Hu H, Hu X X, Gong L P, et al. Research progress of terahertz vector beams[J]. Opto-Electron Eng, 2024, 51(8): 240071. doi: 10.12086/oee.2024.240071
Citation: Hu H, Hu X X, Gong L P, et al. Research progress of terahertz vector beams[J]. Opto-Electron Eng, 2024, 51(8): 240071. doi: 10.12086/oee.2024.240071

Research progress of terahertz vector beams

    Fund Project: Project supported by the National Natural Science Foundation of China (61875093, 12104288, 11904073)
More Information
  • In recent years, terahertz waves have garnered significant attention due to their unique properties. Among them, terahertz vector beams with different polarization characteristics exhibit novel spatial distributions and show increasingly broad prospects for applications. This review explores the generation methods of terahertz vector beams, their applications in various fields, and future development directions. Firstly, the methods for generating terahertz vector beams are systematically classified, and the research progress in terahertz vector beam generation is introduced. The principles of these methods and the characteristics of the generated vector beams are elaborated in detail. In addition, typical applications using terahertz vector beams are summarized. Lastly, the challenges and possibilities of terahertz vector field manipulation using different devices are prospected. The review aims to provide a comprehensive understanding of the generation and application of terahertz vector beams and offer guidance for future related research and development.
  • 加载中
  • [1] Carr G L, Martin M C, McKinney W R, et al. High-power terahertz radiation from relativistic electrons[J]. Nature, 2002, 420(6912): 153−156. doi: 10.1038/nature01175

    CrossRef Google Scholar

    [2] Kim K Y, Taylor A J, Glownia J H, et al. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions[J]. Nat Photonics, 2008, 2(10): 605−609. doi: 10.1038/nphoton.2008.153

    CrossRef Google Scholar

    [3] Hoffmann S, Hofmann M R. Generation of Terahertz radiation with two color semiconductor lasers[J]. Laser Photonics Rev, 2007, 1(1): 44−56. doi: 10.1002/lpor.200710004

    CrossRef Google Scholar

    [4] Mittleman D M. Twenty years of terahertz imaging [Invited][J]. Opt Express, 2018, 26(8): 9417−9431. doi: 10.1364/OE.26.009417

    CrossRef Google Scholar

    [5] Kawano Y, Ishibashi K. An on-chip near-field terahertz probe and detector[J]. Nat Photonics, 2008, 2(10): 618−621. doi: 10.1038/nphoton.2008.157

    CrossRef Google Scholar

    [6] Federici J, Moeller L. Review of terahertz and subterahertz wireless communications[J]. J Appl Phys, 2010, 107(11): 111101. doi: 10.1063/1.3386413

    CrossRef Google Scholar

    [7] Alves F, Grbovic D, Kearney B, et al. Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber[J]. Opt Lett, 2012, 37(11): 1886−1888. doi: 10.1364/OL.37.001886

    CrossRef Google Scholar

    [8] Sen P, Siles J V, Thawdar N, et al. Multi-kilometre and multi-gigabit-per-second sub-terahertz communications for wireless backhaul applications[J]. Nat Electron, 2023, 6(2): 164−175. doi: 10.1038/s41928-022-00897-6

    CrossRef Google Scholar

    [9] Koenig S, Lopez-Diaz D, Antes J, et al. Wireless sub-THz communication system with high data rate[J]. Nat Photonics, 2013, 7(12): 977−981. doi: 10.1038/nphoton.2013.275

    CrossRef Google Scholar

    [10] Dhillon S S, Vitiello M S, Linfield E H, et al. The 2017 terahertz science and technology roadmap[J]. J Phys D Appl Phys, 2017, 50(4): 043001. doi: 10.1088/1361-6463/50/4/043001

    CrossRef Google Scholar

    [11] Fan K B, Suen J Y, Liu X Y, et al. All-dielectric metasurface absorbers for uncooled terahertz imaging[J]. Optica, 2017, 4(6): 601−604. doi: 10.1364/OPTICA.4.000601

    CrossRef Google Scholar

    [12] Yang X, Zhao X, Yang K, et al. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends Biotechnol, 2016, 34(10): 810−824. doi: 10.1016/j.tibtech.2016.04.008

    CrossRef Google Scholar

    [13] Wang B, Zhong S C, Lee T L, et al. Non-destructive testing and evaluation of composite materials/structures: a state-of-the-art review[J]. Adv Mech Eng, 2020, 12(4). doi: 10.1177/1687814020913761

    CrossRef Google Scholar

    [14] Cheng Y Y, Wang Y X, Niu Y Y, et al. Concealed object enhancement using multi-polarization information for passive millimeter and terahertz wave security screening[J]. Opt Express, 2020, 28(5): 6350−6366. doi: 10.1364/OE.384029

    CrossRef Google Scholar

    [15] Chernomyrdin N V, Musina G R, Nikitin P V, et al. Terahertz technology in intraoperative neurodiagnostics: a review[J]. Opto-Electron Adv, 2023, 6(5): 220071. doi: 10.29026/oea.2023.220071

    CrossRef Google Scholar

    [16] Wätzel J, Berakdar J. Open-circuit ultrafast generation of nanoscopic toroidal moments: the swift phase generator[J]. Adv Quantum Tech, 2019, 2(1-2): 1800096. doi: 10.1002/qute.201800096

    CrossRef Google Scholar

    [17] Wang K L, Mittleman D M. Metal wires for terahertz wave guiding[J]. Nature, 2004, 432(7015): 376−379. doi: 10.1038/nature03040

    CrossRef Google Scholar

    [18] Deibel J A, Wang K L, Escarra M D, et al. Enhanced coupling of terahertz radiation to cylindrical wire waveguides[J]. Opt Express, 2006, 14(1): 279−290. doi: 10.1364/OPEX.14.000279

    CrossRef Google Scholar

    [19] Navarro-Cía M, Wu J, Liu H Y, et al. Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides[J]. Sci Rep, 2016, 6(1): 38926. doi: 10.1038/srep38926

    CrossRef Google Scholar

    [20] Tian X Y, Ma A N, Huang H F, et al. Three-in-one polarization detector enabled by metasurface[J]. Phys Scr, 2024, 99(2): 025531. doi: 10.1088/1402–4896/ad1eaa

    CrossRef Google Scholar

    [21] Fujita H, Tada Y, Sato M. Accessing electromagnetic properties of matter with cylindrical vector beams[J]. New J Phys, 2019, 21(7): 073010. doi: 10.1088/1367–2630/ab26d1

    CrossRef Google Scholar

    [22] Lamberg J, Zarrinkhat F, Tamminen A, et al. Wavefront-modified vector beams for THz cornea spectroscopy[J]. Opt Express, 2023, 31(24): 40293−40307. doi: 10.1364/OE.494460

    CrossRef Google Scholar

    [23] Wätzel J, Sherman E Y, Berakdar J. Nanostructures in structured light: photoinduced spin and orbital electron dynamics[J]. Phys Rev B, 2020, 101(23): 235304. doi: 10.1103/PhysRevB.101.235304

    CrossRef Google Scholar

    [24] Wätzel J, Berakdar J, Sherman E Y. Ultrafast entanglement switching and singlet-triplet transitions control via structured terahertz pulses[J]. New J Phys, 2022, 24(4): 043016. doi: 10.1088/1367–2630/ac608a

    CrossRef Google Scholar

    [25] Miyamoto K, Kang B J, Kim W T, et al. Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate[J]. Sci Rep, 2016, 6: 38880. doi: 10.1038/srep38880

    CrossRef Google Scholar

    [26] Minkevičius L, Jokubauskis D, Kašalynas I, et al. Bessel terahertz imaging with enhanced contrast realized by silicon multi-phase diffractive optics[J]. Opt Express, 2019, 27(25): 36358−36367. doi: 10.1364/OE.27.036358

    CrossRef Google Scholar

    [27] Woldegeorgis A, Kurihara T, Almassarani M, et al. Multi-MV/cm longitudinally polarized terahertz pulses from laser-thin foil interaction[J]. Optica, 2018, 5(11): 1474−1477. doi: 10.1364/OPTICA.5.001474

    CrossRef Google Scholar

    [28] Yue F Y, Aglieri V, Piccoli R, et al. Highly sensitive polarization rotation measurement through a high-order vector beam generated by a metasurface[J]. Adv Mater Technol, 2020, 5(5): 1901008. doi: 10.1002/admt.201901008

    CrossRef Google Scholar

    [29] Nanni E A, Huang W R, Hong K H, et al. Terahertz-driven linear electron acceleration[J]. Nat Commun, 2015, 6: 8486. doi: 10.1038/ncomms9486

    CrossRef Google Scholar

    [30] Hibberd M T, Healy A L, Lake D S, et al. Acceleration of relativistic beams using laser-generated terahertz pulses[J]. Nat Photonics, 2020, 14(12): 755−759. doi: 10.1038/s41566-020-0674-1

    CrossRef Google Scholar

    [31] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat Nanotechnol, 2015, 10(11): 937−943. doi: 10.1038/nnano.2015.186

    CrossRef Google Scholar

    [32] Zhang F, Pu M B, Guo Y H, et al. Synthetic vector optical fields with spatial and temporal tunability[J]. Sci China Phys Mech Astron, 2022, 65(5): 254211. doi: 10.1007/s11433-021-1851-0

    CrossRef Google Scholar

    [33] Zhang F, Guo Y H, Pu M B, et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption[J]. Nat Commun, 2023, 14(1): 1946. doi: 10.1038/s41467–023-37510-z

    CrossRef Google Scholar

    [34] Bao Y J, Yu Y, Xu H F, et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control[J]. Light Sci Appl, 2019, 8: 95. doi: 10.1038/s41377-019-0206-2

    CrossRef Google Scholar

    [35] Hsiao H H, Chu C H, Tsai D P. Fundamentals and applications of metasurfaces[J]. Small Methods, 2017, 1(4): 1600064. doi: 10.1002/smtd.201600064

    CrossRef Google Scholar

    [36] Lepeshov S, Gorodetsky A, Krasnok A, et al. Enhancement of terahertz photoconductive antenna operation by optical nanoantennas[J]. Laser Photonics Rev, 2017, 11(1): 1600199. doi: 10.1002/lpor.201600199

    CrossRef Google Scholar

    [37] Kampfrath T, Tanaka K, Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients[J]. Nat Photonics, 2013, 7(9): 680−690 doi: 10.1038/nphoton.2013.184

    CrossRef Google Scholar

    [38] Winnerl S, Zimmermann B, Peter F, et al. Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas[J]. Opt Express, 2009, 17(3): 1571−1576. doi: 10.1364/OE.17.001571

    CrossRef Google Scholar

    [39] Kan K, Yang J, Ogata A, et al. Radially polarized terahertz waves from a photoconductive antenna with microstructures[J]. Appl Phys Lett, 2013, 102(22): 221118. doi: 10.1063/1.4809756

    CrossRef Google Scholar

    [40] Kaltenecker K J, König-Otto J C, Mittendorff M, et al. Gouy phase shift of a tightly focused, radially polarized beam[J]. Optica, 2016, 3(1): 35−41. doi: 10.1364/OPTICA.3.000035

    CrossRef Google Scholar

    [41] Deveikis J, Lloyd-Hughes J. Multi-pixel photoconductive emitters for the controllable generation of azimuthal and radial terahertz beams[J]. Opt Express, 2022, 30(24): 43293−43300. doi: 10.1364/OE.473086

    CrossRef Google Scholar

    [42] Mou S, D’Arco A, Tomarchio L, et al. Simultaneous elliptically and radially polarized THz from one-color laser-induced plasma filament[J]. New J Phys, 2021, 23(6): 063048. doi: 10.1088/1367–2630/ac03cd

    CrossRef Google Scholar

    [43] Han B N, Chen Y P, Xia T H, et al. Measurement and control of radially polarized THz radiation from DC-biased laser plasma filaments in air[J]. Sensors, 2022, 22(14): 5231. doi: 10.3390/s22145231

    CrossRef Google Scholar

    [44] Wang L Z, Chen Y P, Zhang G W, et al. Tunable high-field terahertz radiation from plasma channels[J]. Laser Photonics Rev, 2023, 17(6): 2200627. doi: 10.1002/lpor.202200627

    CrossRef Google Scholar

    [45] Nikolaeva I A, Shipilo D E, Panov N A, et al. Terahertz beam with radial or orthogonal to laser polarization from a single-color femtosecond filament[J]. Opt Express, 2023, 31(25): 41406−41419. doi: 10.1364/OE.502931

    CrossRef Google Scholar

    [46] Jana K, Mi Y H, Møller S H, et al. Quantum control of flying doughnut terahertz pulses[J]. Sci Adv, 2024, 10(2): eadl1803. doi: 10.1126/sciadv.adl1803

    CrossRef Google Scholar

    [47] Pettine J, Padmanabhan P, Shi T, et al. Light-driven nanoscale vectorial currents[J]. Nature, 2024, 626(8001): 984−989. doi: 10.1038/s41586–024-07037–4

    CrossRef Google Scholar

    [48] Beaurepaire E, Merle J C, Daunois A, et al. Ultrafast spin dynamics in ferromagnetic nickel[J]. Phys Rev Lett, 1996, 76(22): 4250−4253. doi: 10.1103/PhysRevLett.76.4250

    CrossRef Google Scholar

    [49] Beaurepaire E, Turner G M, Harrel S M, et al. Coherent terahertz emission from ferromagnetic films excited by femtosecond laser pulses[J]. Appl Phys Lett, 2004, 84(18): 3465−3467. doi: 10.1063/1.1737467

    CrossRef Google Scholar

    [50] Taira Y, Kuroda R, Kumaki M, et al. Observation of radially polarized terahertz radiation generated by a sub-picosecond electron beam[J]. Vib Spectrosc, 2014, 75: 162−168. doi: 10.1016/j.vibspec.2014.07.015

    CrossRef Google Scholar

    [51] Jin Z, Zhuo H B, Nakazawa T, et al. Highly efficient terahertz radiation from a thin foil irradiated by a high-contrast laser pulse[J]. Phys Rev E, 2016, 94(3): 033206. doi: 10.1103/PhysRevE.94.033206

    CrossRef Google Scholar

    [52] Schulz D, Schwager B, Berakdar J. Nanostructured spintronic emitters for polarization-textured and chiral broadband THz fields[J]. ACS Photonics, 2022, 9(4): 1248−1255. doi: 10.1021/acsphotonics.1c01693

    CrossRef Google Scholar

    [53] Chang G Q, Divin C J, Liu C H, et al. Generation of radially polarized terahertz pulses via velocity-mismatched optical rectification[J]. Opt Lett, 2007, 32(4): 433−435. doi: 10.1364/OL.32.000433

    CrossRef Google Scholar

    [54] Imai R, Kanda N, Higuchi T, et al. Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry[J]. Opt Express, 2012, 20(20): 21896−21904. doi: 10.1364/OE.20.021896

    CrossRef Google Scholar

    [55] Zheng Z, Kanda N, Konishi K, et al. Efficient coupling of propagating broadband terahertz radial beams to metal wires[J]. Opt Express, 2013, 21(9): 10642−10650. doi: 10.1364/OE.21.010642

    CrossRef Google Scholar

    [56] Sato M, Higuchi T, Kanda N, et al. Terahertz polarization pulse shaping with arbitrary field control[J]. Nat Photonics, 2013, 7(9): 724−731. doi: 10.1038/nphoton.2013.213

    CrossRef Google Scholar

    [57] Gaborit G, Biciunas A, Bernier M, et al. Emitting and receiving terahertz vectorial antennas based on cubic electro-optic crystals[J]. IEEE Trans Terahertz Sci Technol, 2015, 5(5): 828−835. doi: 10.1109/TTHZ.2015.2460452

    CrossRef Google Scholar

    [58] Feng X, Wang Q W, Lu Y C, et al. Direct emission of broadband terahertz cylindrical vector Bessel beam[J]. Appl Phys Lett, 2021, 119(22): 221110. doi: 10.1063/5.0068561

    CrossRef Google Scholar

    [59] Mou S, D’Arco A, Tomarchio L, et al. Generation of terahertz vector beam bearing tailored topological charge[J]. APL Photonics, 2023, 8(3): 036103. doi: 10.1063/5.0141691

    CrossRef Google Scholar

    [60] Iwase H, Ohno S. Direct generation of a terahertz vector beam from a ZnTe crystal excited by a focused circular polarized pulse[J]. Opt Express, 2023, 31(16): 26923−26934. doi: 10.1364/OE.494366

    CrossRef Google Scholar

    [61] Kröll J, Darmo J, Dhillon S S, et al. Phase-resolved measurements of stimulated emission in a laser[J]. Nature, 2007, 449(7163): 698−701. doi: 10.1038/nature06208

    CrossRef Google Scholar

    [62] Jukam N, Dhillon S, Zhao Z Y, et al. Gain measurements of THz quantum cascade lasers using THz time-domain spectroscopy[J]. IEEE J Sel Top Quantum Electron, 2008, 14(2): 436−442. doi: 10.1109/JSTQE.2007.911761

    CrossRef Google Scholar

    [63] Jukam N, Dhillon S S, Oustinov D, et al. Investigation of spectral gain narrowing in quantum cascade lasers using terahertz time domain spectroscopy[J]. Appl Phys Lett, 2008, 93(10): 101115. doi: 10.1063/1.2979682

    CrossRef Google Scholar

    [64] Jukam N, Dhillon S S, Oustinov D, et al. Terahertz time domain spectroscopy of phonon-depopulation based quantum cascade lasers[J]. Appl Phys Lett, 2009, 94(25): 251108. doi: 10.1063/1.3158592

    CrossRef Google Scholar

    [65] Jukam N, Dhillon S S, Oustinov D, et al. Terahertz amplifier based on gain switching in a quantum cascade laser[J]. Nat Photonics, 2009, 3(12): 715−719. doi: 10.1038/nphoton.2009.213

    CrossRef Google Scholar

    [66] Oustinov D, Jukam N, Rungsawang R, et al. Phase seeding of a terahertz quantum cascade laser[J]. Nat Commun, 2010, 1(1): 69. doi: 10.1038/ncomms1068

    CrossRef Google Scholar

    [67] Han S, Chua Y, Zeng Y Q, et al. Photonic Majorana quantum cascade laser with polarization-winding emission[J]. Nat Commun, 2023, 14(1): 707. doi: 10.1038/s41467–023-36418-y

    CrossRef Google Scholar

    [68] Han S, Cui J Y, Chua Y, et al. Electrically-pumped compact topological bulk lasers driven by band-inverted bound states in the continuum[J]. Light Sci Appl, 2023, 12(1): 145. doi: 10.1038/s41377-023-01200-8

    CrossRef Google Scholar

    [69] Cui J Y, Chua Y, Han S, et al. Single‐mode electrically pumped terahertz laser in an ultracompact cavity via merging bound states in the continuum[J]. Laser Photonics Rev, 2023, 17(11): 2300350. doi: 10.1002/lpor.202300350

    CrossRef Google Scholar

    [70] Petrov N V, Sokolenko B, Kulya M S, et al. Design of broadband terahertz vector and vortex beams: I. Review of materials and components[J]. Light Adv Manuf, 2022, 3(4): 640−652. doi: 10.37188/LAM.2022.043

    CrossRef Google Scholar

    [71] Minasyan A, Trovato C, Degert J, et al. Geometric phase shaping of terahertz vortex beams[J]. Opt Lett, 2017, 42(1): 41−44. doi: 10.1364/OL.42.000041

    CrossRef Google Scholar

    [72] Hernandez-Serrano A I, Castro-Camus E, Lopez-Mago D. q-plate for the generation of terahertz cylindrical vector beams fabricated by 3D printing[J]. J Infrared Millim Terahertz Waves, 2017, 38(8): 938−944. doi: 10.1007/s10762-017-0396-8

    CrossRef Google Scholar

    [73] Dong X P, Cheng J R, Fan F, et al. Sub-terahertz wideband vector beam generator based on superwavelength lattice dielectric grating[J]. Optik, 2019, 193: 162991. doi: 10.1016/j.ijleo.2019.162991

    CrossRef Google Scholar

    [74] Koral C, Mazaheri Z, Andreone A. THz multi-mode Q-plate with a fixed rate of change of the optical axis using form birefringence[J]. Micromachines, 2022, 13(5): 796. doi: 10.3390/mi13050796

    CrossRef Google Scholar

    [75] 柯岚, 章思梦, 李晨霞, 等. 超表面实现复杂矢量涡旋光束的研究进展[J]. 光电工程, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117

    CrossRef Google Scholar

    Ke L, Zhang S M, Li C X, et al. Research progress on hybrid vector beam implementation by metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117

    CrossRef Google Scholar

    [76] Guo Y H, Pu M B, Zhao Z Y, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022−2029. doi: 10.1021/acsphotonics.6b00564

    CrossRef Google Scholar

    [77] Zhang F, Pu M B, Luo J, et al. Symmetry breaking of photonic spin-orbit interactions in metasurfaces[J]. Opto-Electron Eng, 2017, 44(3): 319−325. doi: 10.3969/j.issn.1003-501X.2017.03.006

    CrossRef Google Scholar

    [78] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Phys Rev Lett, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901

    CrossRef Google Scholar

    [79] Devlin R C, Ambrosio A, Rubin N A, et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 2017, 358(6365): 896−901. doi: 10.1126/science.aao5392

    CrossRef Google Scholar

    [80] Guo Y H, Zhang S C, Pu M B, et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation[J]. Light Sci Appl, 2021, 10(1): 63. doi: 10.1038/s41377-021-00497-7

    CrossRef Google Scholar

    [81] 张飞, 郭迎辉, 蒲明博, 等. 基于非对称光子自旋—轨道相互作用的超构表面[J]. 光电工程, 2020, 47(10): 200366. doi: 10.12086/oee.2020.200366

    CrossRef Google Scholar

    Zhang F, Guo Y H, Pu M B, et al. Metasurfaces enabled by asymmetric photonic spin-orbit interactions[J]. Opto-Electron Eng, 2020, 47(10): 200366. doi: 10.12086/oee.2020.200366

    CrossRef Google Scholar

    [82] Papakostas A, Potts A, Bagnall D M, et al. Optical manifestations of planar chirality[J]. Phys Rev Lett, 2003, 90(10): 107404. doi: 10.1103/PhysRevLett.90.107404

    CrossRef Google Scholar

    [83] Kang M, Chen J, Wang X L, et al. Twisted vector field from an inhomogeneous and anisotropic metamaterial[J]. J Opt Soc Am B, 2012, 29(4): 572−576. doi: 10.1364/JOSAB.29.000572

    CrossRef Google Scholar

    [84] Xie Z W, He J W, Wang X K, et al. Generation of terahertz vector beams with a concentric ring metal grating and photo-generated carriers[J]. Opt Lett, 2015, 40(3): 359−362. doi: 10.1364/OL.40.000359

    CrossRef Google Scholar

    [85] Guo J Y, Wang X K, He J W, et al. Generation of radial polarized Lorentz beam with single layer metasurface[J]. Adv Opt Mater, 2018, 6(1): 1700925. doi: 10.1002/adom.201700925

    CrossRef Google Scholar

    [86] Xu Y H, Zhang H F, Li Q, et al. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control[J]. Nanophotonics, 2020, 9(10): 3393−3402. doi: 10.1515/nanoph-2020-0112

    CrossRef Google Scholar

    [87] Zhou H X, Cheng J R, Fan F, et al. Ultrathin freestanding terahertz vector beam generators with free phase modulation[J]. Opt Express, 2021, 29(2): 1384−1395. doi: 10.1364/OE.413119

    CrossRef Google Scholar

    [88] Wu T, Zhang X Q, Xu Q, et al. Dielectric metasurfaces for complete control of phase, amplitude, and polarization[J]. Adv Opt Mater, 2022, 10(1): 2101223. doi: 10.1002/adom.202101223

    CrossRef Google Scholar

    [89] Wu Q, Fan W H, Qin C. Generation and superposition of perfect vortex beams in terahertz region via single-layer all-dielectric metasurface[J]. Nanomaterials, 2022, 12(17): 3010. doi: 10.3390/nano12173010

    CrossRef Google Scholar

    [90] Li Q S, Cai X D, Liu T, et al. Gate-tuned graphene meta-devices for dynamically controlling terahertz wavefronts[J]. Nanophotonics, 2022, 11(9): 2085−2096. doi: 10.1515/nanoph-2021-0801

    CrossRef Google Scholar

    [91] Zhao H, Wang X K, Liu S T, et al. Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band[J]. Opto-Electron Adv, 2023, 6(2): 220012. doi: 10.29026/oea.2023.220012

    CrossRef Google Scholar

    [92] Li H, Zheng C L, Liu J Y, et al. Binary encoding-inspired generation of vector vortex beams[J]. Sci China Phys Mech Astron, 2023, 66(5): 254212. doi: 10.1007/s11433-022-2071-6

    CrossRef Google Scholar

    [93] Ke L, Li C X, Zhang S M, et al. Tight focusing field of cylindrical vector beams based on cascaded low-refractive index metamaterials[J]. Nanophotonics, 2023, 12(18): 3563−3578. doi: 10.1515/nanoph-2023-0261

    CrossRef Google Scholar

    [94] Zheng C L, Li J, Liu J Y, et al. Creating longitudinally varying vector vortex beams with an all-dielectric metasurface[J]. Laser Photonics Rev, 2022, 16(10): 2200236. doi: 10.1002/lpor.202200236

    CrossRef Google Scholar

    [95] Li J, Li J T, Yue Z, et al. Structured vector field manipulation of terahertz wave along the propagation direction based on dielectric metasurfaces[J]. Laser Photonics Rev, 2022, 16(12): 2200325. doi: 10.1002/lpor.202200325

    CrossRef Google Scholar

    [96] Li H, Duan S X, Zheng C L, et al. Manipulation of longitudinally inhomogeneous polarization states empowered by all-silicon metasurfaces[J]. Adv Opt Mater, 2023, 11(4): 2202461. doi: 10.1002/adom.202202461

    CrossRef Google Scholar

    [97] Li H, Duan S X, Zheng C L, et al. Longitudinal manipulation of scalar to vector vortex beams evolution empowered by all-silicon metasurfaces[J]. Adv Opt Mater, 2023, 11(22): 2301368. doi: 10.1002/adom.202301368

    CrossRef Google Scholar

    [98] Luo L, Liu X, Duan S X, et al. Dual channel transformation of scalar and vector terahertz beams along the optical path based on dielectric metasurface[J]. Nanophotonics, 2023, 12(19): 3839−3848. doi: 10.1515/nanoph-2023-0457

    CrossRef Google Scholar

    [99] Hu S S, Wei L, Long Y, et al. Longitudinal polarization manipulation based on all-dielectric terahertz metasurfaces[J]. Opt Express, 2024, 32(5): 6963−6976. doi: 10.1364/OE.514410

    CrossRef Google Scholar

    [100] He X Y, Bao H L, Zhang F, et al. Longitudinally continuous varying high-order cylindrical vector fields enabled by spin-decoupled metasurfaces[J]. Nanophotonics, 2024, 13(9): 1657−1664. doi: 10.1515/nanoph-2024-0008

    CrossRef Google Scholar

    [101] Hsieh C F, Pan R P, Tang T T, et al. Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate[J]. Opt Lett, 2006, 31(8): 1112−1114. doi: 10.1364/OL.31.001112

    CrossRef Google Scholar

    [102] Piccirillo B, D'Ambrosio V, Slussarenko S, et al. Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate[J]. Appl Phys Lett, 2010, 97(24): 241104. doi: 10.1063/1.3527083

    CrossRef Google Scholar

    [103] Yang C S, Tang T T, Pan R P, et al. Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment[J]. Appl Phys Lett, 2014, 104(14): 141106. doi: 10.1063/1.4871255

    CrossRef Google Scholar

    [104] Chen P, Wei B Y, Ji W, et al. Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings[J]. Photonics Res, 2015, 3(4): 133−139. doi: 10.1364/PRJ.3.000133

    CrossRef Google Scholar

    [105] Sasaki T, Okuyama H, Sakamoto M, et al. Optical control of polarized terahertz waves using dye-doped nematic liquid crystals[J]. AIP Adv, 2018, 8(11): 115326. doi: 10.1063/1.5041294

    CrossRef Google Scholar

    [106] Vieweg N, Jansen C, Shakfa M K, et al. Molecular properties of liquid crystals in the terahertz frequency range[J]. Opt Express, 2010, 18(6): 6097−6107. doi: 10.1364/OE.18.006097

    CrossRef Google Scholar

    [107] Wang L, Lin X W, Hu W, et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes[J]. Light Sci Appl, 2015, 4(2): e253. doi: 10.1038/lsa.2015.26

    CrossRef Google Scholar

    [108] Hsieh C F, Yang C S, Shih F C, et al. Liquid-crystal-based magnetically tunable terahertz achromatic quarter-wave plate[J]. Opt Express, 2019, 27(7): 9933−9940. doi: 10.1364/OE.27.009933

    CrossRef Google Scholar

    [109] Wang L, Ge S J, Hu W, et al. Tunable reflective liquid crystal terahertz waveplates[J]. Opt Mater Express, 2017, 7(6): 2023−2029. doi: 10.1364/OME.7.002023

    CrossRef Google Scholar

    [110] Zhang X, Fan F, Zhang C Y, et al. Tunable terahertz phase shifter based on dielectric artificial birefringence grating filled with polymer dispersed liquid crystal[J]. Opt Mater Express, 2020, 10(2): 282−292. doi: 10.1364/OME.383058

    CrossRef Google Scholar

    [111] Shen Z X, Tang M J, Chen P, et al. Planar terahertz photonics mediated by liquid crystal polymers[J]. Adv Opt Mater, 2020, 8(7): 1902124. doi: 10.1002/adom.201902124

    CrossRef Google Scholar

    [112] Shen Z X, Zhou S H, Ge S J, et al. Liquid-crystal-integrated metadevice: towards active multifunctional terahertz wave manipulations[J]. Opt Lett, 2018, 43(19): 4695−4698. doi: 10.1364/OL.43.004695

    CrossRef Google Scholar

    [113] Ge S J, Chen P, Shen Z X, et al. Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal[J]. Opt Express, 2017, 25(11): 12349−12356. doi: 10.1364/OE.25.012349

    CrossRef Google Scholar

    [114] Ge S J, Shen Z X, Chen P, et al. Generating, separating and polarizing terahertz vortex beams via liquid crystals with gradient-rotation directors[J]. Crystals, 2017, 7(10): 314. doi: 10.3390/cryst7100314

    CrossRef Google Scholar

    [115] Shen Y C, Shen Z X, Zhao G Z, et al. Photopatterned liquid crystal mediated terahertz Bessel vortex beam generator [Invited][J]. Chin Opt Lett, 2020, 18(8): 080003. doi: 10.3788/COL202018.080003

    CrossRef Google Scholar

    [116] Savo S, Shrekenhamer D, Padilla W J. Liquid crystal metamaterial absorber spatial light modulator for THz applications[J]. Adv Opt Mater, 2014, 2(3): 275−279. doi: 10.1002/adom.201300384

    CrossRef Google Scholar

    [117] Liu C X, Yang F, Fu X J, et al. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals[J]. Adv Opt Mater, 2021, 9(22): 2100932. doi: 10.1002/adom.202100932

    CrossRef Google Scholar

    [118] Buchnev O, Podoliak N, Kaltenecker K, et al. Metasurface-based optical liquid crystal cell as an ultrathin spatial phase modulator for THz applications[J]. ACS Photonics, 2020, 7(11): 3199−3206. doi: 10.1021/acsphotonics.0c01263

    CrossRef Google Scholar

    [119] Tao S N, Shen Z X, Yu H G, et al. Transflective spatial terahertz wave modulator[J]. Opt Lett, 2022, 47(7): 1650−1653. doi: 10.1364/OL.450764

    CrossRef Google Scholar

    [120] Liu S, Xu F, Zhan J L, et al. Terahertz liquid crystal programmable metasurface based on resonance switching[J]. Opt Lett, 2022, 47(7): 1891−1894. doi: 10.1364/OL.452347

    CrossRef Google Scholar

    [121] Li W L, Hu X M, Wu J B, et al. Dual-color terahertz spatial light modulator for single-pixel imaging[J]. Light Sci Appl, 2022, 11(1): 191. doi: 10.1038/s41377-022-00879-5

    CrossRef Google Scholar

    [122] Wang S, Guo H B, Chen B W, et al. Electrically active terahertz liquid-crystal metasurface for polarization vortex beam switching[J]. Laser Photonics Rev, 2024, 2301301. doi: 10.1002/lpor.202301301

    CrossRef Google Scholar

    [123] Wakayama T, Higashiguchi T, Oikawa H, et al. Determination of the polarization states of an arbitrary polarized terahertz beam: vectorial vortex analysis[J]. Sci Rep, 2015, 5(1): 9416. doi: 10.1038/srep09416

    CrossRef Google Scholar

    [124] Wakayama T, Higashiguchi T, Sakaue K, et al. Demonstration of a terahertz pure vector beam by tailoring geometric phase[J]. Sci Rep, 2018, 8(1): 8690. doi: 10.1038/s41598-018-26964-7

    CrossRef Google Scholar

    [125] Niwa H, Yoshikawa N, Kawaguchi M, et al. Switchable generation of azimuthally- and radially-polarized terahertz beams from a spintronic terahertz emitter[J]. Opt Express, 2021, 29(9): 13331−13343. doi: 10.1364/OE.422484

    CrossRef Google Scholar

    [126] Grosjean T, Baida F, Adam R, et al. Linear to radial polarization conversion in the THz domain using a passive system[J]. Opt Express, 2008, 16(23): 18895−18909. doi: 10.1364/OE.16.018895

    CrossRef Google Scholar

    [127] Fan J Y, Zhang L, Wu Z Y, et al. Simultaneous and independent control of phase and polarization in terahertz band for functional integration of multiple devices[J]. Opt Laser Technol, 2022, 151: 108064. doi: 10.1016/j.optlastec.2022.108064

    CrossRef Google Scholar

    [128] Zeng C, Lu H, Mao D, et al. Graphene-empowered dynamic metasurfaces and metadevices[J]. Opto-Electron Adv, 2022, 5(4): 200098. doi: 10.29026/oea.2022.200098

    CrossRef Google Scholar

    [129] 张寿俊, 曹暾, 田震. 基于硫属化物相变材料的可重构太赫兹超表面器件的研究进展[J]. 光电工程, 2023, 50(9): 230142. doi: 10.12086/oee.2023.230142

    CrossRef Google Scholar

    Zhang S J, Cao T, Tian Z. Progress on reconfigurable terahertz metasurface devices based on sulfide phase change materials[J]. Opto-Electron Eng, 2023, 50(9): 230142. doi: 10.12086/oee.2023.230142

    CrossRef Google Scholar

    [130] Guan S N, Cheng J R, Chang S J. Recent progress of terahertz spatial light modulators: materials, principles and applications[J]. Micromachines, 2022, 13(10): 1637. doi: 10.3390/mi13101637

    CrossRef Google Scholar

    [131] Yu H G, Wang H C, Wang Q G, et al. Liquid crystal-tuned planar optics in terahertz range[J]. Appl Sci, 2023, 13(3): 1428. doi: 10.3390/app13031428

    CrossRef Google Scholar

  • In recent years, terahertz waves have shown broad application prospects in imaging, communications, material characterization, and other fields due to their unique coherence, strong penetration, low energy, and the freedom to excite the rotation and vibration of atoms and substances. Among various terahertz-structured beams, vector beams with unique polarization characteristics exhibit novel spatial distributions and demonstrate a growing range of potential application values. The vector beam refers to a beam with different polarization states at different positions on the same wave vibration plane at the same time. Unlike a scalar beam, the polarization state of a vector beam changes with its position in space. This review explores the generation methods of terahertz vector beams, their applications in diverse fields, and future developmental directions. To begin with, we systematically classify the generation methods of terahertz vector beams based on formation techniques. The advancements in direct-generation devices such as ultrafast current devices, nonlinear devices, and quantum cascade lasers are discussed. Additionally, we highlight progress in beam shaping devices such as birefringent wave plates, metasurfaces, liquid crystals, and total internal reflection devices regarding terahertz vector beam generation. The detailed explanations of the principles of these methods and the characteristics of the generated vector beams are provided. Next, we present representative applications utilizing terahertz vector beams, including dispersive transmission, polarization measurement, imaging sensing, vector holography, and electron dynamics. The unique characteristics of terahertz vector beams offer significant advantages and potential in these applications, such as improved resolution, enhanced information transfer rates, and precise material property measurements. Finally, we discuss the challenges and possibilities involved in terahertz vector field manipulation using different devices. Among these devices, terahertz quantum cascade lasers and metasurfaces will be the future development trend, with broad development prospects and application potential. Terahertz quantum cascade lasers can achieve high-power, narrow linewidth, and continuously tunable terahertz radiation. Metasurfaces provide more possibilities for research on using integrated optical systems to replace traditional optical systems to generate vector beams. In addition, liquid crystal is also one of the promising materials suitable for terahertz vector beam modulators. Combining active metasurfaces with multi-layer liquid crystals may become the final solution of compact, efficient, and tunable vector beam shaping devices in the terahertz frequency range. With further development of technology and in-depth research on applications, terahertz vector beams will demonstrate their potential and application value in a wider range of fields.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint