Xie C, Liu T Y. Applications of vector vortex beams in laser micro-/nanomachining[J]. Opto-Electron Eng, 2024, 51(8): 240089. doi: 10.12086/oee.2024.240089
Citation: Xie C, Liu T Y. Applications of vector vortex beams in laser micro-/nanomachining[J]. Opto-Electron Eng, 2024, 51(8): 240089. doi: 10.12086/oee.2024.240089

Applications of vector vortex beams in laser micro-/nanomachining

    Fund Project: Project supported by National Natural Science Foundation of China (62275191, 61605142)
More Information
  • In the past two decades, numerous significant advances have been achieved in the realm of the vector beams. Considering numerous published reviews already covering diverse topics in terms of generating and/or manipulating unprecedented vector beams, we summarize the typical applications of vector vortex beams in the topics of laser micro-nano processing for material modification, subtractive and additive manufactures. This paper reviews part of the critical advances in fabricating micro-nano structures on the surface and inside the materials, optical information storage and rapid fabrication of microstructures with the stereolithography based-on vector vortex beams. Particular cares are focused on the principles and technologies in applications of patterned laser-induced periodic surface structures and rapid two-photon polymerization of three-dimensional microstructures based on customized vector vortex beams. Finally, we summarize the advantages and challenges of vector vortex beams in laser micro-nano processing, and we also anticipate that more vector light fields will enable more complex applications in the future.
  • 加载中
  • [1] Zhan Q. Cylindrical vector beams: from mathematical concepts to applications[J]. Adv Opt Photonics, 2009, 1(1): 1−57. doi: 10.1364/AOP.1.000001

    CrossRef Google Scholar

    [2] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phys Rev A, 1992, 45(11): 8185−8189. doi: 10.1103/PhysRevA.45.8185

    CrossRef Google Scholar

    [3] Forbes A, de Oliveira M, Dennis M R. Structured light[J]. Nat Photonics, 2021, 15(4): 253−262. doi: 10.1038/s41566-021-00780-4

    CrossRef Google Scholar

    [4] Marrucci L, Manzo C, Paparo D. Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation[J]. Appl Phys Lett, 2006, 88(22): 221102. doi: 10.1063/1.2207993

    CrossRef Google Scholar

    [5] Zhang Y Q, Dou X J, Yang Y, et al. Flexible generation of femtosecond cylindrical vector beams (Invited paper)[J]. Chin Opt Lett, 2017, 15(3): 030007. doi: 10.3788/COL201715.030007

    CrossRef Google Scholar

    [6] 郑淑君, 林枭, 黄志云, 等. 基于偏光全息的光场调控研究进展[J]. 光电工程, 2022, 49(11): 220114. doi: 10.12086/oee.2022.220114

    CrossRef Google Scholar

    Zheng S J, Lin X, Huang Z Y, et al. Light field regulation based on polarization holography[J]. Opto-Electron Eng, 2022, 49(11): 220114. doi: 10.12086/oee.2022.220114

    CrossRef Google Scholar

    [7] 郭迎辉, 蒲明博, 马晓亮, 等. 电磁超构材料色散调控研究进展[J]. 光电工程, 2017, 44(1): 3−22. doi: 10.3969/j.issn.1003-501X.2017.01.001

    CrossRef Google Scholar

    Guo Y H, Pu M B, Ma X L, et al. Advances of dispersion-engineered metamaterials[J]. Opto-Electron Eng, 2017, 44(1): 3−22. doi: 10.3969/j.issn.1003-501X.2017.01.001

    CrossRef Google Scholar

    [8] Luo X G. Subwavelength artificial structures: opening a new era for engineering optics[J]. Adv Mater, 2019, 31(4): 1804680. doi: 10.1002/adma.201804680

    CrossRef Google Scholar

    [9] Pu M B, Guo Y H, Li X, et al. Revisitation of extraordinary young’s interference: from catenary optical fields to spin–orbit interaction in metasurfaces[J]. ACS Photonics, 2018, 5(8): 3198−3204. doi: 10.1021/acsphotonics.8b00437

    CrossRef Google Scholar

    [10] Wang D Y, Liu F F, Liu T, et al. Efficient generation of complex vectorial optical fields with metasurfaces[J]. Light Sci Appl, 2021, 10(1): 67. doi: 10.1038/s41377-021-00504-x

    CrossRef Google Scholar

    [11] 柯岚, 章思梦, 李晨霞, 等. 超表面实现复杂矢量涡旋光束的研究进展[J]. 光电工程, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117

    CrossRef Google Scholar

    Ke L, Zhang S M, Li C X, et al. Research progress on hybrid vector beam implementation by metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117

    CrossRef Google Scholar

    [12] 付时尧, 高春清. 矢量涡旋光束的生成与模式识别方法[J]. 光学学报, 2023, 43(15): 1526001. doi: 10.3788/AOS230651

    CrossRef Google Scholar

    Fu S Y, Gao C Q. Generation and mode recognition method of vectorial vortex beams[J]. Acta Opt Sin, 2023, 43(15): 1526001. doi: 10.3788/AOS230651

    CrossRef Google Scholar

    [13] Brown T G, Zhan Q W. Focus issue: unconventional polarization states of light[J]. Opt Express, 2010, 18(10): 10775−10776. doi: 10.1364/OE.18.010775

    CrossRef Google Scholar

    [14] Luo X G, Ishihara T. Surface plasmon resonant interference nanolithography technique[J]. Appl Phys Lett, 2004, 84(23): 4780−4782. doi: 10.1063/1.1760221

    CrossRef Google Scholar

    [15] Gao P, Yao N, Wang C T, et al. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens[J]. Appl Phys Lett, 2015, 106(9): 093110. doi: 10.1063/1.4914000

    CrossRef Google Scholar

    [16] Hnatovsky C, Shvedov V G, Krolikowski W, et al. Materials processing with a tightly focused femtosecond laser vortex pulse[J]. Opt Lett, 2010, 35(20): 3417−3419. doi: 10.1364/OL.35.003417

    CrossRef Google Scholar

    [17] Hnatovsky C, Shvedov V, Krolikowski W, et al. Revealing local field structure of focused ultrashort pulses[J]. Phys Rev Lett, 2011, 106(12): 123901. doi: 10.1103/PhysRevLett.106.123901

    CrossRef Google Scholar

    [18] Shen W C, Cheng C W, Yang M C, et al. Fabrication of novel structures on silicon with femtosecond laser pulses[J]. J Laser Micro/Nanoeng, 2010, 5(3): 229−232. doi: 10.2961/jlmn.2010.03.0009

    CrossRef Google Scholar

    [19] Hnatovsky C, Shvedov V G, Shostka N, et al. Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses[J]. Opt Lett, 2012, 37(2): 226−228. doi: 10.1364/OL.37.000226

    CrossRef Google Scholar

    [20] Lou K, Qian S X, Wang X L, et al. Two-dimensional microstructures induced by femtosecond vector light fields on silicon[J]. Opt Express, 2012, 20(1): 120−127 doi: 10.1364/OE.20.000120

    CrossRef Google Scholar

    [21] Nivas J J J, He S T, Rubano A, et al. Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate[J]. Sci Rep, 2015, 5(1): 17929. doi: 10.1038/srep17929

    CrossRef Google Scholar

    [22] Cheng H C, Li P, Liu S, et al. Vortex-controlled morphology conversion of microstructures on silicon induced by femtosecond vector vortex beams[J]. Appl Phys Lett, 2017, 111(14): 141901 doi: 10.1063/1.4994926

    CrossRef Google Scholar

    [23] Allegre O J, Li Z Q, Li L. Tailored laser vector fields for high-precision micro-manufacturing[J]. CIRP Ann, 2019, 68(1): 193−196. doi: 10.1016/j.cirp.2019.04.125

    CrossRef Google Scholar

    [24] Allegre O J, Perrie W, Edwardson S P, et al. Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses[J]. J Opt, 2012, 14(8): 085601 doi: 10.1088/2040-8978/14/8/085601

    CrossRef Google Scholar

    [25] Allegre O J, Jin Y, Perrie W, et al. Complete wavefront and polarization control for ultrashort-pulse laser microprocessing[J]. Opt Express, 2013, 21(18): 21198−21207. doi: 10.1364/OE.21.021198

    CrossRef Google Scholar

    [26] Jin Y, Allegre O J, Perrie W, et al. Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions[J]. Opt Express, 2013, 21(21): 25333−25343. doi: 10.1364/OE.21.025333

    CrossRef Google Scholar

    [27] Ouyang J, Perrie W, Allegre O J, et al. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring[J]. Opt Express, 2015, 23(10): 12562−12572 doi: 10.1364/OE.23.012562

    CrossRef Google Scholar

    [28] Ghosal A, Allegre O J, Liu Z, et al. Surface engineering with structured femtosecond laser vector fields[J]. Results Opt, 2021, 5: 100179 doi: 10.1016/j.rio.2021.100179

    CrossRef Google Scholar

    [29] Lou K, Qian S X, Ren Z C, et al. Self-formed two-dimensional near-wavelength microstructures on copper induced by multipulse femtosecond vector optical fields[J]. J Opt Soc Am B, 2012, 29(9): 2282−2287 doi: 10.1364/JOSAB.29.002282

    CrossRef Google Scholar

    [30] Skoulas E, Manousaki A, Fotakis C, et al. Biomimetic surface structuring using cylindrical vector femtosecond laser beams[J]. Sci Rep, 2017, 7(1): 45114. doi: 10.1038/srep45114

    CrossRef Google Scholar

    [31] Kawaguchi H, Yasuhara R, Yang H T, et al. Femtosecond vector vortex laser ablation in tungsten: chiral nano-micro texturing and structuring[J]. Opt Mater Express, 2024, 14(2): 424−434. doi: 10.1364/OME.510141

    CrossRef Google Scholar

    [32] Omatsu T, Chujo K, Miyamoto K, et al. Metal microneedle fabrication using twisted light with spin[J]. Opt Express, 2010, 18(17): 17967−17973 doi: 10.1364/OE.18.017967

    CrossRef Google Scholar

    [33] Toyoda K, Miyamoto K, Aoki N, et al. Using optical vortex to control the chirality of twisted metal nanostructures[J]. Nano Lett, 2012, 12(7): 3645−3649 doi: 10.1021/nl301347j

    CrossRef Google Scholar

    [34] Toyoda K, Takahashi F, Takizawa S, et al. Transfer of light helicity to nanostructures[J]. Phys Rev Lett, 2013, 110(14): 143603 doi: 10.1103/PhysRevLett.110.143603

    CrossRef Google Scholar

    [35] Rahimian M G, Jain A, Larocque H, et al. Spatially controlled nano-structuring of silicon with femtosecond vortex pulses[J]. Sci Rep, 2020, 10(1): 12643 doi: 10.1038/s41598-020-69390-4

    CrossRef Google Scholar

    [36] Ahmed M A, Voß A, Vogel M M, et al. Radially polarized high-power lasers[J]. Proc SPIE, 2009, 7131: 71311I doi: 10.1117/12.816818

    CrossRef Google Scholar

    [37] Kraus M, Ahmed M A, Michalowski A, et al. Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization[J]. Opt Express, 2010, 18(21): 22305−22313. doi: 10.1364/OE.18.022305

    CrossRef Google Scholar

    [38] Bhuyan M K, Courvoisier F, Lacourt P A, et al. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams[J]. Appl Phys Lett, 2010, 97(8): 081102. doi: 10.1063/1.3479419

    CrossRef Google Scholar

    [39] Bhuyan M K, Velpula P K, Colombier J P, et al. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams[J]. Appl Phys Lett, 2014, 104(2): 021107. doi: 10.1063/1.4861899

    CrossRef Google Scholar

    [40] Rapp L, Meyer R, Giust R, et al. High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams[J]. Sci Rep, 2016, 6(1): 34286. doi: 10.1038/srep34286

    CrossRef Google Scholar

    [41] He F, Yu J J, Tan Y X, et al. Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias[J]. Sci Rep, 2017, 7(1): 40785. doi: 10.1038/srep40785

    CrossRef Google Scholar

    [42] Xie C, Jukna V, Milián C, et al. Tubular filamentation for laser material processing[J]. Sci Rep, 2015, 5(1): 8914. doi: 10.1038/srep08914

    CrossRef Google Scholar

    [43] Baltrukonis J, Ulčinas O, Orlov S, et al. High-order vector Bessel-gauss beams for laser micromachining of transparent materials[J]. Phys Rev Appl, 2021, 16(3): 034001. doi: 10.1103/PhysRevApplied.16.034001

    CrossRef Google Scholar

    [44] Belloni V V, Hassan M, Furfaro L, et al. Single shot generation of high-aspect-ratio nano-rods from sapphire by ultrafast first order Bessel beam[J]. Laser Photonics Rev, 2024, 18(3): 2300687 doi: 10.1002/lpor.202300687

    CrossRef Google Scholar

    [45] Mishchik K, Beuton R, Caulier O D, et al. Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses[J]. Opt Express, 2017, 25(26): 33271−33282 doi: 10.1364/OE.25.033271

    CrossRef Google Scholar

    [46] Cheng G, Rudenko A, D'Amico C, et al. Embedded nanogratings in bulk fused silica under non-diffractive Bessel ultrafast laser irradiation[J]. Appl Phys Lett, 2017, 110(26): 261901 doi: 10.1063/1.4987139

    CrossRef Google Scholar

    [47] Zhang G, Cheng G, Bhuyan M, et al. Efficient point-by-point Bragg gratings fabricated in embedded laser-written silica waveguides using ultrafast Bessel beams[J]. Opt Lett, 2018, 43(9): 2161−2164 doi: 10.1364/OL.43.002161

    CrossRef Google Scholar

    [48] Lu J F, Hassan M, Courvoisier F, et al. 3D structured Bessel beam polarization and its application to imprint chiral optical properties in silica[J]. APL Photonics, 2023, 8(6): 060801. doi: 10.1063/5.0140843

    CrossRef Google Scholar

    [49] Zhao M, Wen J, Hu Q, et al. A 3D nanoscale optical disk memory with petabit capacity[J]. Nature, 2024, 626(8000): 772−778 doi: 10.1038/s41586-023-06980-y

    CrossRef Google Scholar

    [50] Zhang Y J, Bai J P. Improving the recording ability of a near-field optical storage system by higher-order radially polarized beams[J]. Opt Express, 2009, 17(5): 3698−3706. doi: 10.1364/OE.17.003698

    CrossRef Google Scholar

    [51] Jiang Y S, Li X P, Gu M. Generation of sub-diffraction-limited pure longitudinal magnetization by the inverse Faraday effect by tightly focusing an azimuthally polarized vortex beam[J]. Opt Lett, 2013, 38(16): 2957−2960. doi: 10.1364/OL.38.002957

    CrossRef Google Scholar

    [52] Wang S C, Li X P, Zhou J Y, et al. Ultralong pure longitudinal magnetization needle induced by annular vortex binary optics[J]. Opt Lett, 2014, 39(17): 5022−5025 doi: 10.1364/OL.39.005022

    CrossRef Google Scholar

    [53] Yan W C, Nie Z Q, Zhang X R, et al. Magnetization shaping generated by tight focusing of azimuthally polarized vortex multi-Gaussian beam[J]. Appl Opt, 2017, 56(7): 1940−1946 doi: 10.1364/AO.56.001940

    CrossRef Google Scholar

    [54] Nie Z Q, Ning Z B, Liu X F, et al. Creating multiple ultra-long longitudinal magnetization textures by strongly focusing azimuthally polarized circular Airy vortex beams[J]. Opt Express, 2023, 31(12): 19089−19101 doi: 10.1364/OE.490250

    CrossRef Google Scholar

    [55] Liu X F, Yan W C, Liang Y, et al. Twisting polarization-tunable subdiffraction-limited magnetization through vectorial beam coupling[J]. Adv Photonics Res, 2022, 3(1): 2100117 doi: 10.1002/adpr.202100117

    CrossRef Google Scholar

    [56] Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 2009, 459(7245): 410−413. doi: 10.1038/nature08053

    CrossRef Google Scholar

    [57] Gu M, Li X P, Cao Y Y. Optical storage arrays: a perspective for future big data storage[J]. Light Sci Appl, 2014, 3(5): e177. doi: 10.1038/lsa.2014.58

    CrossRef Google Scholar

    [58] Li X P, Lan T H, Tien C H, et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam[J]. Nat Commun, 2012, 3(1): 998 doi: 10.1038/ncomms2006

    CrossRef Google Scholar

    [59] Xian M C, Xu Y, Ouyang X, et al. Segmented cylindrical vector beams for massively-encoded optical data storage[J]. Sci Bull, 2020, 65(24): 2072−2079 doi: 10.1016/j.scib.2020.07.016

    CrossRef Google Scholar

    [60] Berry M V, McDonald K T. Exact and geometrical optics energy trajectories in twisted beams[J]. J Opt A: Pure Appl Opt, 2008, 10(3): 035005. doi: 10.1088/1464-4258/10/3/035005

    CrossRef Google Scholar

    [61] Xie C, Giust R, Jukna V, et al. Light trajectory in Bessel-Gauss vortex beams[J]. J Opt Soc Am A, 2015, 32(7): 1313−1316. doi: 10.1364/JOSAA.32.001313

    CrossRef Google Scholar

    [62] Xiao N, Xie C, Jia E S, et al. Caustic interpretation of the abruptly autofocusing vortex beams[J]. Opt Express, 2021, 29(13): 19975−19984. doi: 10.1364/OE.430497

    CrossRef Google Scholar

    [63] Xiao N, Xie C, Courvoisier F, et al. Caustics of the axially symmetric vortex beams: analysis and engineering[J]. Opt Express, 2022, 30(16): 29507−29517. doi: 10.1364/OE.465169

    CrossRef Google Scholar

    [64] Mills B, Kundys D, Farsari M, et al. Single-pulse multiphoton fabrication of high aspect ratio structures with sub-micron features using vortex beams[J]. Appl Phys A, 2012, 108(3): 651−655 doi: 10.1007/s00339-012-6945-z

    CrossRef Google Scholar

    [65] Stankevicius E, Gertus T, Rutkauskas M, et al. Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique[J]. J Micromech Microeng, 2012, 22(6): 065022 doi: 10.1088/0960-1317/22/6/065022

    CrossRef Google Scholar

    [66] Yang L, El-Tamer A, Hinze U, et al. Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams[J]. Appl Phys Lett, 2014, 105(4): 041110 doi: 10.1063/1.4891841

    CrossRef Google Scholar

    [67] Yang L, Qian D D, Xin C, et al. Direct laser writing of complex microtubes using femtosecond vortex beams[J]. Appl Phys Lett, 2017, 110(22): 221103 doi: 10.1063/1.4984744

    CrossRef Google Scholar

    [68] Yang L, Qian D D, Xin C, et al. Two-photon polymerization of microstructures by a non-diffraction multifoci pattern generated from a superposed Bessel beam[J]. Opt Lett, 2017, 42(4): 743−746 doi: 10.1364/OL.42.000743

    CrossRef Google Scholar

    [69] Ji S Y, Yang L, Zhang C C, et al. High-aspect-ratio microtubes with variable diameter and uniform wall thickness by compressing Bessel hologram phase depth[J]. Opt Lett, 2018, 43(15): 3514−3517 doi: 10.1364/OL.43.003514

    CrossRef Google Scholar

    [70] Jia E S, Xie C, Xiao N, et al. Two-photon polymerization of femtosecond high-order Bessel beams with aberration correction[J]. Chin Opt Lett, 2023, 21(7): 071203. doi: 10.3788/COL202321.071203

    CrossRef Google Scholar

    [71] Jia E S, Xie C, Yang Y, et al. Abruptly autofocusing vortex beams for rapid controllable femtosecond two-photon polymerization[J]. Materials, 2023, 16(13): 4625. doi: 10.3390/ma16134625

    CrossRef Google Scholar

    [72] Liu S, Qi S X, Zhang Y, et al. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude[J]. Photonics Res, 2018, 6(4): 228−233. doi: 10.1364/PRJ.6.000228

    CrossRef Google Scholar

    [73] Pan Y, Gao X Z, Zhang G L, et al. Spin angular momentum density and transverse energy flow of tightly focused kaleidoscope-structured vector optical fields[J]. APL Photonics, 2019, 4(9): 096102. doi: 10.1063/1.5117269

    CrossRef Google Scholar

    [74] Lou K, Qian S X, Ren Z C, et al. Femtosecond laser processing by using patterned vector optical fields[J]. Sci Rep, 2013, 3(1): 2281. doi: 10.1038/srep02281

    CrossRef Google Scholar

    [75] Cai M Q, Tu C H, Zhang H H, et al. Subwavelength multiple focal spots produced by tight focusing the patterned vector optical fields[J]. Opt Express, 2013, 21(25): 31469−31482. doi: 10.1364/OE.21.031469

    CrossRef Google Scholar

    [76] Cai M Q, Li P P, Feng D, et al. Microstructures fabricated by dynamically controlled femtosecond patterned vector optical fields[J]. Opt Lett, 2016, 41(7): 1474−1477. doi: 10.1364/OL.41.001474

    CrossRef Google Scholar

    [77] Cai M Q, Wang Q, Tu C H, et al. Dynamically taming focal fields of femtosecond lasers for fabricating microstructures[J]. Chin Opt Lett, 2022, 20(1): 010502 doi: 10.3788/COL202220.010502

    CrossRef Google Scholar

    [78] Zheng J, Huang J X, Xu S L. Multiscale micro-/nanostructures on single crystalline SiC fabricated by hybridly polarized femtosecond laser[J]. Opt Lasers Eng, 2020, 127: 105940. doi: 10.1016/j.optlaseng.2019.105940

    CrossRef Google Scholar

  • The optical vortex beams are specially-structured light fields with helical wavefronts expressed as exp (imϕ), where m represents the topological charge with ϕ defined as the azimuthal angle. Further, the concepts of vector vortex beams are naturally developed with their polarization states varying across the fields. Simultaneously, richer application scenarios are expected from vortex beams due to their phase singularities and additional degrees of freedom in the angular momentum and/or polarization states. This article reviews the major advances in laser material processing with vector vortex beams since the beginning of this century. Typical fabricating schemes for additive, subtractive manufactures and material modifications are summarized. In section 2, the advances in the subtractive and material modifications are categorized into three sub-sections as: microstructure imprinted on the surface, microstructures inscribed inside the material and the applications in the optical storage. As numerous techniques to generate these novel beams were available in 2000s, vector vortex beams were soon applied to imprint laser-induced periodic surface structure (LIPSS) patterns due to the well-known relations of LIPSS with local polarization states of laser beams. In subsection 2.1, we survey the works on LIPSS induced by vector vortex beams on the surfaces of glass, silicon and metals, i.e. three common materials of dielectric, semiconductor and conductor. Commercially available ultrafast Ti:Sapphire lasers delivering femtosecond pulses are mostly employed in these activities due to the possibility to induce multiscale micro/nanostructures. Besides, several works to induce vortex-related microstructures are also included. In subsection 2.2, advances in hole drilling with either expected or unexpected concomitant results by Bessel beams are reviewed. Since applying the novel vector vortex beams in the optical storage is a related cutting-edge topic but still in development, simulations and conception advances in this topic are surveyed in subsection 2.3. Section 3 is devoted to the related works on additive fabrications. The concept and recent advances in optical caustics of vortex beams are briefly introduced in subsection 3.1. Compared with the 3D point-by-point scanning scheme, further applications based on flexibly shaped vortex beams reviewed in subsection 3.2 are presented to significantly accelerate the fabricating speed by more than two orders of magnitudes. Miscellaneous works with other vector beams are introduced in section 4. Finally, we discuss the limitations of the current advances and we envision that the applications of vector vortex beams will be further developed through richer collaborations of professionals in various fields.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(16)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint