Wang H X, He Y L, Zhu H W, et al. Research progress and prospects of metasurface polarization devices[J]. Opto-Electron Eng, 2024, 51(8): 240095. doi: 10.12086/oee.2024.240095
Citation: Wang H X, He Y L, Zhu H W, et al. Research progress and prospects of metasurface polarization devices[J]. Opto-Electron Eng, 2024, 51(8): 240095. doi: 10.12086/oee.2024.240095

Research progress and prospects of metasurface polarization devices

    Fund Project: Project supported by National Key R&D Program of China (2020VFA0711200)
More Information
  • Polarization, as one of the basic characteristics of light, is widely utilized in communication, imaging, optical encryption, and other fields. However, traditional polarization devices face numerous problems such as large size and low integration. Due to their unique light field manipulation mechanisms, subwavelength-scale metasurfaces offer innovative solutions for miniaturization and cost reduction of polarization devices. This paper reviews recent advances in metasurface-based polarization devices and fabrication techniques. Starting from the phase manipulation mechanisms of metasurfaces, the article briefly introduces methods for controlling the transmission phase, geometric phase, generalized geometric phase, and resonance phase. The focus is summarizing various metasurface polarization devices and their fabrication, including polarization conversion, polarization beam splitting, vector vortex beam generators, high-order Poincaré sphere optical encryption, polarization multi-channel holography, and polarization detection. Finally, we discuss potential development trends and application prospects in this field.
  • 加载中
  • [1] 王鑫. 基于多角度多光谱偏振遥感的地物目标识别研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.

    Google Scholar

    Wang X. Research on ground target recognition based on multi-angle and multispectral polarimetric remote sensing[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2021.

    Google Scholar

    [2] 梁天全, 赵强, 孙晓兵, 等. 雾霾天气条件下偏振遥感图像复原研究[J]. 武汉大学学报·信息科学版, 2014, 39(2): 244−247. doi: 10.13203/j.whugis20120206

    CrossRef Google Scholar

    Liang T Q, Zhao Q, Sun X B, et al. Research on image restoration by polarized remotesensing through haze[J]. Geomatics Inf Sci Wuhan Univ, 2014, 39(2): 244−247. doi: 10.13203/j.whugis20120206

    CrossRef Google Scholar

    [3] Han P L, Liu F, Wei Y, et al. Optical correlation assists to enhance underwater polarization imaging performance[J]. Opt Lasers Eng, 2020, 134: 106256. doi: 10.1016/j.optlaseng.2020.106256

    CrossRef Google Scholar

    [4] Bai X Y, Liang Z D, Zhu Z M, et al. Polarization-based underwater geolocalization with deep learning[J]. eLight, 2023, 3(1): 15. doi: 10.1186/s43593-023-00050-6

    CrossRef Google Scholar

    [5] Smith M H. Interpreting Mueller matrix images of tissues[J]. Proc SPIE, 2001, 4257: 82−89. doi: 10.1117/12.434690

    CrossRef Google Scholar

    [6] Yaroslavsky A N, Feng X, Yu S H, et al. Dual-wavelength optical polarization imaging for detecting skin cancer margins[J]. J Invest Dermatol, 2020, 140 (10): 1994–2000. e1. https://doi.org/10.1016/j.jid.2020.03.947.

    Google Scholar

    [7] Chenault D B, Vaden J P, Mitchell D A, et al. Infrared polarimetric sensing of oil on water[J]. Proc SPIE, 2016, 9999: 99990D. doi: 10.1117/12.2241866

    CrossRef Google Scholar

    [8] Andre Y, Laherrere J M, Bret-Dibat T, et al. Instrumental concept and performances of the POLDER instrument[J]. Proc SPIE, 1995, 2572: 79−90. doi: 10.1117/12.216932

    CrossRef Google Scholar

    [9] Gaiarin S, Perego A M, da Silva E P, et al. Dual-polarization nonlinear Fourier transform-based optical communication system[J]. Optica, 2018, 5(3): 263−270. doi: 10.1364/OPTICA.5.000263

    CrossRef Google Scholar

    [10] Gao S K, Mondal S B, Zhu N, et al. Image overlay solution based on threshold detection for a compact near infrared fluorescence goggle system[J]. J Biomed Opt, 2015, 20(1): 016018. doi: 10.1117/1.JBO.20.1.016018

    CrossRef Google Scholar

    [11] Lane C, Rode D, Rösgen T. Two-dimensional birefringence measurement technique using a polarization camera[J]. Appl Opt, 2021, 60(27): 8435−8444. doi: 10.1364/AO.433066

    CrossRef Google Scholar

    [12] Bouhy J, Dekoninck A, Voué M, et al. Analysis of accuracy and ambiguities in spatial measurements of birefringence in uniaxial anisotropic media[J]. Appl Opt, 2022, 61(27): 8081−8090. doi: 10.1364/AO.463657

    CrossRef Google Scholar

    [13] Zheng W H, Xing M X, Ren G, et al. Integration of a photonic crystal polarization beam splitter and waveguide bend[J]. Opt Express, 2009, 17(10): 8657−8668. doi: 10.1364/OE.17.008657

    CrossRef Google Scholar

    [14] Lu M F, Liao S M, Huang Y T. Ultracompact photonic crystal polarization beam splitter based on multimode interference[J]. Appl Opt, 2010, 49(4): 724−731. doi: 10.1364/AO.49.000724

    CrossRef Google Scholar

    [15] Chen S H, Wang C H, Yeh Y W, et al. Polarization filters with an autocloned symmetric structure[J]. Appl Opt, 2011, 50(9): C368−C372. doi: 10.1364/AO.50.00C368

    CrossRef Google Scholar

    [16] 朱久凯, 吴福全, 任树锋, 等. 亚波长光栅偏振器的研究现状与发展前景[J]. 激光杂志, 2012, 33(6): 1−3. doi: 10.3969/j.issn.0253-2743.2012.06.001

    CrossRef Google Scholar

    Zhu J K, Wu F Q, Ren S F, et al. Research and development prospects of the subwavelength grating polarizer[J]. Laser J, 2012, 33(6): 1−3. doi: 10.3969/j.issn.0253-2743.2012.06.001

    CrossRef Google Scholar

    [17] Hsiao H H, Chu C H, Tsai D P. Fundamentals and applications of metasurfaces[J]. Small Methods, 2017, 1(4): 1600064. doi: 10.1002/smtd.201600064

    CrossRef Google Scholar

    [18] Kim J, Rana A S, Kim Y, et al. Chiroptical metasurfaces: principles, classification, and applications[J]. Sensors, 2021, 21(13): 4381. doi: 10.3390/s21134381

    CrossRef Google Scholar

    [19] Tsilipakos O, Tasolamprou A C, Pitilakis A, et al. Toward intelligent metasurfaces: the progress from globally tunable metasurfaces to software‐defined metasurfaces with an embedded network of controllers[J]. Adv Opt Mater, 2020, 8(17): 2000783. doi: 10.1002/adom.202000783

    CrossRef Google Scholar

    [20] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat Nanotechnol, 2015, 10(11): 937−943. doi: 10.1038/nnano.2015.186

    CrossRef Google Scholar

    [21] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Phys Rev Lett, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901

    CrossRef Google Scholar

    [22] Park H, Crozier K B. Elliptical silicon nanowire photodetectors for polarization-resolved imaging[J]. Opt Express, 2015, 23(6): 7209−7216. doi: 10.1364/OE.23.007209

    CrossRef Google Scholar

    [23] Hu Y Q, Wang X D, Luo X H, et al. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications[J]. Nanophotonics, 2020, 9(12): 3755−3780. doi: 10.1515/nanoph-2020-0220

    CrossRef Google Scholar

    [24] 李子园, 金伟其. 短波红外偏振成像技术的研究进展[J]. 应用光学, 2023, 44(3): 643−654. doi: 10.5768/JAO202344.0304003

    CrossRef Google Scholar

    Li Z Y, Jin W Q. Research progress of short-wavelength infrared polarization imaging technologies[J]. J Appl Opt, 2023, 44(3): 643−654. doi: 10.5768/JAO202344.0304003

    CrossRef Google Scholar

    [25] 林佼, 王大鹏, 司光远. 表面等离子激元超构表面的研究进展[J]. 光电工程, 2017, 44(3): 289−296. doi: 10.3969/j.issn.1003-501X.2017.03.003

    CrossRef Google Scholar

    Lin J, Wang D P, Si G Y. Recent progress on plasmonic metasurfaces[J]. Opto-Electron Eng, 2017, 44(3): 289−296. doi: 10.3969/j.issn.1003-501X.2017.03.003

    CrossRef Google Scholar

    [26] 刘博, 谢鑫, 甘雪涛, 等. 全金属超表面在电磁波相位调控中的应用及进展[J]. 光电工程, 2023, 50(9): 230119. doi: 10.12086/oee.2023.230119

    CrossRef Google Scholar

    Liu B, Xie X, Gan X T, et al. Applications and progress of all-metal metasurfaces in phase manipulation of electromagnetic waves[J]. Opto-Electron Eng, 2023, 50(9): 230119. doi: 10.12086/oee.2023.230119

    CrossRef Google Scholar

    [27] Hu J, Bandyopadhyay S, Liu Y H, et al. A review on metasurface: from principle to smart metadevices[J]. Front Phys, 2021, 8: 586087. doi: 10.3389/fphy.2020.586087

    CrossRef Google Scholar

    [28] 周俊焯, 郝佳, 余晓畅, 等. 面向偏振成像的超构表面研究进展[J]. 中国光学, 2023, 16(5): 973−995. doi: 10.37188/CO.2022-0234

    CrossRef Google Scholar

    Zhou J Z, Hao J, Yu X C, et al. Recent advances in metasurfaces for polarization imaging[J]. Chin Opt, 2023, 16(5): 973−995. doi: 10.37188/CO.2022-0234

    CrossRef Google Scholar

    [29] 柯岚, 章思梦, 李晨霞, 等. 超表面实现复杂矢量涡旋光束的研究进展[J]. 光电工程, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117

    CrossRef Google Scholar

    Ke L, Zhang S M, Li C X, et al. Research progress on hybrid vector beam implementation by metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117

    CrossRef Google Scholar

    [30] 贺敬文, 董涛, 张岩. 太赫兹波前调制超表面器件研究进展[J]. 红外与激光工程, 2020, 49(9): 20201033. doi: 10.3788/IRLA20201033

    CrossRef Google Scholar

    He J W, Dong T, Zhang Y. Development of metasurfaces for wavefront modulation in terahertz waveband[J]. Infrared Laser Eng, 2020, 49(9): 20201033. doi: 10.3788/IRLA20201033

    CrossRef Google Scholar

    [31] 万源庆, 刘威骏, 林若雨, 等. 基于超构表面的光谱成像及应用研究进展[J]. 光电工程, 2023, 50(8): 230139. doi: 10.12086/oee.2023.230139

    CrossRef Google Scholar

    Wan Y Q, Liu W J, Lin R Y, et al. Research progress and applications of spectral imaging based on metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230139. doi: 10.12086/oee.2023.230139

    CrossRef Google Scholar

    [32] Gao H, Fan X H, Xiong W, et al. Recent advances in optical dynamic meta-holography[J]. Opto-Electron Adv, 2021, 4(11): 210030. doi: 10.29026/oea.2021.210030

    CrossRef Google Scholar

    [33] 郭忠义, 汪信洋, 李德奎, 等. 偏振信息传输理论及应用进展(特约)[J]. 红外与激光工程, 2020, 49(6): 20201013. doi: 10.3788/irla.3_2020-1014

    CrossRef Google Scholar

    Guo Z Y, Wang X Y, Li D K, et al. Advances on theory and application of polarization information propagation (Invited)[J]. Infrared Laser Eng, 2020, 49(6): 20201013. doi: 10.3788/irla.3_2020-1014

    CrossRef Google Scholar

    [34] 李智渊, 翟爱平, 冀莹泽, 等. 光学偏振成像技术的研究、应用与进展[J]. 红外与激光工程, 2023, 52(9): 20220808. doi: 10.3788/IRLA20220808

    CrossRef Google Scholar

    Li Z Y, Zhai A P, Ji Y Z, et al. Research, application and progress of optical polarization imaging technology[J]. Infrared Laser Eng, 2023, 52(9): 20220808. doi: 10.3788/IRLA20220808

    CrossRef Google Scholar

    [35] 刘雪婷, 翟焱望, 付时尧, 等. 湍流大气中高稳定性全庞加莱球光束模式选择(特邀)(英文)[J]. 红外与激光工程, 2021, 50 (9): 20210242. https://doi.org/10.3788/IRLA20210242.

    Google Scholar

    Liu X T, Zhai Y W, Fu S Y, et al. Selection of full Poincaré beams with higher robustness in turbulent atmosphere (Invited)[J]. Infrared Laser Eng, 2021, 50 (9): 20210242. https://doi.org/10.3788/IRLA20210242.

    Google Scholar

    [36] 张莉, 梁信洲, 林倩, 等. 杂化矢量光场的研究进展(特邀)[J]. 红外与激光工程, 2021, 50(9): 20210447. doi: 10.3788/IRLA20210447

    CrossRef Google Scholar

    Zhang L, Liang X Z, Lin Q, et al. Research progress of hybrid vector beams (Invited)[J]. Infrared Laser Eng, 2021, 50(9): 20210447. doi: 10.3788/IRLA20210447

    CrossRef Google Scholar

    [37] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [38] Pors A, Albrektsen O, Radko I P, et al. Gap plasmon-based metasurfaces for total control of reflected light[J]. Sci Rep, 2013, 3(1): 2155. doi: 10.1038/srep02155

    CrossRef Google Scholar

    [39] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190−1194. doi: 10.1126/science.aaf6644

    CrossRef Google Scholar

    [40] Huang Y W, Lee H W H, Sokhoyan R, et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Lett, 2016, 16(9): 5319−5325. doi: 10.1021/acs.nanolett.6b00555

    CrossRef Google Scholar

    [41] Kim T T, Kim H, Kenney M, et al. Amplitude modulation of anomalously refracted terahertz waves with gated‐graphene metasurfaces[J]. Adv Opt Mater, 2018, 6(1): 1700507. doi: 10.1002/adom.201700507

    CrossRef Google Scholar

    [42] Li J, Li J T, Zhang Y T, et al. All-optical switchable terahertz spin-photonic devices based on vanadium dioxide integrated metasurfaces[J]. Opt Commun, 2020, 460: 124986. doi: 10.1016/j.optcom.2019.124986

    CrossRef Google Scholar

    [43] 罗小青, 黄文礼, 王彬旭, 等. 基于石墨烯超表面天线的太赫兹动态相位调控及波束扫描[J]. 集成技术, 2023, 12(4): 77−90. doi: 10.12146/j.issn.2095-3135.20221122001

    CrossRef Google Scholar

    Luo X Q, Huang W L, Wang B X, et al. Terahertz graphene metasurfaces antennas for dynamic phase modulation and beam steering[J]. J Integr Technol, 2023, 12(4): 77−90. doi: 10.12146/j.issn.2095-3135.20221122001

    CrossRef Google Scholar

    [44] Huang J J, Yin X N, Xu M, et al. Switchable coding metasurface for flexible manipulation of terahertz wave based on Dirac semimetal[J]. Results Phys, 2022, 33: 105204. doi: 10.1016/j.rinp.2022.105204

    CrossRef Google Scholar

    [45] Zheng L, Song Z T, Song W X, et al. Fabrication of stable multi-level resistance states in a Nb-doped Ge2Sb2Te5 device[J]. J Mater Chem C, 2023, 11(11): 3770−3777. doi: 10.1039/D3TC00233K

    CrossRef Google Scholar

    [46] 郁菲茏, 陈金, 赵增月, 等. 一种实现任意偏振调控中波红外消色差超表面的正向计算方法[J]. 红外与毫米波学报, 2022, 41(4): 792−798. doi: 10.11972/j.issn.1001-9014.2022.04.020

    CrossRef Google Scholar

    Yu F L, Chen J, Zhao Z Y, et al. A forward calculation method to quickly realize the achromatic metasurface for arbitrary polarization control[J]. J Infrared Millim Waves, 2022, 41(4): 792−798. doi: 10.11972/j.issn.1001-9014.2022.04.020

    CrossRef Google Scholar

    [47] Gao Y H, Tian Y, Du Q G, et al. High efficiency and high transmission asymmetric polarization converter with chiral metasurface in visible and near-infrared[J]. Chin Phys B, 2023, 32(7): 074201. doi: 10.1088/1674-1056/acb9eb

    CrossRef Google Scholar

    [48] 张飞, 蔡吉祥, 蒲明博, 等. 光学超构表面中的复合相位调控[J]. 物理, 2021, 50(5): 300−307. doi: 10.7693/wl20210503

    CrossRef Google Scholar

    Zhang F, Cai J X, Pu M B, et al. Composite-phase manipulation in optical metasurfaces[J]. Physics, 2021, 50(5): 300−307. doi: 10.7693/wl20210503

    CrossRef Google Scholar

    [49] Zhang R Z, Zhang R, Wang Z B, et al. Liquid refractive index sensor based on terahertz metamaterials[J]. Plasmonics, 2022, 17(2): 457−465. doi: 10.1007/s11468-021-01499-2

    CrossRef Google Scholar

    [50] Li X T, Li Y, Li C, et al. High color saturation and angle-insensitive ultrathin color filter based on effective medium theory[J]. Chin Opt Lett, 2023, 21(3): 033602. doi: 10.3788/COL202321.033602

    CrossRef Google Scholar

    [51] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proc Roy Soc A: Math, Phys Eng Sci, 1984, 392(1802): 45−57. doi: 10.1098/rspa.1984.0023

    CrossRef Google Scholar

    [52] Tal M, Haim D B, Ellenbogen T. Geometric phase opens new frontiers in nonlinear frequency conversion of light[J]. Front Phys, 2022, 17(1): 12302. doi: 10.1007/s11467-021-1123-4

    CrossRef Google Scholar

    [53] Li G X, Chen S M, Pholchai N, et al. Continuous control of the nonlinearity phase for harmonic generations[J]. Nat Mater, 2015, 14(6): 607−612. doi: 10.1038/nmat4267

    CrossRef Google Scholar

    [54] Wen D D, Yue F Y, Li G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nat Commun, 2015, 6(1): 8241. doi: 10.1038/ncomms9241

    CrossRef Google Scholar

    [55] Chen S M, Zeuner F, Weismann M, et al. Giant nonlinear optical activity of achiral origin in planar metasurfaces with quadratic and cubic nonlinearities[J]. Adv Mater, 2016, 28(15): 2992−2999. doi: 10.1002/adma.201505640

    CrossRef Google Scholar

    [56] Li G X, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces[J]. Nat Rev Mater, 2017, 2(5): 17010. doi: 10.1038/natrevmats.2017.10

    CrossRef Google Scholar

    [57] Sun Z Y, Yi Y F, Song T C, et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3[J]. Nature, 2019, 572(7770): 497−501. doi: 10.1038/s41586-019-1445-3

    CrossRef Google Scholar

    [58] Mao N B, Zhang G Q, Tang Y T, et al. Nonlinear vectorial holography with quad-atom metasurfaces[J]. Proc Natl Acad Sci USA, 2022, 119(22): e2204418119. doi: 10.1073/pnas.2204418119

    CrossRef Google Scholar

    [59] Xie X, Pu M B, Jin J J, et al. Generalized Pancharatnam-Berry phase in rotationally symmetric meta-atoms[J]. Phys Rev Lett, 2021, 126(18): 183902. doi: 10.1103/PhysRevLett.126.183902

    CrossRef Google Scholar

    [60] Luo X G. Principles of electromagnetic waves in metasurfaces[J]. Sci China Phys, Mech Astron, 2015, 58(9): 594201. doi: 10.1007/s11433-015-5688-1

    CrossRef Google Scholar

    [61] Wang M J, Huang Z J, Salut R, et al. Plasmonic helical nanoantenna as a converter between longitudinal fields and circularly polarized waves[J]. Nano Lett, 2021, 21(8): 3410−3417. doi: 10.1021/acs.nanolett.0c04948

    CrossRef Google Scholar

    [62] Shu J, Qiu C Y, Astley V, et al. High-contrast terahertz modulator based on extraordinary transmission through a ring aperture[J]. Opt Express, 2011, 19(27): 26666−26671. doi: 10.1364/OE.19.026666

    CrossRef Google Scholar

    [63] Tan Y J, Zhang L, Sun T X, et al. Polarization compensation method based on the wave plate group in phase mismatch for free-space quantum key distribution[J]. EPJ Quantum Technol, 2023, 10(1): 6. doi: 10.1140/epjqt/s40507-023-00163-4

    CrossRef Google Scholar

    [64] Lin S T, Le Q H, Chen S H, et al. Heterodyne polariscope for measuring the principal angle and phase retardation of stressed plastic substrates[J]. Measurement, 2021, 175: 109096. doi: 10.1016/j.measurement.2021.109096

    CrossRef Google Scholar

    [65] 陈强华, 周胜, 丁锦红, 等. 基于多步相移法和偏振干涉光学层析光路的三维温度场测量[J]. 光学学报, 2022, 42(7): 0712004. doi: 10.3788/AOS202242.0712004

    CrossRef Google Scholar

    Chen Q H, Zhou S, Ding J H, et al. Three-dimensional temperature field measurement based on multi-step phase shift method and polarization interference optical tomography optical path[J]. Acta Opt Sin, 2022, 42(7): 0712004. doi: 10.3788/AOS202242.0712004

    CrossRef Google Scholar

    [66] Han B W, Li S J, Cao X Y, et al. Dual-band transmissive metasurface with linear to dual-circular polarization conversion simultaneously[J]. AIP Adv, 2020, 10(12): 125025. doi: 10.1063/5.0034762

    CrossRef Google Scholar

    [67] Deng Y D, Wu C, Meng C, et al. Functional metasurface quarter-wave plates for simultaneous polarization conversion and beam steering[J]. ACS Nano, 2021, 15(11): 18532−18540. doi: 10.1021/acsnano.1c08597

    CrossRef Google Scholar

    [68] He H J, Tang S W, Zheng Z W, et al. Multifunctional all-dielectric metasurface quarter-wave plates for polarization conversion and wavefront shaping[J]. Opt Lett, 2022, 47(10): 2478−2481. doi: 10.1364/OL.456910

    CrossRef Google Scholar

    [69] Ahmad M, Liu J, Qureshi U U R. Wideband reflective half-and quarter-wave plate metasurface based on multi-plasmon resonances[J]. Opt Continuum, 2023, 2(5): 1242−1255. doi: 10.1364/OPTCON.487078

    CrossRef Google Scholar

    [70] Ding F, Chang B D, Wei Q S, et al. Versatile polarization generation and manipulation using dielectric metasurfaces[J]. Laser Photonics Rev, 2020, 14(11): 2000116. doi: 10.1002/lpor.202000116

    CrossRef Google Scholar

    [71] Gao S, Zhou C Y, Yue W J, et al. Efficient all-dielectric diatomic metasurface for linear polarization generation and 1-bit phase control[J]. ACS Appl Mater Interfaces, 2021, 13(12): 14497−14506. doi: 10.1021/acsami.1c00967

    CrossRef Google Scholar

    [72] Ren Y Z, Guo S H, Zhu W Q, et al. Full‐stokes polarimetry for visible light enabled by an all‐dielectric metasurface[J]. Adv Photonics Res, 2022, 3(7): 2100373. doi: 10.1002/adpr.202100373

    CrossRef Google Scholar

    [73] Rong Z H, Kuang C F, Fang Y, et al. Super-resolution microscopy based on fluorescence emission difference of cylindrical vector beams[J]. Opt Commun, 2015, 354: 71−78. doi: 10.1016/j.optcom.2015.05.057

    CrossRef Google Scholar

    [74] Wang X L, Chen J, Li Y N, et al. Optical orbital angular momentum from the curl of polarization[J]. Phys Rev Lett, 2010, 105(25): 253602. doi: 10.1103/PhysRevLett.105.253602

    CrossRef Google Scholar

    [75] Gu B, Hu Y Q, Zhang X B, et al. Angular momentum separation in focused fractional vector beams for optical manipulation[J]. Opt Express, 2021, 29(10): 14705−14719. doi: 10.1364/OE.423357

    CrossRef Google Scholar

    [76] Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Adv Opt Photonics, 2009, 1(1): 1−57. doi: 10.1364/AOP.1.000001

    CrossRef Google Scholar

    [77] Segawa S, Kozawa Y, Sato S. Demonstration of subtraction imaging in confocal microscopy with vector beams[J]. Opt Lett, 2014, 39(15): 4529−4532. doi: 10.1364/OL.39.004529

    CrossRef Google Scholar

    [78] Zhu L, Wang J. A review of multiple optical vortices generation: methods and applications[J]. Front Optoelectron, 2019, 12: 52−68. doi: 10.1007/s12200-019-0910-9

    CrossRef Google Scholar

    [79] Lavery M P J, Speirits F C, Barnett S M, et al. Detection of a spinning object using light’s orbital angular momentum[J]. Science, 2013, 341(6145): 537−540. doi: 10.1126/science.1239936

    CrossRef Google Scholar

    [80] Jin J J, Pu M B, Wang Y Q, et al. Multi‐channel vortex beam generation by simultaneous amplitude and phase modulation with two‐dimensional metamaterial[J]. Adv Mater Technol, 2017, 2(2): 1600201. doi: 10.1002/admt.201600201

    CrossRef Google Scholar

    [81] Guo Q H, Schlickriede C, Wang D Y, et al. Manipulation of vector beam polarization with geometric metasurfaces[J]. Opt Express, 2017, 25(13): 14300−14307. doi: 10.1364/OE.25.014300

    CrossRef Google Scholar

    [82] Ou K, Yu F L, Li G H, et al. Mid-infrared polarization-controlled broadband achromatic metadevice[J]. Sci Adv, 2020, 6(37): eabc0711. doi: 10.1126/sciadv.abc0711

    CrossRef Google Scholar

    [83] Kong Q, Gu M N, Zeng X Y, et al. Metasurface of combined semicircular rings with orthogonal slit pairs for generation of dual vector beams[J]. Nanomaterials, 2021, 11(7): 1718. doi: 10.3390/nano11071718

    CrossRef Google Scholar

    [84] Fu P, Ni P N, Wu B, et al. Metasurface enabled on-chip generation and manipulation of vector beams from vertical cavity surface-emitting lasers[J]. Adv Mater, 2023, 35(12): 2204286. doi: 10.1002/adma.202204286

    CrossRef Google Scholar

    [85] Shafqat M D, Mahmood N, Akbar J, et al. Broadband multifunctional metasurfaces for concentric perfect vortex beam generation via trigonometric functions[J]. Opt Mater Express, 2024, 14(1): 125−138. doi: 10.1364/OME.510015

    CrossRef Google Scholar

    [86] 魏睿, 包燕军. 基于超构表面的多维光信息加密[J]. 中国激光, 2023, 50(18): 1813004. doi: 10.3788/CJL230689

    CrossRef Google Scholar

    Wei R, Bao Y J. Metasurface-based multidimensional optical information encryption[J]. Chin J Lasers, 2023, 50(18): 1813004. doi: 10.3788/CJL230689

    CrossRef Google Scholar

    [87] Xiong B, Liu Y, Xu Y H, et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise[J]. Science, 2023, 379(6629): 294−299. doi: 10.1126/science.ade5140

    CrossRef Google Scholar

    [88] Deng J, Li Z L, Li J X, et al. Metasurface-assisted optical encryption carrying camouflaged information[J]. Adv Opt Mater, 2022, 10(16): 2200949. doi: 10.1002/adom.202200949

    CrossRef Google Scholar

    [89] Liu S L, Wang X H, Ni J C, et al. Optical encryption in the photonic orbital angular momentum dimension via direct-laser-writing 3D chiral metahelices[J]. Nano Lett, 2023, 23(6): 2304−2311. doi: 10.1021/acs.nanolett.2c04860

    CrossRef Google Scholar

    [90] Yang H, He P, Ou K, et al. Angular momentum holography via a minimalist metasurface for optical nested encryption[J]. Light Sci Appl, 2023, 12(1): 79. doi: 10.1038/S41377-023-01125-2

    CrossRef Google Scholar

    [91] Ren H R, Fang X Y, Jang J, et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nat Nanotechnol, 2020, 15(11): 948−955. doi: 10.1038/s41565-020-0768-4

    CrossRef Google Scholar

    [92] Guo X Y, Li P, Zhong J Z, et al. Stokes meta-hologram toward optical cryptography[J]. Nat Commun, 2022, 13(1): 6687. doi: 10.1038/s41467-022-34542-9

    CrossRef Google Scholar

    [93] Ji J T, Chen C, Sun J C, et al. High-dimensional Poincaré beams generated through cascaded metasurfaces for high-security optical encryption[J]. PhotoniX, 2024, 5(1): 13. doi: 10.1186/s43074-024-00125-8

    CrossRef Google Scholar

    [94] Kakichashvili S D. Method for phase polarization recording of holograms[J]. Sov J Quantum Electron, 1974, 4(6): 795−798. doi: 10.1070/QE1974v004n06ABEH009334

    CrossRef Google Scholar

    [95] Mu Y H, Zheng M Y, Qi J R, et al. A large field-of-view metasurface for complex-amplitude hologram breaking numerical aperture limitation[J]. Nanophotonics, 2020, 9(16): 4749−4759. doi: 10.1515/nanoph-2020-0448

    CrossRef Google Scholar

    [96] Zhao R Z, Huang L L, Wang Y T. Recent advances in multi-dimensional metasurfaces holographic technologies[J]. PhotoniX, 2020, 1(1): 20. doi: 10.1186/s43074-020-00020-y

    CrossRef Google Scholar

    [97] Zhao R Z, Sain B, Wei Q S, et al. Multichannel vectorial holographic display and encryption[J]. Light Sci Appl, 2018, 7(1): 95. doi: 10.1038/s41377-018-0091-0

    CrossRef Google Scholar

    [98] Song Q, Khadir S, Vézian S, et al. Bandwidth-unlimited polarization-maintaining metasurfaces[J]. Sci Adv, 2021, 7(5): eabe1112. doi: 10.1126/sciadv.abe1112

    CrossRef Google Scholar

    [99] Zhu L, Wei J X, Dong L, et al. Four-channel meta-hologram enabled by a frequency-multiplexed mono-layered geometric phase metasurface[J]. Opt Express, 2024, 32(3): 4553−4563. doi: 10.1364/OE.513920

    CrossRef Google Scholar

    [100] Tyo J S, Goldstein D L, Chenault D B, et al. Review of passive imaging polarimetry for remote sensing applications[J]. Appl Opt, 2006, 45(22): 5453−5469. doi: 10.1364/AO.45.005453

    CrossRef Google Scholar

    [101] Andreou A G, Kalayjian Z K. Polarization imaging: principles and integrated polarimeters[J]. IEEE Sens J, 2002, 2(6): 566−576. doi: 10.1109/JSEN.2003.807946

    CrossRef Google Scholar

    [102] Nordin G P, Meier J T, Deguzman P C, et al. Diffractive optical element for Stokes vector measurement with a focal plane array[J]. Proc SPIE, 1999, 3754: 169−177. doi: 10.1117/12.366355

    CrossRef Google Scholar

    [103] 杨威, 王晓曼, 石林, 等. 基于Stokes矢量的双相机偏振成像系统[J]. 电光与控制, 2021, 28(6): 72−75,89. doi: 10.3969/j.issn.1671-637X.2021.06.016

    CrossRef Google Scholar

    Yang W, Wang X M, Shi L, et al. A dual-camera polarization imaging system based on Stokes vector[J]. Electron Opt Control, 2021, 28(6): 72−75,89. doi: 10.3969/j.issn.1671-637X.2021.06.016

    CrossRef Google Scholar

    [104] Rubin N A, D’Aversa G, Chevalier P, et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J]. Science, 2019, 365(6448): eaax1839. doi: 10.1126/science.aax1839

    CrossRef Google Scholar

    [105] Yan C, Li X, Pu M B, et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces[J]. Appl Phys Lett, 2019, 114(16): 161904. doi: 10.1063/1.5091475

    CrossRef Google Scholar

    [106] Zhang C, Hu J P, Dong Y G, et al. High efficiency all-dielectric pixelated metasurface for near-infrared full-Stokes polarization detection[J]. Photonics Res, 2021, 9(4): 583−589. doi: 10.1364/PRJ.415342

    CrossRef Google Scholar

    [107] Cheng B, Song G F. Full-Stokes polarization photodetector based on the hexagonal lattice chiral metasurface[J]. Opt Express, 2023, 31(19): 30993−31004. doi: 10.1364/OE.497898

    CrossRef Google Scholar

    [108] Park H S, Park J, Son J, et al. A general recipe for nondispersive optical activity in bilayer chiral metamaterials[J]. Adv Opt Mater, 2019, 7(19): 1801729. doi: 10.1002/adom.201801729

    CrossRef Google Scholar

    [109] Roberts N W, Chiou T H, Marshall N J, et al. A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region[J]. Nat Photonics, 2009, 3(11): 641−644. doi: 10.1038/nphoton.2009.189

    CrossRef Google Scholar

    [110] Basiri A, Chen X H, Bai J, et al. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements[J]. Light Sci Appl, 2019, 8(1): 78. doi: 10.1038/s41377-019-0184-4

    CrossRef Google Scholar

    [111] Zuo, J, Bai, J, Choi S et al. Chip-integrated metasurface full-Stokes polarimetric imaging sensor[J]. Light Sci Appl, 2023, 218(12). doi: 10.1038/s41377-023-01260-w

    CrossRef Google Scholar

    [112] Vieu C, Carcenac F, Pépin A, et al. Electron beam lithography: resolution limits and applications[J]. Appl Surf Sci, 2000, 164(1-4): 111−117. doi: 10.1016/S0169-4332(00)00352-4

    CrossRef Google Scholar

    [113] Qin N, Qian Z G, Zhou C Z, et al. 3D electron-beam writing at sub-15 nm resolution using spider silk as a resist[J]. Nat Commun, 2021, 12(1): 5133. doi: 10.1038/s41467-021-25470-1

    CrossRef Google Scholar

    [114] Zhu C X, Ekinci H, Pan A X, et al. Electron beam lithography on nonplanar and irregular surfaces[J]. Microsyst Nanoeng, 2024, 10(1): 52. doi: 10.1038/s41378-024-00682-9

    CrossRef Google Scholar

    [115] Cakirlar C, Galderisi G, Beyer C, et al. Challenges in electron beam lithography of silicon nanostructures[C]//Proceedings of the IEEE 22nd International Conference on Nanotechnology (NANO), 2022: 207–210. https://doi.org/10.1109/NANO54668.2022.9928629.

    Google Scholar

    [116] Szafraniak B, Fuśnik Ł, Xu J, et al. Semiconducting metal oxides: SrTiO3, BaTiO3 and BaSrTiO3 in gas-sensing applications: a review[J]. Coatings, 2021, 11(2): 185. doi: 10.3390/coatings11020185

    CrossRef Google Scholar

    [117] Keskinbora K, Robisch A L, Mayer M, et al. Recent advances in use of atomic layer deposition and focused ion beams for fabrication of Fresnel zone plates for hard x-rays[J]. Proc SPIE, 2013, 8851: 885119. doi: 10.1117/12.2027251

    CrossRef Google Scholar

    [118] Mayer M, Keskinbora K, Grévent C, et al. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling[J]. J Synchrotron Radiat, 2013, 20(3): 433−440. doi: 10.1107/S0909049513006602

    CrossRef Google Scholar

    [119] Tseng M L, Lin Z H, Kuo H Y, et al. Stress-induced 3D chiral fractal metasurface for enhanced and stabilized broadband near-field optical chirality[J]. Adv Opt Mater, 2019, 7(15): 1900617. doi: 10.1002/adom.201900617

    CrossRef Google Scholar

    [120] 许可, 王星儿, 范旭浩, 等. 超表面全息术: 从概念到实现[J]. 光电工程, 2022, 49(10): 220183. doi: 10.12086/oee.2022.220183

    CrossRef Google Scholar

    Xu K, Wang X E, Fan X H, et al. Meta-holography: from concept to realization[J]. Opto-Electron Eng, 2022, 49(10): 220183. doi: 10.12086/oee.2022.220183

    CrossRef Google Scholar

    [121] 周伟平, 白石, 谢祖武, 等. 激光直写制备金属与碳材料微纳结构与器件研究进展[J]. 光电工程, 2022, 49(1): 210330. doi: 10.12086/oee.2022.210330

    CrossRef Google Scholar

    Zhou W P, Bai S, Xie Z W, et al. Research progress of laser direct writing fabrication of metal and carbon micro/nano structures and devices[J]. Opto-Electron Eng, 2022, 49(1): 210330. doi: 10.12086/oee.2022.210330

    CrossRef Google Scholar

    [122] Berzinš J, Indrišiūnas S, Van Erve K, et al. Direct and high-throughput fabrication of mie-resonant metasurfaces via single-pulse laser interference[J]. ACS Nano, 2020, 14(5): 6138−6149. doi: 10.1021/acsnano.0c01993

    CrossRef Google Scholar

    [123] Min S Y, Li S J, Zhu Z Y, et al. Ultrasensitive molecular detection by imaging of centimeter-scale metasurfaces with a deterministic gradient geometry[J]. Adv Mater, 2021, 33(29): 2100270. doi: 10.1002/adma.202100270

    CrossRef Google Scholar

    [124] Park J S, Zhang S Y, She A L, et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography[J]. Nano Lett, 2019, 19(12): 8673−8682. doi: 10.1021/acs.nanolett.9b03333

    CrossRef Google Scholar

    [125] Zhang L D, Chang S Y, Chen X, et al. High-efficiency, 80 mm aperture metalens telescope[J]. Nano Lett, 2023, 23(1): 51−57. doi: 10.1021/acs.nanolett.2c03561

    CrossRef Google Scholar

    [126] Hu T, Zhong Q Z, Li N X, et al. CMOS-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging[J]. Nanophotonics, 2020, 9(4): 823−830. doi: 10.1515/nanoph-2019-0470

    CrossRef Google Scholar

    [127] Yoon G, Kim K, Kim S U, et al. Printable nanocomposite metalens for high-contrast near-infrared imaging[J]. ACS Nano, 2021, 15(1): 698−706. doi: 10.1021/acsnano.0c06968

    CrossRef Google Scholar

    [128] Yoon G, Kim K, Huh D, et al. Single-step manufacturing of hierarchical dielectric metalens in the visible[J]. Nat Commun, 2020, 11(1): 2268. doi: 10.1038/s41467-020-16136-5

    CrossRef Google Scholar

    [129] Chen M K, Zhang J C, Leung C W, et al. Chiral-magic angle of nanoimprint meta-device[J]. Nanophotonics, 2023, 12(13): 2479−2490. doi: 10.1515/nanoph-2022-0733

    CrossRef Google Scholar

    [130] Hao Z B, He X C, Li H D, et al. Vertically aligned and ordered arrays of 2D MCo2S4@metal with ultrafast ion/electron transport for thickness-independent pseudocapacitive energy storage[J]. ACS Nano, 2020, 14(10): 12719−12731. doi: 10.1021/acsnano.0c02973

    CrossRef Google Scholar

    [131] Xia D F, Ye L, Guo X, et al. A dual-curable transfer layer for adhesion enhancement of a multilayer UV-curable nanoimprint resist system[J]. Appl Phys A, 2012, 108(1): 1−6. doi: 10.1007/s00339-012-6911-9

    CrossRef Google Scholar

    [132] Hu X, Yang T, Gu R H, et al. A degradable polycyclic cross-linker for UV-curing nanoimprint lithography[J]. J Mater Chem C, 2014, 2(10): 1836−1843. doi: 10.1039/c3tc32048k

    CrossRef Google Scholar

    [133] Qiu S, Ji J W, Sun W, et al. Recent advances in surface manipulation using micro-contact printing for biomedical applications[J]. Smart Mater Med, 2021, 2: 65−73. doi: 10.1016/j.smaim.2020.12.002

    CrossRef Google Scholar

    [134] Wu C T, Utsunomiya T, Ichii T, et al. Microstructured SiO x/COP stamps for patterning TiO2 on polymer substrates via microcontact printing[J]. Langmuir, 2020, 36(37): 10933−10940. doi: 10.1021/acs.langmuir.0c01558

    CrossRef Google Scholar

    [135] Zhang Y Y, Jiao Y L, Li C Z, et al. Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications[J]. Int J Extrem Manuf, 2020, 2(3): 032002. doi: 10.1088/2631-7990/ab95f6

    CrossRef Google Scholar

    [136] 杨顺华, 丁晨良, 朱大钊, 等. 基于飞秒激光的高速双光子刻写技术[J]. 光电工程, 2023, 50(3): 220133. doi: 10.12086/oee.2023.220133

    CrossRef Google Scholar

    Yang S H, Ding C L, Zhu D Z, et al. High-speed two-photon lithography based on femtosecond laser[J]. Opto-Electron Eng, 2023, 50(3): 220133. doi: 10.12086/oee.2023.220133

    CrossRef Google Scholar

    [137] Hulteen J C, Van Duyne R P. Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces[J]. J Vac Sci Technol A, 1995, 13(3): 1553−1558. doi: 10.1116/1.579726

    CrossRef Google Scholar

    [138] Gottlieb S, Lorenzoni M, Evangelio L, et al. Thermal scanning probe lithography for the directed self-assembly of block copolymers[J]. Nanotechnology, 2017, 28(17): 175301. doi: 10.1088/1361-6528/aa673c

    CrossRef Google Scholar

    [139] Jakšić Z, Vasiljević-Radović D, Maksimović M, et al. Nanofabrication of negative refractive index metasurfaces[J]. Microelectron Eng, 2006, 83(4-9): 1786−1791. doi: 10.1016/j.mee.2006.01.197

    CrossRef Google Scholar

    [140] Xu K, Chen J B. High-resolution scanning probe lithography technology: a review[J]. Appl Nanosci, 2020, 10(4): 1013−1022. doi: 10.1007/s13204-019-01229-5

    CrossRef Google Scholar

    [141] Fan P F, Gao J, Mao H, et al. Scanning probe lithography: state-of-the-art and future perspectives[J]. Micromachines, 2022, 13(2): 228. doi: 10.3390/mi13020228

    CrossRef Google Scholar

    [142] Garcia R, Knoll A W, Riedo E. Advanced scanning probe lithography[J]. Nat Nanotechnol, 2014, 9(8): 577−587. doi: 10.1038/nnano.2014.157

    CrossRef Google Scholar

    [143] Zheng X R, Calò A, Albisetti E, et al. Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography[J]. Nat Electron, 2019, 2(1): 17−25. doi: 10.1038/s41928-018-0191-0

    CrossRef Google Scholar

    [144] Yuan D D, Li J, Huang J X, et al. Large-scale laser nanopatterning of multiband tunable mid-infrared metasurface absorber[J]. Adv Opt Mater, 2022, 10(22): 2200939. doi: 10.1002/adom.202200939

    CrossRef Google Scholar

    [145] Huang L Y, Xu K, Yuan D D, et al. Sub-wavelength patterned pulse laser lithography for efficient fabrication of large-area metasurfaces[J]. Nat Commun, 2022, 13(1): 5823. doi: 10.1038/s41467-022-33644-8

    CrossRef Google Scholar

    [146] Ji W Y, Chang J, Xu H X, et al. Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods[J]. Light Sci Appl, 2023, 12(1): 169. doi: 10.1038/s41377-023-01218-y

    CrossRef Google Scholar

    [147] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[C]//Proceedings of the 4th International Conference on Learning Representations, 2016.

    Google Scholar

    [148] An S S, Fowler C, Zheng B W, et al. A deep learning approach for objective-driven all-dielectric metasurface design[J]. ACS Photonics, 2019, 6(12): 3196−3207. doi: 10.1021/acsphotonics.9b00966

    CrossRef Google Scholar

    [149] Liu D J, Tan Y X, Khoram E, et al. Training deep neural networks for the inverse design of nanophotonic structures[J]. Acs Photonics, 2018, 5(4): 1365−1369. doi: 10.1021/acsphotonics.7b01377

    CrossRef Google Scholar

    [150] An S S, Zheng B W, Shalaginov M Y, et al. A freeform dielectric metasurface modeling approach based on deep neural networks[Z]. arXiv: 2001.00121, 2020. https://doi.org/10.48550/arXiv.2001.00121.

    Google Scholar

    [151] Mall A, Patil A, Tamboli D, et al. Fast design of plasmonic metasurfaces enabled by deep learning[J]. J Phys D Appl Phys, 2020, 53(49): 49LT01. doi: 10.1088/1361-6463/abb33c

    CrossRef Google Scholar

    [152] Zhu D Y, Liu Z C, Raju L, et al. Building multifunctional metasystems via algorithmic construction[J]. ACS Nano, 2021, 15(2): 2318−2326. doi: 10.1021/acsnano.0c09424

    CrossRef Google Scholar

    [153] Zhu T F, Guo C, Huang J Y, et al. Topological optical differentiator[J]. Nat Commun, 2021, 12(1): 680. doi: 10.1038/s41467-021-20972-4

    CrossRef Google Scholar

    [154] Long O Y, Guo C, Wang H W, et al. Isotropic topological second-order spatial differentiator operating in transmission mode[J]. Opt Lett, 2021, 46(13): 3247−3250. doi: 10.1364/OL.430699

    CrossRef Google Scholar

    [155] 冯睿, 田耀恺, 刘亚龙, 等. 拓扑优化超表面的偏振复用光学微分运算[J]. 光电工程, 2023, 50(9): 230172. doi: 10.12086/oee.2023.230172

    CrossRef Google Scholar

    Feng R, Tian Y K, Liu Y L, et al. Polarization-multiplexed optical differentiation using topological metasurfaces[J]. Opto-Electron Eng, 2023, 50(9): 230172. doi: 10.12086/oee.2023.230172

    CrossRef Google Scholar

    [156] 段锦, 张昊, 宋靖远, 等. 深度学习偏振图像融合研究现状[J]. 红外技术, 2024, 46(2): 119−128.

    Google Scholar

    Duan J, Zhang H, Song J Y, et al. Review of polarization image fusion based on deep learning[J]. Infrared Technol, 2024, 46(2): 119−128.

    Google Scholar

    [157] 赵峰, 程喜萌, 冯斌, 等. 分焦平面偏振图像插值算法的比较研究[J]. 激光与光电子学进展, 2020, 57(16): 161014. doi: 10.3788/LOP57.161014

    CrossRef Google Scholar

    Zhao F, Cheng X M, Feng B, et al. Comparison research of interpolation algorithms for division of focal plane polarization image[J]. Laser Optoelectron Prog, 2020, 57(16): 161014. doi: 10.3788/LOP57.161014

    CrossRef Google Scholar

    [158] 李英超, 杨帅, 付强, 等. 基于深度学习的偏振图像局部特征提取算法研究(特邀)[J]. 光电技术应用, 2022, 37(5): 62−69. doi: 10.3969/j.issn.1673-1255.2022.05.008

    CrossRef Google Scholar

    Li Y C, Yang S, Fu Q, et al. Research on local feature extraction algorithm for polarized images based on deep learning (Invited)[J]. Electro-Opt Technol Appl, 2022, 37(5): 62−69. doi: 10.3969/j.issn.1673-1255.2022.05.008

    CrossRef Google Scholar

    [159] 董洋, 张冯頔, 姚悦, 等. 基于全偏振成像的数字病理方法[J]. 中国科学: 生命科学, 2023, 53(4): 480−504. doi: 10.1360/SSV-2021-0412

    CrossRef Google Scholar

    Dong Y, Zhang F D, Yao Y, et al. Mueller microscopy for digital pathology[J]. Sci Sin Vitae, 2023, 53(4): 480−504. doi: 10.1360/SSV-2021-0412

    CrossRef Google Scholar

  • Polarization devices are significant optical components in polarized optical systems such as optical information processing, optical measurement, polarization detection, and communication. Traditional polarizers rely on the birefringence effect of natural crystals or the polarization selectivity of multilayer film structures, which requires accumulated optical path differences to achieve phase control. The inherent characteristics of the former necessitate significant thickness to separate the two polarization states, while the latter, as an alternative, significantly reduces thickness but involves a complex manufacturing process and offers high extinction ratios only within narrow bands and at small incident angles. These defects greatly restrict the development and application of these polarizers. Metasurface, as a novel type of optical field modulator, is generally composed of sub-wavelength meta-atom arrays. It can introduce phase discontinuities and enable precise control of the polarization state of incident light. Metasurface polarization devices meet the quality of the optical field and have the advantages of small size, lightweight, high design freedom, and tunable bandwidth, unveiling fascinating approaches to develop the next-generation on-chip polarization devices. In this paper, the basic process of designing metasurface polarization devices is discussed. Furthermore, four different meta-atom polarization modulation methods are introduced. As the basic units of metasurfaces, the polarization characteristics of meta-atoms are crucial for designing metasurfaces with specific polarization responses. Besides, common homogeneous polarization states and more complex types such as radial vector beams and azimuthal vector beams are introduced, which have unique advantages and application value in fields such as optical communication and microscopy imaging. Then, the research progress of different polarization devices is discussed in detail. Finally, the metasurface fabrication technologies are discussed. Overall, this review presents the principle, development, and fabrication in an all-around way, focusing on the various applications of metasurface polarizers in planar optical devices, and puts forward the existing problems and possible solutions in the design and processing of metasurface polarization devices.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint