Citation: | Hu H, Hu X X, Gong L P, et al. Research progress of terahertz vector beams[J]. Opto-Electron Eng, 2024, 51(8): 240071. doi: 10.12086/oee.2024.240071 |
[1] | Carr G L, Martin M C, McKinney W R, et al. High-power terahertz radiation from relativistic electrons[J]. Nature, 2002, 420(6912): 153−156. doi: 10.1038/nature01175 |
[2] | Kim K Y, Taylor A J, Glownia J H, et al. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions[J]. Nat Photonics, 2008, 2(10): 605−609. doi: 10.1038/nphoton.2008.153 |
[3] | Hoffmann S, Hofmann M R. Generation of Terahertz radiation with two color semiconductor lasers[J]. Laser Photonics Rev, 2007, 1(1): 44−56. doi: 10.1002/lpor.200710004 |
[4] | Mittleman D M. Twenty years of terahertz imaging [Invited][J]. Opt Express, 2018, 26(8): 9417−9431. doi: 10.1364/OE.26.009417 |
[5] | Kawano Y, Ishibashi K. An on-chip near-field terahertz probe and detector[J]. Nat Photonics, 2008, 2(10): 618−621. doi: 10.1038/nphoton.2008.157 |
[6] | Federici J, Moeller L. Review of terahertz and subterahertz wireless communications[J]. J Appl Phys, 2010, 107(11): 111101. doi: 10.1063/1.3386413 |
[7] | Alves F, Grbovic D, Kearney B, et al. Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber[J]. Opt Lett, 2012, 37(11): 1886−1888. doi: 10.1364/OL.37.001886 |
[8] | Sen P, Siles J V, Thawdar N, et al. Multi-kilometre and multi-gigabit-per-second sub-terahertz communications for wireless backhaul applications[J]. Nat Electron, 2023, 6(2): 164−175. doi: 10.1038/s41928-022-00897-6 |
[9] | Koenig S, Lopez-Diaz D, Antes J, et al. Wireless sub-THz communication system with high data rate[J]. Nat Photonics, 2013, 7(12): 977−981. doi: 10.1038/nphoton.2013.275 |
[10] | Dhillon S S, Vitiello M S, Linfield E H, et al. The 2017 terahertz science and technology roadmap[J]. J Phys D Appl Phys, 2017, 50(4): 043001. doi: 10.1088/1361-6463/50/4/043001 |
[11] | Fan K B, Suen J Y, Liu X Y, et al. All-dielectric metasurface absorbers for uncooled terahertz imaging[J]. Optica, 2017, 4(6): 601−604. doi: 10.1364/OPTICA.4.000601 |
[12] | Yang X, Zhao X, Yang K, et al. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends Biotechnol, 2016, 34(10): 810−824. doi: 10.1016/j.tibtech.2016.04.008 |
[13] | Wang B, Zhong S C, Lee T L, et al. Non-destructive testing and evaluation of composite materials/structures: a state-of-the-art review[J]. Adv Mech Eng, 2020, 12(4). doi: 10.1177/1687814020913761 |
[14] | Cheng Y Y, Wang Y X, Niu Y Y, et al. Concealed object enhancement using multi-polarization information for passive millimeter and terahertz wave security screening[J]. Opt Express, 2020, 28(5): 6350−6366. doi: 10.1364/OE.384029 |
[15] | Chernomyrdin N V, Musina G R, Nikitin P V, et al. Terahertz technology in intraoperative neurodiagnostics: a review[J]. Opto-Electron Adv, 2023, 6(5): 220071. doi: 10.29026/oea.2023.220071 |
[16] | Wätzel J, Berakdar J. Open-circuit ultrafast generation of nanoscopic toroidal moments: the swift phase generator[J]. Adv Quantum Tech, 2019, 2(1-2): 1800096. doi: 10.1002/qute.201800096 |
[17] | Wang K L, Mittleman D M. Metal wires for terahertz wave guiding[J]. Nature, 2004, 432(7015): 376−379. doi: 10.1038/nature03040 |
[18] | Deibel J A, Wang K L, Escarra M D, et al. Enhanced coupling of terahertz radiation to cylindrical wire waveguides[J]. Opt Express, 2006, 14(1): 279−290. doi: 10.1364/OPEX.14.000279 |
[19] | Navarro-Cía M, Wu J, Liu H Y, et al. Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides[J]. Sci Rep, 2016, 6(1): 38926. doi: 10.1038/srep38926 |
[20] | Tian X Y, Ma A N, Huang H F, et al. Three-in-one polarization detector enabled by metasurface[J]. Phys Scr, 2024, 99(2): 025531. doi: 10.1088/1402–4896/ad1eaa |
[21] | Fujita H, Tada Y, Sato M. Accessing electromagnetic properties of matter with cylindrical vector beams[J]. New J Phys, 2019, 21(7): 073010. doi: 10.1088/1367–2630/ab26d1 |
[22] | Lamberg J, Zarrinkhat F, Tamminen A, et al. Wavefront-modified vector beams for THz cornea spectroscopy[J]. Opt Express, 2023, 31(24): 40293−40307. doi: 10.1364/OE.494460 |
[23] | Wätzel J, Sherman E Y, Berakdar J. Nanostructures in structured light: photoinduced spin and orbital electron dynamics[J]. Phys Rev B, 2020, 101(23): 235304. doi: 10.1103/PhysRevB.101.235304 |
[24] | Wätzel J, Berakdar J, Sherman E Y. Ultrafast entanglement switching and singlet-triplet transitions control via structured terahertz pulses[J]. New J Phys, 2022, 24(4): 043016. doi: 10.1088/1367–2630/ac608a |
[25] | Miyamoto K, Kang B J, Kim W T, et al. Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate[J]. Sci Rep, 2016, 6: 38880. doi: 10.1038/srep38880 |
[26] | Minkevičius L, Jokubauskis D, Kašalynas I, et al. Bessel terahertz imaging with enhanced contrast realized by silicon multi-phase diffractive optics[J]. Opt Express, 2019, 27(25): 36358−36367. doi: 10.1364/OE.27.036358 |
[27] | Woldegeorgis A, Kurihara T, Almassarani M, et al. Multi-MV/cm longitudinally polarized terahertz pulses from laser-thin foil interaction[J]. Optica, 2018, 5(11): 1474−1477. doi: 10.1364/OPTICA.5.001474 |
[28] | Yue F Y, Aglieri V, Piccoli R, et al. Highly sensitive polarization rotation measurement through a high-order vector beam generated by a metasurface[J]. Adv Mater Technol, 2020, 5(5): 1901008. doi: 10.1002/admt.201901008 |
[29] | Nanni E A, Huang W R, Hong K H, et al. Terahertz-driven linear electron acceleration[J]. Nat Commun, 2015, 6: 8486. doi: 10.1038/ncomms9486 |
[30] | Hibberd M T, Healy A L, Lake D S, et al. Acceleration of relativistic beams using laser-generated terahertz pulses[J]. Nat Photonics, 2020, 14(12): 755−759. doi: 10.1038/s41566-020-0674-1 |
[31] | Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat Nanotechnol, 2015, 10(11): 937−943. doi: 10.1038/nnano.2015.186 |
[32] | Zhang F, Pu M B, Guo Y H, et al. Synthetic vector optical fields with spatial and temporal tunability[J]. Sci China Phys Mech Astron, 2022, 65(5): 254211. doi: 10.1007/s11433-021-1851-0 |
[33] | Zhang F, Guo Y H, Pu M B, et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption[J]. Nat Commun, 2023, 14(1): 1946. doi: 10.1038/s41467–023-37510-z |
[34] | Bao Y J, Yu Y, Xu H F, et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control[J]. Light Sci Appl, 2019, 8: 95. doi: 10.1038/s41377-019-0206-2 |
[35] | Hsiao H H, Chu C H, Tsai D P. Fundamentals and applications of metasurfaces[J]. Small Methods, 2017, 1(4): 1600064. doi: 10.1002/smtd.201600064 |
[36] | Lepeshov S, Gorodetsky A, Krasnok A, et al. Enhancement of terahertz photoconductive antenna operation by optical nanoantennas[J]. Laser Photonics Rev, 2017, 11(1): 1600199. doi: 10.1002/lpor.201600199 |
[37] | Kampfrath T, Tanaka K, Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients[J]. Nat Photonics, 2013, 7(9): 680−690 doi: 10.1038/nphoton.2013.184 |
[38] | Winnerl S, Zimmermann B, Peter F, et al. Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas[J]. Opt Express, 2009, 17(3): 1571−1576. doi: 10.1364/OE.17.001571 |
[39] | Kan K, Yang J, Ogata A, et al. Radially polarized terahertz waves from a photoconductive antenna with microstructures[J]. Appl Phys Lett, 2013, 102(22): 221118. doi: 10.1063/1.4809756 |
[40] | Kaltenecker K J, König-Otto J C, Mittendorff M, et al. Gouy phase shift of a tightly focused, radially polarized beam[J]. Optica, 2016, 3(1): 35−41. doi: 10.1364/OPTICA.3.000035 |
[41] | Deveikis J, Lloyd-Hughes J. Multi-pixel photoconductive emitters for the controllable generation of azimuthal and radial terahertz beams[J]. Opt Express, 2022, 30(24): 43293−43300. doi: 10.1364/OE.473086 |
[42] | Mou S, D’Arco A, Tomarchio L, et al. Simultaneous elliptically and radially polarized THz from one-color laser-induced plasma filament[J]. New J Phys, 2021, 23(6): 063048. doi: 10.1088/1367–2630/ac03cd |
[43] | Han B N, Chen Y P, Xia T H, et al. Measurement and control of radially polarized THz radiation from DC-biased laser plasma filaments in air[J]. Sensors, 2022, 22(14): 5231. doi: 10.3390/s22145231 |
[44] | Wang L Z, Chen Y P, Zhang G W, et al. Tunable high-field terahertz radiation from plasma channels[J]. Laser Photonics Rev, 2023, 17(6): 2200627. doi: 10.1002/lpor.202200627 |
[45] | Nikolaeva I A, Shipilo D E, Panov N A, et al. Terahertz beam with radial or orthogonal to laser polarization from a single-color femtosecond filament[J]. Opt Express, 2023, 31(25): 41406−41419. doi: 10.1364/OE.502931 |
[46] | Jana K, Mi Y H, Møller S H, et al. Quantum control of flying doughnut terahertz pulses[J]. Sci Adv, 2024, 10(2): eadl1803. doi: 10.1126/sciadv.adl1803 |
[47] | Pettine J, Padmanabhan P, Shi T, et al. Light-driven nanoscale vectorial currents[J]. Nature, 2024, 626(8001): 984−989. doi: 10.1038/s41586–024-07037–4 |
[48] | Beaurepaire E, Merle J C, Daunois A, et al. Ultrafast spin dynamics in ferromagnetic nickel[J]. Phys Rev Lett, 1996, 76(22): 4250−4253. doi: 10.1103/PhysRevLett.76.4250 |
[49] | Beaurepaire E, Turner G M, Harrel S M, et al. Coherent terahertz emission from ferromagnetic films excited by femtosecond laser pulses[J]. Appl Phys Lett, 2004, 84(18): 3465−3467. doi: 10.1063/1.1737467 |
[50] | Taira Y, Kuroda R, Kumaki M, et al. Observation of radially polarized terahertz radiation generated by a sub-picosecond electron beam[J]. Vib Spectrosc, 2014, 75: 162−168. doi: 10.1016/j.vibspec.2014.07.015 |
[51] | Jin Z, Zhuo H B, Nakazawa T, et al. Highly efficient terahertz radiation from a thin foil irradiated by a high-contrast laser pulse[J]. Phys Rev E, 2016, 94(3): 033206. doi: 10.1103/PhysRevE.94.033206 |
[52] | Schulz D, Schwager B, Berakdar J. Nanostructured spintronic emitters for polarization-textured and chiral broadband THz fields[J]. ACS Photonics, 2022, 9(4): 1248−1255. doi: 10.1021/acsphotonics.1c01693 |
[53] | Chang G Q, Divin C J, Liu C H, et al. Generation of radially polarized terahertz pulses via velocity-mismatched optical rectification[J]. Opt Lett, 2007, 32(4): 433−435. doi: 10.1364/OL.32.000433 |
[54] | Imai R, Kanda N, Higuchi T, et al. Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry[J]. Opt Express, 2012, 20(20): 21896−21904. doi: 10.1364/OE.20.021896 |
[55] | Zheng Z, Kanda N, Konishi K, et al. Efficient coupling of propagating broadband terahertz radial beams to metal wires[J]. Opt Express, 2013, 21(9): 10642−10650. doi: 10.1364/OE.21.010642 |
[56] | Sato M, Higuchi T, Kanda N, et al. Terahertz polarization pulse shaping with arbitrary field control[J]. Nat Photonics, 2013, 7(9): 724−731. doi: 10.1038/nphoton.2013.213 |
[57] | Gaborit G, Biciunas A, Bernier M, et al. Emitting and receiving terahertz vectorial antennas based on cubic electro-optic crystals[J]. IEEE Trans Terahertz Sci Technol, 2015, 5(5): 828−835. doi: 10.1109/TTHZ.2015.2460452 |
[58] | Feng X, Wang Q W, Lu Y C, et al. Direct emission of broadband terahertz cylindrical vector Bessel beam[J]. Appl Phys Lett, 2021, 119(22): 221110. doi: 10.1063/5.0068561 |
[59] | Mou S, D’Arco A, Tomarchio L, et al. Generation of terahertz vector beam bearing tailored topological charge[J]. APL Photonics, 2023, 8(3): 036103. doi: 10.1063/5.0141691 |
[60] | Iwase H, Ohno S. Direct generation of a terahertz vector beam from a ZnTe crystal excited by a focused circular polarized pulse[J]. Opt Express, 2023, 31(16): 26923−26934. doi: 10.1364/OE.494366 |
[61] | Kröll J, Darmo J, Dhillon S S, et al. Phase-resolved measurements of stimulated emission in a laser[J]. Nature, 2007, 449(7163): 698−701. doi: 10.1038/nature06208 |
[62] | Jukam N, Dhillon S, Zhao Z Y, et al. Gain measurements of THz quantum cascade lasers using THz time-domain spectroscopy[J]. IEEE J Sel Top Quantum Electron, 2008, 14(2): 436−442. doi: 10.1109/JSTQE.2007.911761 |
[63] | Jukam N, Dhillon S S, Oustinov D, et al. Investigation of spectral gain narrowing in quantum cascade lasers using terahertz time domain spectroscopy[J]. Appl Phys Lett, 2008, 93(10): 101115. doi: 10.1063/1.2979682 |
[64] | Jukam N, Dhillon S S, Oustinov D, et al. Terahertz time domain spectroscopy of phonon-depopulation based quantum cascade lasers[J]. Appl Phys Lett, 2009, 94(25): 251108. doi: 10.1063/1.3158592 |
[65] | Jukam N, Dhillon S S, Oustinov D, et al. Terahertz amplifier based on gain switching in a quantum cascade laser[J]. Nat Photonics, 2009, 3(12): 715−719. doi: 10.1038/nphoton.2009.213 |
[66] | Oustinov D, Jukam N, Rungsawang R, et al. Phase seeding of a terahertz quantum cascade laser[J]. Nat Commun, 2010, 1(1): 69. doi: 10.1038/ncomms1068 |
[67] | Han S, Chua Y, Zeng Y Q, et al. Photonic Majorana quantum cascade laser with polarization-winding emission[J]. Nat Commun, 2023, 14(1): 707. doi: 10.1038/s41467–023-36418-y |
[68] | Han S, Cui J Y, Chua Y, et al. Electrically-pumped compact topological bulk lasers driven by band-inverted bound states in the continuum[J]. Light Sci Appl, 2023, 12(1): 145. doi: 10.1038/s41377-023-01200-8 |
[69] | Cui J Y, Chua Y, Han S, et al. Single‐mode electrically pumped terahertz laser in an ultracompact cavity via merging bound states in the continuum[J]. Laser Photonics Rev, 2023, 17(11): 2300350. doi: 10.1002/lpor.202300350 |
[70] | Petrov N V, Sokolenko B, Kulya M S, et al. Design of broadband terahertz vector and vortex beams: I. Review of materials and components[J]. Light Adv Manuf, 2022, 3(4): 640−652. doi: 10.37188/LAM.2022.043 |
[71] | Minasyan A, Trovato C, Degert J, et al. Geometric phase shaping of terahertz vortex beams[J]. Opt Lett, 2017, 42(1): 41−44. doi: 10.1364/OL.42.000041 |
[72] | Hernandez-Serrano A I, Castro-Camus E, Lopez-Mago D. q-plate for the generation of terahertz cylindrical vector beams fabricated by 3D printing[J]. J Infrared Millim Terahertz Waves, 2017, 38(8): 938−944. doi: 10.1007/s10762-017-0396-8 |
[73] | Dong X P, Cheng J R, Fan F, et al. Sub-terahertz wideband vector beam generator based on superwavelength lattice dielectric grating[J]. Optik, 2019, 193: 162991. doi: 10.1016/j.ijleo.2019.162991 |
[74] | Koral C, Mazaheri Z, Andreone A. THz multi-mode Q-plate with a fixed rate of change of the optical axis using form birefringence[J]. Micromachines, 2022, 13(5): 796. doi: 10.3390/mi13050796 |
[75] | 柯岚, 章思梦, 李晨霞, 等. 超表面实现复杂矢量涡旋光束的研究进展[J]. 光电工程, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117 Ke L, Zhang S M, Li C X, et al. Research progress on hybrid vector beam implementation by metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117 |
[76] | Guo Y H, Pu M B, Zhao Z Y, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022−2029. doi: 10.1021/acsphotonics.6b00564 |
[77] | Zhang F, Pu M B, Luo J, et al. Symmetry breaking of photonic spin-orbit interactions in metasurfaces[J]. Opto-Electron Eng, 2017, 44(3): 319−325. doi: 10.3969/j.issn.1003-501X.2017.03.006 |
[78] | Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Phys Rev Lett, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901 |
[79] | Devlin R C, Ambrosio A, Rubin N A, et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 2017, 358(6365): 896−901. doi: 10.1126/science.aao5392 |
[80] | Guo Y H, Zhang S C, Pu M B, et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation[J]. Light Sci Appl, 2021, 10(1): 63. doi: 10.1038/s41377-021-00497-7 |
[81] | 张飞, 郭迎辉, 蒲明博, 等. 基于非对称光子自旋—轨道相互作用的超构表面[J]. 光电工程, 2020, 47(10): 200366. doi: 10.12086/oee.2020.200366 Zhang F, Guo Y H, Pu M B, et al. Metasurfaces enabled by asymmetric photonic spin-orbit interactions[J]. Opto-Electron Eng, 2020, 47(10): 200366. doi: 10.12086/oee.2020.200366 |
[82] | Papakostas A, Potts A, Bagnall D M, et al. Optical manifestations of planar chirality[J]. Phys Rev Lett, 2003, 90(10): 107404. doi: 10.1103/PhysRevLett.90.107404 |
[83] | Kang M, Chen J, Wang X L, et al. Twisted vector field from an inhomogeneous and anisotropic metamaterial[J]. J Opt Soc Am B, 2012, 29(4): 572−576. doi: 10.1364/JOSAB.29.000572 |
[84] | Xie Z W, He J W, Wang X K, et al. Generation of terahertz vector beams with a concentric ring metal grating and photo-generated carriers[J]. Opt Lett, 2015, 40(3): 359−362. doi: 10.1364/OL.40.000359 |
[85] | Guo J Y, Wang X K, He J W, et al. Generation of radial polarized Lorentz beam with single layer metasurface[J]. Adv Opt Mater, 2018, 6(1): 1700925. doi: 10.1002/adom.201700925 |
[86] | Xu Y H, Zhang H F, Li Q, et al. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control[J]. Nanophotonics, 2020, 9(10): 3393−3402. doi: 10.1515/nanoph-2020-0112 |
[87] | Zhou H X, Cheng J R, Fan F, et al. Ultrathin freestanding terahertz vector beam generators with free phase modulation[J]. Opt Express, 2021, 29(2): 1384−1395. doi: 10.1364/OE.413119 |
[88] | Wu T, Zhang X Q, Xu Q, et al. Dielectric metasurfaces for complete control of phase, amplitude, and polarization[J]. Adv Opt Mater, 2022, 10(1): 2101223. doi: 10.1002/adom.202101223 |
[89] | Wu Q, Fan W H, Qin C. Generation and superposition of perfect vortex beams in terahertz region via single-layer all-dielectric metasurface[J]. Nanomaterials, 2022, 12(17): 3010. doi: 10.3390/nano12173010 |
[90] | Li Q S, Cai X D, Liu T, et al. Gate-tuned graphene meta-devices for dynamically controlling terahertz wavefronts[J]. Nanophotonics, 2022, 11(9): 2085−2096. doi: 10.1515/nanoph-2021-0801 |
[91] | Zhao H, Wang X K, Liu S T, et al. Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band[J]. Opto-Electron Adv, 2023, 6(2): 220012. doi: 10.29026/oea.2023.220012 |
[92] | Li H, Zheng C L, Liu J Y, et al. Binary encoding-inspired generation of vector vortex beams[J]. Sci China Phys Mech Astron, 2023, 66(5): 254212. doi: 10.1007/s11433-022-2071-6 |
[93] | Ke L, Li C X, Zhang S M, et al. Tight focusing field of cylindrical vector beams based on cascaded low-refractive index metamaterials[J]. Nanophotonics, 2023, 12(18): 3563−3578. doi: 10.1515/nanoph-2023-0261 |
[94] | Zheng C L, Li J, Liu J Y, et al. Creating longitudinally varying vector vortex beams with an all-dielectric metasurface[J]. Laser Photonics Rev, 2022, 16(10): 2200236. doi: 10.1002/lpor.202200236 |
[95] | Li J, Li J T, Yue Z, et al. Structured vector field manipulation of terahertz wave along the propagation direction based on dielectric metasurfaces[J]. Laser Photonics Rev, 2022, 16(12): 2200325. doi: 10.1002/lpor.202200325 |
[96] | Li H, Duan S X, Zheng C L, et al. Manipulation of longitudinally inhomogeneous polarization states empowered by all-silicon metasurfaces[J]. Adv Opt Mater, 2023, 11(4): 2202461. doi: 10.1002/adom.202202461 |
[97] | Li H, Duan S X, Zheng C L, et al. Longitudinal manipulation of scalar to vector vortex beams evolution empowered by all-silicon metasurfaces[J]. Adv Opt Mater, 2023, 11(22): 2301368. doi: 10.1002/adom.202301368 |
[98] | Luo L, Liu X, Duan S X, et al. Dual channel transformation of scalar and vector terahertz beams along the optical path based on dielectric metasurface[J]. Nanophotonics, 2023, 12(19): 3839−3848. doi: 10.1515/nanoph-2023-0457 |
[99] | Hu S S, Wei L, Long Y, et al. Longitudinal polarization manipulation based on all-dielectric terahertz metasurfaces[J]. Opt Express, 2024, 32(5): 6963−6976. doi: 10.1364/OE.514410 |
[100] | He X Y, Bao H L, Zhang F, et al. Longitudinally continuous varying high-order cylindrical vector fields enabled by spin-decoupled metasurfaces[J]. Nanophotonics, 2024, 13(9): 1657−1664. doi: 10.1515/nanoph-2024-0008 |
[101] | Hsieh C F, Pan R P, Tang T T, et al. Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate[J]. Opt Lett, 2006, 31(8): 1112−1114. doi: 10.1364/OL.31.001112 |
[102] | Piccirillo B, D'Ambrosio V, Slussarenko S, et al. Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate[J]. Appl Phys Lett, 2010, 97(24): 241104. doi: 10.1063/1.3527083 |
[103] | Yang C S, Tang T T, Pan R P, et al. Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment[J]. Appl Phys Lett, 2014, 104(14): 141106. doi: 10.1063/1.4871255 |
[104] | Chen P, Wei B Y, Ji W, et al. Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings[J]. Photonics Res, 2015, 3(4): 133−139. doi: 10.1364/PRJ.3.000133 |
[105] | Sasaki T, Okuyama H, Sakamoto M, et al. Optical control of polarized terahertz waves using dye-doped nematic liquid crystals[J]. AIP Adv, 2018, 8(11): 115326. doi: 10.1063/1.5041294 |
[106] | Vieweg N, Jansen C, Shakfa M K, et al. Molecular properties of liquid crystals in the terahertz frequency range[J]. Opt Express, 2010, 18(6): 6097−6107. doi: 10.1364/OE.18.006097 |
[107] | Wang L, Lin X W, Hu W, et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes[J]. Light Sci Appl, 2015, 4(2): e253. doi: 10.1038/lsa.2015.26 |
[108] | Hsieh C F, Yang C S, Shih F C, et al. Liquid-crystal-based magnetically tunable terahertz achromatic quarter-wave plate[J]. Opt Express, 2019, 27(7): 9933−9940. doi: 10.1364/OE.27.009933 |
[109] | Wang L, Ge S J, Hu W, et al. Tunable reflective liquid crystal terahertz waveplates[J]. Opt Mater Express, 2017, 7(6): 2023−2029. doi: 10.1364/OME.7.002023 |
[110] | Zhang X, Fan F, Zhang C Y, et al. Tunable terahertz phase shifter based on dielectric artificial birefringence grating filled with polymer dispersed liquid crystal[J]. Opt Mater Express, 2020, 10(2): 282−292. doi: 10.1364/OME.383058 |
[111] | Shen Z X, Tang M J, Chen P, et al. Planar terahertz photonics mediated by liquid crystal polymers[J]. Adv Opt Mater, 2020, 8(7): 1902124. doi: 10.1002/adom.201902124 |
[112] | Shen Z X, Zhou S H, Ge S J, et al. Liquid-crystal-integrated metadevice: towards active multifunctional terahertz wave manipulations[J]. Opt Lett, 2018, 43(19): 4695−4698. doi: 10.1364/OL.43.004695 |
[113] | Ge S J, Chen P, Shen Z X, et al. Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal[J]. Opt Express, 2017, 25(11): 12349−12356. doi: 10.1364/OE.25.012349 |
[114] | Ge S J, Shen Z X, Chen P, et al. Generating, separating and polarizing terahertz vortex beams via liquid crystals with gradient-rotation directors[J]. Crystals, 2017, 7(10): 314. doi: 10.3390/cryst7100314 |
[115] | Shen Y C, Shen Z X, Zhao G Z, et al. Photopatterned liquid crystal mediated terahertz Bessel vortex beam generator [Invited][J]. Chin Opt Lett, 2020, 18(8): 080003. doi: 10.3788/COL202018.080003 |
[116] | Savo S, Shrekenhamer D, Padilla W J. Liquid crystal metamaterial absorber spatial light modulator for THz applications[J]. Adv Opt Mater, 2014, 2(3): 275−279. doi: 10.1002/adom.201300384 |
[117] | Liu C X, Yang F, Fu X J, et al. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals[J]. Adv Opt Mater, 2021, 9(22): 2100932. doi: 10.1002/adom.202100932 |
[118] | Buchnev O, Podoliak N, Kaltenecker K, et al. Metasurface-based optical liquid crystal cell as an ultrathin spatial phase modulator for THz applications[J]. ACS Photonics, 2020, 7(11): 3199−3206. doi: 10.1021/acsphotonics.0c01263 |
[119] | Tao S N, Shen Z X, Yu H G, et al. Transflective spatial terahertz wave modulator[J]. Opt Lett, 2022, 47(7): 1650−1653. doi: 10.1364/OL.450764 |
[120] | Liu S, Xu F, Zhan J L, et al. Terahertz liquid crystal programmable metasurface based on resonance switching[J]. Opt Lett, 2022, 47(7): 1891−1894. doi: 10.1364/OL.452347 |
[121] | Li W L, Hu X M, Wu J B, et al. Dual-color terahertz spatial light modulator for single-pixel imaging[J]. Light Sci Appl, 2022, 11(1): 191. doi: 10.1038/s41377-022-00879-5 |
[122] | Wang S, Guo H B, Chen B W, et al. Electrically active terahertz liquid-crystal metasurface for polarization vortex beam switching[J]. Laser Photonics Rev, 2024, 2301301. doi: 10.1002/lpor.202301301 |
[123] | Wakayama T, Higashiguchi T, Oikawa H, et al. Determination of the polarization states of an arbitrary polarized terahertz beam: vectorial vortex analysis[J]. Sci Rep, 2015, 5(1): 9416. doi: 10.1038/srep09416 |
[124] | Wakayama T, Higashiguchi T, Sakaue K, et al. Demonstration of a terahertz pure vector beam by tailoring geometric phase[J]. Sci Rep, 2018, 8(1): 8690. doi: 10.1038/s41598-018-26964-7 |
[125] | Niwa H, Yoshikawa N, Kawaguchi M, et al. Switchable generation of azimuthally- and radially-polarized terahertz beams from a spintronic terahertz emitter[J]. Opt Express, 2021, 29(9): 13331−13343. doi: 10.1364/OE.422484 |
[126] | Grosjean T, Baida F, Adam R, et al. Linear to radial polarization conversion in the THz domain using a passive system[J]. Opt Express, 2008, 16(23): 18895−18909. doi: 10.1364/OE.16.018895 |
[127] | Fan J Y, Zhang L, Wu Z Y, et al. Simultaneous and independent control of phase and polarization in terahertz band for functional integration of multiple devices[J]. Opt Laser Technol, 2022, 151: 108064. doi: 10.1016/j.optlastec.2022.108064 |
[128] | Zeng C, Lu H, Mao D, et al. Graphene-empowered dynamic metasurfaces and metadevices[J]. Opto-Electron Adv, 2022, 5(4): 200098. doi: 10.29026/oea.2022.200098 |
[129] | 张寿俊, 曹暾, 田震. 基于硫属化物相变材料的可重构太赫兹超表面器件的研究进展[J]. 光电工程, 2023, 50(9): 230142. doi: 10.12086/oee.2023.230142 Zhang S J, Cao T, Tian Z. Progress on reconfigurable terahertz metasurface devices based on sulfide phase change materials[J]. Opto-Electron Eng, 2023, 50(9): 230142. doi: 10.12086/oee.2023.230142 |
[130] | Guan S N, Cheng J R, Chang S J. Recent progress of terahertz spatial light modulators: materials, principles and applications[J]. Micromachines, 2022, 13(10): 1637. doi: 10.3390/mi13101637 |
[131] | Yu H G, Wang H C, Wang Q G, et al. Liquid crystal-tuned planar optics in terahertz range[J]. Appl Sci, 2023, 13(3): 1428. doi: 10.3390/app13031428 |
In recent years, terahertz waves have shown broad application prospects in imaging, communications, material characterization, and other fields due to their unique coherence, strong penetration, low energy, and the freedom to excite the rotation and vibration of atoms and substances. Among various terahertz-structured beams, vector beams with unique polarization characteristics exhibit novel spatial distributions and demonstrate a growing range of potential application values. The vector beam refers to a beam with different polarization states at different positions on the same wave vibration plane at the same time. Unlike a scalar beam, the polarization state of a vector beam changes with its position in space. This review explores the generation methods of terahertz vector beams, their applications in diverse fields, and future developmental directions. To begin with, we systematically classify the generation methods of terahertz vector beams based on formation techniques. The advancements in direct-generation devices such as ultrafast current devices, nonlinear devices, and quantum cascade lasers are discussed. Additionally, we highlight progress in beam shaping devices such as birefringent wave plates, metasurfaces, liquid crystals, and total internal reflection devices regarding terahertz vector beam generation. The detailed explanations of the principles of these methods and the characteristics of the generated vector beams are provided. Next, we present representative applications utilizing terahertz vector beams, including dispersive transmission, polarization measurement, imaging sensing, vector holography, and electron dynamics. The unique characteristics of terahertz vector beams offer significant advantages and potential in these applications, such as improved resolution, enhanced information transfer rates, and precise material property measurements. Finally, we discuss the challenges and possibilities involved in terahertz vector field manipulation using different devices. Among these devices, terahertz quantum cascade lasers and metasurfaces will be the future development trend, with broad development prospects and application potential. Terahertz quantum cascade lasers can achieve high-power, narrow linewidth, and continuously tunable terahertz radiation. Metasurfaces provide more possibilities for research on using integrated optical systems to replace traditional optical systems to generate vector beams. In addition, liquid crystal is also one of the promising materials suitable for terahertz vector beam modulators. Combining active metasurfaces with multi-layer liquid crystals may become the final solution of compact, efficient, and tunable vector beam shaping devices in the terahertz frequency range. With further development of technology and in-depth research on applications, terahertz vector beams will demonstrate their potential and application value in a wider range of fields.
Generation of terahertz vector beams based on ultrafast current devices. (a) GaAs-based microstructured photoconductive antenna[38]; (b) InP-based microstructured photoconductive antenna[39]; (c) Multi-pixel photoconductive emitters[41]; (d) Radially polarized terahertz waves from one-color laser-induced plasma filament[42]; (e) Ultrashort laser off-axis injecting parabolic plasma channel emits high-field terahertz waves[44]; (f) Dynamic loop currents radiates angularly polarized terahertz pulses[46]; (g, h) Light-driven nanoscale vectorial currents radiates terahertz waves[47]; (i) Nanostructured spintronic emitters[52]
Generation of terahertz vector beams based on nonlinear devices. (a) Terahertz vector beams generation using segmented nonlinear optical crystals[54]; (b, c) Terahertz polarization pulse shaping with arbitrary field control[56]; (d) Direct emission of broadband terahertz cylindrical vector Bessel beam[58]; (e) Infrared vector beam pumping generates terahertz vector beam bearing tailored topological charge[59]; (f) Direct generation of a terahertz vector beam from a ZnTe crystal excited by a focused pulse[60]
Generation of terahertz vector beams based on quantum cascade lasers. (a, b) Quantum cascade laser with polarization-winding emission[67]; (c) Electrically-pumped compact topological bulk lasers[68]; (d) Single-mode electrically pumped terahertz laser[69]
Generation of terahertz vector beams based on birefringent wave plates. (a) Different schemes of Q-plate for vector beam shaping[70]; (b) 3D printed continuous Q-plate[72]; (c) 3D printed segmented Q-plate[73]
Generation of terahertz vector beams based on metasurfaces. (a) Dielectric metasurfaces via spin-decoupled phase control[86]; (b) Dielectric metasurfaces for complete control of phase, amplitude, and polarization[88]; (c) Graphene meta-devices for dynamically controlling terahertz waves[90]; (d) Tight focusing field of cylindrical vector beams[93]; (e) Longitudinally varying vector vortex beams[94]; (f) Structured vector field manipulation of along the propagation direction[95]
Generation of terahertz vector beams based on liquid crystal[122]. (a) Schematic of tunable cylindrical vector beams generator; (b) Exploded view of the structure of a unit cell; (c) Measurement results of reconfigurable polarization patterns; (d) Measurement results of the reconfigurable vector beams
Generation of terahertz vector beams based on total internal reflection device. (a) Achromatic axially symmetric wave plate[123]; (b) Achromatic non-axisymmetric wave plate[124]; (c) Generation of azimuthally- and radially-polarized terahertz beams from a spintronic terahertz emitter[125]
Non-dispersive transmission of terahertz pulses. (a) Non-dispersive transmission of terahertz pulses through metal waveguides[17]; (b, c) Efficient coupling of broadband radially polarized terahertz pulse beams to waveguides[55]; (d) Launching terahertz pulses generation at the semiconductor surfaces into coaxial waveguides[19]
Polarization measurement. (a) Vector vortex analysis for polarization measurements[123]; (b) Highly sensitive polarization rotation measurements[28]; (c, d) Three-in-one polarization detector[20]
Imaging and sensing. (a) Azimuthally polarized beam used to obtain electromagnetic properties of matter[21]; (b) Wavefront-modified vector beams for terahertz cornea spectroscopy[22]; (c) Azimuthally polarized terahertz pulses for spectral measurements of water vapor[46]; (d) Longitudinally varying vector beams for measurement of media thickness[99]
Vectorial hologram. (a) Dielectric metasurface for vectorial meta-holograms[88]; (b, c)Tri-layer metallic metasurface for multi-channel vectorial holograms[91]
Electron dynamics. (a) Coupled spin and orbital electron dynamics driven by terahertz vector fields[23]; (b) Azimuthally polarized beam steer the spin and spatial distributions of two interacting electrons in a quantum dot[24]