Scholar

    [15] 万源庆, 刘威骏, 林若雨, 等. 基于超构表面的光谱成像及应用研究进展[J]. 光电工程, 2023, 50(8): 230139. doi: 10.12086/oee.2023.230139

    CrossRef Google Scholar

    Wan Y Q, Liu W J, Lin R Y, et al. Research progress and applications of spectral imaging based on metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230139. doi: 10.12086/oee.2023.230139

    CrossRef Google Scholar

    [16] Schwemmer G K, Wilkerson T D, Guerra D V. Compact scanning LiDAR systems using holographic optics[J]. Proc SPIE, 1998, 3504: 51−59. doi: 10.1117/12.319559

    CrossRef Google Scholar

    [17] Schwemmer G K. Holographic airborne rotating LiDAR instrument experiment (HARLIE)[C]//Nineteenth International Laser Radar Conference, 1998: 623–626.

    Google Scholar

    [18] Schwemmer G K, Wilkerson T D. Development of a holographic telescope for optical remote sensing[J]. Proc SPIE, 1994, 2270: 40−47. doi: 10.1117/12.188834

    CrossRef Google Scholar

    [19] Marino R M, Davis W R, Jr. Jigsaw: a foliage-penetrating 3D imaging laser radar system[J]. Lincoln Lab J, 2005, 15(1): 23−36.

    Google Scholar

    [20] Smith J G, Ramos-Izquierdo L, Stockham A, et al. Diffractive optics for moon topography mapping[J]. Proc SPIE, 2006, 6223: 622304. doi: 10.1117/12.665539

    CrossRef Google Scholar

    [21] 胡烜, 李道京. 10 m衍射口径天基合成孔径激光雷达系统[J]. 中国激光, 2018, 45(12): 1210002. doi: 10.3788/CJL201845.1210002

    CrossRef Google Scholar

    Hu X, Li D J. Space-based synthetic aperture LiDAR system with 10 m diffractive aperture[J]. Chin J Lasers, 2018, 45(12): 1210002. doi: 10.3788/CJL201845.1210002

    CrossRef Google Scholar

    [22] 李道京, 高敬涵, 崔岸婧, 等. 2m衍射口径星载双波长陆海激光雷达系统研究[J]. 中国激光, 2022, 49(3): 0310001. doi: 10.3788/CJL202249.0310001

    CrossRef Google Scholar

    Li D J, Gao J H, Cui A J, et al. Research on space-borne dual-wavelength land-sea LiDAR system with 2 m diffractive aperture[J]. Chin J Lasers, 2022, 49(3): 0310001. doi: 10.3788/CJL202249.0310001

    CrossRef Google Scholar

    [23] Shi H T, Shen G Y, Qi H Y, et al. Noise-tolerant Bessel-beam single-photon imaging in fog[J]. Opt Express, 2022, 30(7): 12061−12068. doi: 10.1364/OE.454669

    CrossRef Google Scholar

    [24] Shi H T, Qi H Y, Shen G Y, et al. High-resolution underwater single-photon imaging with Bessel beam illumination[J]. IEEE J Sel Top Quantum Electron, 2022, 28(5): 8300106. doi: 10.1109/JSTQE.2022.3144167

    CrossRef Google Scholar

    [25] Siemion A. The magic of optics—An overview of recent advanced terahertz diffractive optical elements[J]. Sensors, 2020, 21(1): 100. doi: 10.3390/s21010100

    CrossRef Google Scholar

    [26] 霍家琦, 胡源, 程彬鹏. 衍射光学技术发展历程及应用[J]. 激光与光电子学进展, 2023, 60(7): 0700002. doi: 10.3788/LOP213408

    CrossRef Google Scholar

    Huo J Q, Hu Y, Cheng B P. History and application of diffractive optics technology[J]. Laser OptoElectron Prog, 2023, 60(7): 0700002. doi: 10.3788/LOP213408

    CrossRef Google Scholar

    [27] Poleshchuk A G. Fabrication and application of diffractive optical elements[J]. Proc SPIE, 2010, 7544: 75443L. doi: 10.1117/12.887434

    CrossRef Google Scholar

  • LiDAR is an advanced active detection system that combines laser technology and photoelectric detection technology, which can obtain the three-dimensional spatial information of the target quickly and accurately and is widely used in civil, aerospace, and military fields such as autonomous driving, space rendezvous, and docking, target recognition and so on. The design and optimization of optical systems is an important research direction for LiDAR systems. The traditional LiDAR receiver generally uses a set of lenses and filters (such as an interference filter, dispersion filter, etc) to achieve the focusing and filtering functions of the echo energy. The two are independent devices, which increases the complexity of the system. In contrast, the diffractive optical element (DOE) uses micro-nano processing technology to etch relief structure on the substrate to achieve phase control and has the advantages of lightweight and large dispersion, which can be introduced into the LiDAR receiver to achieve focusing and filtering functions at the same time. In this paper, the characteristics of DOE at the receiving end of LiDAR are analyzed and tested. Firstly, we simulate the filtering characteristics of the combination of DOE and fiber, and the formula between the fiber core diameter and the filter bandwidth is given, that the smaller the diameter of the fiber core, the better the filtering effect. For example, the equivalent bandwidth of the fiber with 10 μm core diameter combined with DOE is 0.6 nm and the 200 μm core diameter is 12 nm. Secondly, a LiDAR ranging system based on DOE receiving was set up, with 1064 nm designed wavelength, 50 mm aperture, and 300 mm focal length. The system successfully measures the range of the 2.1 km target outside the experimental platform. Finally, the filtering ability of DOE was tested by using single mode fiber with 10 μm core diameter and multimode fiber with 200 μm core diameter respectively. Through comparative experiments, it is verified that the DOE is applied to the LiDAR receiver to achieve focusing, and it also has a narrow-band filtering effect to suppress noise when combined with the fiber, which is consistent with the simulation. In summary, the advantages of DOE in LiDAR are used to realize the lightweight, integration, and high efficiency of LiDAR.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(1)

Article Metrics

Article views(574) PDF downloads(130) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint