Xia R X, Zhao D, Li Z Q, et al. Metasurface beamsplitter with large field of view and equal diffraction angle interval[J]. Opto-Electron Eng, 2024, 51(8): 240141. doi: 10.12086/oee.2024.240141
Citation: Xia R X, Zhao D, Li Z Q, et al. Metasurface beamsplitter with large field of view and equal diffraction angle interval[J]. Opto-Electron Eng, 2024, 51(8): 240141. doi: 10.12086/oee.2024.240141

Metasurface beamsplitter with large field of view and equal diffraction angle interval

    Fund Project: Project supported by the National Key Research and Development Program of China (2022YFB3607300), National Natural Science Foundation of China (62322512), and China Postdoctoral Science Foundation (2023M743364)
More Information
  • LiDAR currently mainly uses a Dammann grating as the laser beamsplitter. However, as a periodic diffraction optical device, the Dammann grating satisfies the grating equation requiring each diffraction angle's sine value to form an arithmetic progression, which cannot achieve uniform angular beam-splitting. The theoretical diffraction efficiency is also limited. This paper uses the angular spectrum and random search optimization algorithm to design a more flexible non-periodic beamsplitter. Simulations show that the metasurface beamsplitter can achieve a 70-degree field angle of 41 beams with an equal diffraction angle interval. The simulated diffraction efficiency reaches 84% which is higher than the diffraction limit of a binary phase device. In experiments, the metasurface beamsplitter has good beam-splitting uniformity and can promote the development of LiDAR.
  • 加载中
  • [1] Li Y, Ibanez-Guzman J. Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems[J]. IEEE Signal Process Mag, 2020, 37(4): 50−61. doi: 10.1109/MSP.2020.2973615

    CrossRef Google Scholar

    [2] Leonard J, How J, Teller S, et al. A perception‐driven autonomous urban vehicle[J]. J Field Robot, 2008, 25(10): 727−774. doi: 10.1002/rob.20262

    CrossRef Google Scholar

    [3] Dammann H, Görtler K. High-efficiency in-line multiple imaging by means of multiple phase holograms[J]. Opt Commun, 1971, 3(5): 312−315. doi: 10.1016/0030-4018(71)90095-2

    CrossRef Google Scholar

    [4] Zhou C H, Liu L R. Numerical study of Dammann array illuminators[J]. Appl Opt, 1995, 34(26): 5961−5969. doi: 10.1364/AO.34.005961

    CrossRef Google Scholar

    [5] Zhao S, Chung P S. Design of a circular Dammann grating[J]. Opt Lett, 2006, 31(16): 2387−2389. doi: 10.1364/OL.31.002387

    CrossRef Google Scholar

    [6] Wen F J, Chung P S. Use of the circular Dammann grating in angle measurement[J]. Appl Opt, 2008, 47(28): 5197−5200. doi: 10.1364/AO.47.005197

    CrossRef Google Scholar

    [7] Yu J J, Zhou C H, Jia W, et al. Three-dimensional Dammann array[J]. Appl Opt, 2012, 51(10): 1619−1630. doi: 10.1364/AO.51.001619

    CrossRef Google Scholar

    [8] Yu J J, Zhou C H, Jia W, et al. Three-dimensional Dammann vortex array with tunable topological charge[J]. Appl Opt, 2012, 51(13): 2485−2490. doi: 10.1364/AO.51.002485

    CrossRef Google Scholar

    [9] Fu W W, Zhao D, Li Z Q, et al. Ultracompact meta-imagers for arbitrary all-optical convolution[J]. Light Sci Appl, 2022, 11(1): 62. doi: 10.1038/s41377-022-00752-5

    CrossRef Google Scholar

    [10] Zhao D, Dong Z G, Huang K. High-efficiency holographic metacoder for optical masquerade[J]. Opt Lett, 2021, 46(6): 1462−1465. doi: 10.1364/OL.419542

    CrossRef Google Scholar

    [11] 李瑞琛, 邹毅军, 陈天航, 等. 宽频消色散超表面全息成像[J]. 光电工程, 2023, 50(8): 230118. doi: 10.12086/oee.2023.230118

    CrossRef Google Scholar

    Li R C, Zou Y J, Chen T H, et al. Broadband achromatic metasurface holography[J]. Opto-Electron Eng, 2023, 50(8): 230118. doi: 10.12086/oee.2023.230118

    CrossRef Google Scholar

    [12] 杨睿, 于千茜, 潘一苇, 等. 基于片上超表面的多路方向复用全息术[J]. 光电工程, 2022, 49(10): 220177. doi: 10.12086/oee.2022.220177

    CrossRef Google Scholar

    Yang R, Yu Q Q, Pan Y W, et al. Directional-multiplexing holography by on-chip metasurface[J]. Opto-Electron Eng, 2022, 49(10): 220177. doi: 10.12086/oee.2022.220177

    CrossRef Google Scholar

    [13] Li G X, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces[J]. Nat Rev Mater, 2017, 2(5): 17010. doi: 10.1038/natrevmats.2017.10

    CrossRef Google Scholar

    [14] 冯睿, 田耀恺, 刘亚龙, 等. 拓扑优化超表面的偏振复用光学微分运算[J]. 光电工程, 2023, 50(9): 230172. doi: 10.12086/oee.2023.230172

    CrossRef Google Scholar

    Feng R, Tian Y K, Liu Y L, et al. Polarization-multiplexed optical differentiation using topological metasurfaces[J]. Opto-Electron Eng, 2023, 50(9): 230172. doi: 10.12086/oee.2023.230172

    CrossRef Google Scholar

    [15] Zhao H, Wang X K, Liu S T, et al. Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band[J]. Opto-Electron Adv, 2023, 6(2): 220012. doi: 10.29026/oea.2023.220012

    CrossRef Google Scholar

    [16] Song X, Huang L L, Tang C C, et al. Selective diffraction with complex amplitude modulation by dielectric metasurfaces[J]. Adv Opt Mater, 2018, 6(4): 1701181. doi: 10.1002/adom.201701181

    CrossRef Google Scholar

    [17] Ni Y B, Chen S, Wang Y J, et al. Metasurface for structured light projection over 120° field of view[J]. Nano Lett, 2020, 20(9): 6719−6724. doi: 10.1021/acs.nanolett.0c02586

    CrossRef Google Scholar

    [18] Xie X, Pu M B, Jin J J, et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms[J]. Phys Rev Lett, 2021, 126(18): 183902. doi: 10.1103/PhysRevLett.126.183902

    CrossRef Google Scholar

    [19] Lin D M, Fan P Y, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298−302. doi: 10.1126/science.1253213

    CrossRef Google Scholar

    [20] Johnson S G, Frigo M. A modified split-radix FFT with fewer arithmetic operations[J]. IEEE Trans Signal Process, 2007, 55(1): 111−119. doi: 10.1109/TSP.2006.882087

    CrossRef Google Scholar

    [21] Shen F B, Wang A B. Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula[J]. Appl Opt, 2006, 45(6): 1102−1110. doi: 10.1364/AO.45.001102

    CrossRef Google Scholar

    [22] Kim S, Kim J, Kim K, et al. Anti-aliased metasurfaces beyond the Nyquist limit[Z]. arXiv: 2406.11261, 2024. https://doi.org/10.48550/arXiv.2406.11261.

    Google Scholar

  • Autonomous driving has made significant progress in the past few years. LiDAR which can precisely measure the distance to reflecting surfaces is an important sensor for autonomous driving. Multi-line LiDAR is required to improve the accuracy and frame of LiDAR. Dammann gratings are commonly used as laser beamsplitters in multi-line LiDAR. As binary phase diffraction optical devices, they are relatively easy to process. Numerical solutions for Dammann gratings with common numbers of beam-splitting have been studied. However, as a periodic diffraction optical device, Dammann grating satisfies the grating equation requiring each diffraction angle's sine value to form an arithmetic progression.

    In this paper, we use the angular spectrum and random search optimization algorithm to design a more flexible non-periodic beamsplitter. The angular spectrum, a discrete Fourier transform of the incident complex amplitude array, can calculate the angular response in the far field. We propose to expand the diffraction calculation window to reduce the frequency interval of the Fourier transform. Using the finer frequency grid, we build the far-field angular target function with equal angle interval beam-splitting. We set the evaluation function as a linear combination of root mean square error and efficiency. This evaluation function setting can take into account both error control and device diffraction efficiency. The random search optimization algorithm only adopts the optimization with a decreasing evaluation function according to the evaluation function. Simulations show that the metasurface beamsplitter can generate 41 beams with a 70° field angle. The normalized standard deviation of the simulated light intensity of each spot is 0.011. The simulated diffraction efficiency reaches 84% which is higher than the diffraction limit of the binary phase device.

    To realize such phase modulation, we use full-wave simulation to design an efficient amorphous silicon nanopillar with geometric phase modulation at the 1550-nm wavelength. We use electron beam lithography to process a 1-mm diameter metasurface beamsplitter. Experimental measurements confirm the beam-splitting function of the metasurface. The experimentally measured standard deviation of beam power is 0.179, and the average half-maximum full width of the beam-splitting direction is 0.143°.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint