Gong P, Du A B, Zhang F, et al. Torsion pendulum design for metasurface-based diffraction light sail optical force measurement[J]. Opto-Electron Eng, 2024, 51(8): 240040. doi: 10.12086/oee.2024.240040
Citation: Gong P, Du A B, Zhang F, et al. Torsion pendulum design for metasurface-based diffraction light sail optical force measurement[J]. Opto-Electron Eng, 2024, 51(8): 240040. doi: 10.12086/oee.2024.240040

Torsion pendulum design for metasurface-based diffraction light sail optical force measurement

    Fund Project: Project supported by National Natural Science Foundation of China (12304489)
More Information
  • When a vector optical field acts on the metasurface-based diffractive light sail, the maximum acceleration, self-stabilizing thrust, and attitude controllability of the diffractive light sail can be enhanced. In a vacuum environment, it is important to measure the optical force acting on the diffraction light sail to establish a comprehensive space dynamics model under the influence of vector optical fields. Based on the weak force measurement technique, we have designed an optical force measurement torsion pendulum for both regular and irregular shaped diffraction light sails. The measurement accuracy of regular-shaped light sails can be enhanced by ensuring that the size of the torsion pendulum and relative position errors of each component are strictly controlled. The force measurement has a relative error of 0.55‰. We have also designed a torsion pendulum to measure the optical force of the irregular-shaped light sails, which can hardly calculate the moment of inertia. There are two standard spheres on the torsion pendulum that can be placed or removed at any time. The magnitude of the optical force acting on the complex object can be measured by calculating the moment of inertia of the spheres. This research enhances the efficiency and flexibility of optical force measurement experiments, providing data support for applications such as laser-driven light sail and space debris remediation.
  • 加载中
  • [1] Nichols E F, Hull G F. The pressure due to radiation. (second paper. )[J]. Phys Rev (Series I), 1903, 17(1): 26−50. doi: 10.1103/PhysRevSeriesI.17.26

    CrossRef Google Scholar

    [2] Maxwell J C. A treatise on electricity and magnetism[J]. Nature, 1873, 7(182): 478−480. doi: 10.1038/007478a0

    CrossRef Google Scholar

    [3] Einstein A. Concerning an heuristic point of view toward the emission and transformation of light[J]. Am J Phys, 1965, 33(5): 367

    Google Scholar

    [4] Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Opt Lett, 1986, 11(5): 288−290. doi: 10.1364/OL.11.000288

    CrossRef Google Scholar

    [5] Long L, Deng Q R, Huang R T, et al. 3D printing of plasmonic nanofocusing tip enabling high resolution, high throughput and high contrast optical near-field imaging[J]. Light Sci Appl, 2023, 12(1): 219. doi: 10.1038/s41377-023-01272-6

    CrossRef Google Scholar

    [6] Chan J, Alegre T P M, Safavi-Naeini A H, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state[J]. Nature, 2011, 478(7367): 89−92. doi: 10.1038/nature10461

    CrossRef Google Scholar

    [7] Peterson R W, Purdy T P, Kampel N S, et al. Laser cooling of a micromechanical membrane to the quantum backaction limit[J]. Phys Rev Lett, 2016, 116(6): 063601. doi: 10.1103/PhysRevLett.116.063601

    CrossRef Google Scholar

    [8] Tsuda Y, Mori O, Funase R, et al. Flight status of IKAROS deep space solar sail demonstrator[J]. Acta Astronaut, 2011, 69(9-10): 833−840. doi: 10.1016/j.actaastro.2011.06.005

    CrossRef Google Scholar

    [9] Johnson L, Whorton M, Heaton A, et al. NanoSail-D: a solar sail demonstration mission[J]. Acta Astronaut, 2011, 68(5-6): 571−575. doi: 10.1016/j.actaastro.2010.02.008

    CrossRef Google Scholar

    [10] Atwater H A, Davoyan A R, Ilic O, et al. Materials challenges for the Starshot lightsail[J]. Nat Mater, 2018, 17(10): 861−867. doi: 10.1038/s41563-018-0075-8

    CrossRef Google Scholar

    [11] Achouri K, Céspedes O V, Caloz C. Solar “meta-sails” for agile optical force control[J]. IEEE Trans Antennas Propag, 2019, 67(11): 6924−6934. doi: 10.1109/TAP.2019.2925279

    CrossRef Google Scholar

    [12] Ilic O, Atwater H A. Self-stabilizing photonic levitation and propulsion of nanostructured macroscopic objects[J]. Nat Photonics, 2019, 13(4): 289−295. doi: 10.1038/s41566-019-0373-y

    CrossRef Google Scholar

    [13] Swartzlander G A. Theory of radiation pressure on a diffractive solar sail[J]. J Opt Sci Am B, 2022, 39(9): 2556−2563. doi: 10.1364/JOSAB.468588

    CrossRef Google Scholar

    [14] 许可, 王星儿, 范旭浩, 等. 超表面全息术: 从概念到实现[J]. 光电工程, 2022, 49(10): 220183. doi: 10.12086/oee.2022.220183

    CrossRef Google Scholar

    Xu K, Wang X E, Fan X H, et al. Meta-holography: from concept to realization[J]. Opto-Electron Eng, 2022, 49(10): 220183. doi: 10.12086/oee.2022.220183

    CrossRef Google Scholar

    [15] Pu M B, Luo X G. Advancing nonlinear nanophotonics: harnessing membrane metasurfaces for third-harmonic generation and imaging[J]. Opto-Electron Adv, 2023, 6(8): 230153. doi: 10.29026/oea.2023.230153

    CrossRef Google Scholar

    [16] Zhang F, Pu M B, Li X, et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces[J]. Adv Mater, 2021, 33(11): 2008157. doi: 10.1002/adma.202008157

    CrossRef Google Scholar

    [17] Zhang Y X, Pu M B, Jin J J, et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization[J]. Opto-Electron Adv, 2022, 5(11): 220058. doi: 10.29026/oea.2022.220058

    CrossRef Google Scholar

    [18] 杨港, 郭迎辉, 蒲明博, 等. 基于相关性选择的微型计算光谱探测技术[J]. 光电工程, 2022, 49(10): 220130. doi: 10.12086/oee.2022.220130

    CrossRef Google Scholar

    Yang G, Guo Y H, Pu M B, et al. Miniature computational spectral detection technology based on correlation value selection[J]. Opto-Electron Eng, 2022, 49(10): 220130. doi: 10.12086/oee.2022.220130

    CrossRef Google Scholar

    [19] 刘博, 谢鑫, 甘雪涛, 等. 全金属超表面在电磁波相位调控中的应用及进展[J]. 光电工程, 2023, 50(9): 230119. doi: 10.12086/oee.2023.230119

    CrossRef Google Scholar

    Liu B, Xie X, Gan X T, et al. Applications and progress of all-metal metasurfaces in phase manipulation of electromagnetic waves[J]. Opto-Electron Eng, 2023, 50(9): 230119. doi: 10.12086/oee.2023.230119

    CrossRef Google Scholar

    [20] Jiang M N, Chen Y, Zhang F, et al. Alignment-free angular momentum detection via spin-independent astigmatic transformation[J]. Adv Opt Mater, 2024, 12(2): 2301314. doi: 10.1002/adom.202301314

    CrossRef Google Scholar

    [21] Xie T, Zhang F, Pu M B, et al. Ultrathin, wide-angle, and high-resolution meta-imaging system via rear-position wavevector filter[J]. Laser Photonics Rev, 2023, 17(9): 2300119. doi: 10.1002/lpor.202300119

    CrossRef Google Scholar

    [22] Zhang F, Guo Y H, Pu M B, et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption[J]. Nat Commun, 2023, 14(1): 1946. doi: 10.1038/s41467-023-37510-z

    CrossRef Google Scholar

    [23] 蓝翔, 邓钦荣, 张汶婷, 等. 基于扭转悬链线结构的高效手性吸波器[J]. 光电工程, 2022, 49(10): 220157. doi: 10.12086/oee.2022.220157

    CrossRef Google Scholar

    Lan X, Deng Q R, Zhang W T, et al. Efficient chiral absorber based on twisted catenary structure[J]. Opto-Electron Eng, 2022, 49(10): 220157. doi: 10.12086/oee.2022.220157

    CrossRef Google Scholar

    [24] 柯岚, 章思梦, 李晨霞, 等. 超表面实现复杂矢量涡旋光束的研究进展[J]. 光电工程, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117

    CrossRef Google Scholar

    Ke L, Zhang S M, Li C X, et al. Research progress on hybrid vector beam implementation by metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117

    CrossRef Google Scholar

    [25] 陈宜臻, 潘威康, 金相宇, 等. 片上光学近场的远场辐射调控[J]. 光电工程, 2023, 50(8): 230173. doi: 10.12086/oee.2023.230173

    CrossRef Google Scholar

    Chen Y Z, Pan W K, Jin X Y, et al. Far-field radiation manipulations of on-chip optical near-fields[J]. Opto-Electron Eng, 2023, 50(8): 230173. doi: 10.12086/oee.2023.230173

    CrossRef Google Scholar

    [26] Shi Y Z, Xu X H, Nieto-Vesperinas M, et al. Advances in light transverse momenta and optical lateral forces[J]. Adv Opt Photonics, 2023, 15(3): 835−906. doi: 10.1364/AOP.489300

    CrossRef Google Scholar

    [27] Shen K H, Duan Y, Ju P, et al. On-chip optical levitation with a metalens in vacuum[J]. Optica, 2021, 8(11): 1359−1362. doi: 10.1364/OPTICA.438410

    CrossRef Google Scholar

    [28] Xu F, Liu Y, Zhang C, et al. Optically levitated conveyor belt based on polarization-dependent metasurface lens arrays[J]. Opt Lett, 2022, 47(9): 2194−2197. doi: 10.1364/OL.457314

    CrossRef Google Scholar

    [29] Li X Y, Zhou Y, Ge S Y, et al. Experimental demonstration of optical trapping and manipulation with multifunctional metasurface[J]. Opt Lett, 2022, 47(4): 977−980. doi: 10.1364/OL.450490

    CrossRef Google Scholar

    [30] Andrén D, Baranov D G, Jones S, et al. Microscopic metavehicles powered and steered by embedded optical metasurfaces[J]. Nat Nanotechnol, 2021, 16(9): 970−974. doi: 10.1038/s41565-021-00941-0

    CrossRef Google Scholar

    [31] Li H, Cao Y Y, Shi B J, et al. Momentum-topology-induced optical pulling force[J]. Phys Rev Lett, 2020, 124(14): 143901. doi: 10.1103/PhysRevLett.124.143901

    CrossRef Google Scholar

    [32] Jin R C, Xu Y H, Dong Z G, et al. Optical pulling forces enabled by hyperbolic metamaterials[J]. Nano Lett, 2021, 21(24): 10431−10437. doi: 10.1021/acs.nanolett.1c03772

    CrossRef Google Scholar

    [33] Joly-Jehenne T, Davoyan A R. Anomalous reflection under ambient sunlight: accessing in-plane radiation pressure for solar sailing[Z]. arXiv: 2307.09750, 2023. https://doi.org/10.48550/arXiv.2307.09750.

    Google Scholar

    [34] Dorrah A H, Rubin N A, Zaidi A, et al. Metasurface optics for on-demand polarization transformations along the optical path[J]. Nat Photonics, 2021, 15(4): 287−296. doi: 10.1038/s41566-020-00750-2

    CrossRef Google Scholar

    [35] Liu W W, Li Z C, Ansari M A, et al. Design strategies and applications of dimensional optical field manipulation based on metasurfaces[J]. Adv Mater, 2023, 35(30): 2208884. doi: 10.1002/adma.202208884

    CrossRef Google Scholar

    [36] Luo X G. Multiscale optical field manipulation via planar digital optics[J]. ACS Photonics, 2023, 10(7): 2116−2127. doi: 10.1021/acsphotonics.2c01752

    CrossRef Google Scholar

    [37] Ziebart M, Adhya S, Sibthorpe A, et al. Combined radiation pressure and thermal modelling of complex satellites: algorithms and on-orbit tests[J]. Adv Space Res, 2005, 36(3): 424−430. doi: 10.1016/j.asr.2005.01.014

    CrossRef Google Scholar

    [38] 崔金松, 李成仁, 刘玉凤. 光压观测仪的研制[J]. 物理实验, 1999, 19(1): 29−30. doi: 10.3969/j.issn.1005-4642.1999.1.006

    CrossRef Google Scholar

    Cui J S, Li C R, Liu Y F. Development of a light pressure observatory[J]. Phys Exp, 1999, 19(1): 29−30. doi: 10.3969/j.issn.1005-4642.1999.1.006

    CrossRef Google Scholar

    [39] 龙腾, 赵改清, 杜炳清, 等. 应用压电陶瓷测量光压[J]. 物理实验, 2016, 36(11): 20−22. doi: 10.3969/j.issn.1005-4642.2016.11.006

    CrossRef Google Scholar

    Long T, Zhao G Q, Du B Q, et al. Measuring light pressure using piezoelectric ceramic[J]. Phys Exp, 2016, 36(11): 20−22. doi: 10.3969/j.issn.1005-4642.2016.11.006

    CrossRef Google Scholar

    [40] Nesterov V. Facility and methods for the measurement of micro and nano forces in the range below 10−5 N with a resolution of 10−12 N (development concept)[J]. Meas Sci Technol, 2007, 18(2): 360−366. doi: 10.1088/0957-0233/18/2/S06

    CrossRef Google Scholar

    [41] Nesterov V. A nanonewton force facility and a novel method for measurements of the air and vacuum permittivity at zero frequencies[J]. Meas Sci Technol, 2009, 20(8): 084012. doi: 10.1088/0957-0233/20/8/084012

    CrossRef Google Scholar

    [42] Nesterov V, Mueller M, Frumin L L, et al. A new facility to realize a nanonewton force standard based on electrostatic methods[J]. Metrologia, 2009, 46(3): 277−282. doi: 10.1088/0026-1394/46/3/016

    CrossRef Google Scholar

    [43] Williams P A, Artusio-Glimpse A B, Hadler J A, et al. Radiation-pressure-enabled traceable laser sources at CW powers up to 50 kW[J]. IEEE Trans Instrum Meas, 2019, 68(6): 1833−1839. doi: 10.1109/TIM.2018.2886108

    CrossRef Google Scholar

    [44] Williams P, Hadler J, Maring F, et al. Portable, high-accuracy, non-absorbing laser power measurement at kilowatt levels by means of radiation pressure[J]. Opt Express, 2017, 25(4): 4382−4392. doi: 10.1364/OE.25.004382

    CrossRef Google Scholar

    [45] 赵利强, 孙振山, 于东钰, 等. 光压型高功率激光测量装置的测量重复性研究[J]. 中国光学(中英文), 2023, 16(2): 382−389. doi: 10.37188/CO.2022-0092

    CrossRef Google Scholar

    Zhao L Q, Sun Z S, Yu D Y, et al. Measurement repeatability of high power laser measuring device based on light pressure[J]. Chin Opt, 2023, 16(2): 382−389. doi: 10.37188/CO.2022-0092

    CrossRef Google Scholar

    [46] Masalov A V. First experiments on measuring light pressure I (pyotr nikolaevich lebedev)[M]//Boyd R W, Lukishova S G, Zadkov V N. Quantum Photonics: Pioneering Advances and Emerging Applications. Cham: Springer, 2019: 425–453.https://doi.org/10.1007/978-3-319-98402-5_12.

    Google Scholar

    [47] Chu Y J L, Jansson E M, Swartzlander Jr G A. Measurements of radiation pressure owing to the grating momentum[J]. Phys Rev Lett, 2018, 121(6): 063903. doi: 10.1103/PhysRevLett.121.063903

    CrossRef Google Scholar

    [48] Chu Y J L, Tabiryan N V, Swartzlander Jr G A. Experimental verification of a bigrating beam rider[J]. Phys Rev Lett, 2019, 123(24): 244302. doi: 10.1103/PhysRevLett.123.244302

    CrossRef Google Scholar

    [49] 刘泽刚, 黄耿石, 李振柱, 等. 基于谐振的光压测量[J]. 物理实验, 2017, 37(1): 1−6,12. doi: 10.3969/j.issn.1005-4642.2017.01.001

    CrossRef Google Scholar

    Liu Z G, Huang G S, Li Z Z, et al. Measuring light pressure based on mechanical resonance[J]. Phys Exp, 2017, 37(1): 1−6,12. doi: 10.3969/j.issn.1005-4642.2017.01.001

    CrossRef Google Scholar

    [50] 郭硕鸿. 电动力学[M]. 3版. 北京: 高等教育出版社, 2008: 180–185.

    Google Scholar

    Guo S H. Electricity and Magnetism[M]. 3rd ed. Beijing: Higher Education Press, 2008: 180–185.

    Google Scholar

    [51] Ye Q, Lin H Z. On deriving the Maxwell stress tensor method for calculating the optical force and torque on an object in harmonic electromagnetic fields[J]. Eur J Phys, 2017, 38(4): 045202. doi: 10.1088/1361-6404/aa6e1d

    CrossRef Google Scholar

    [52] 赵泽宇, 蒲明博, 王彦钦, 等. 广义折反射定律[J]. 光电工程, 2017, 44(2): 129−139. doi: 10.3969/j.issn.1003-501X.2017.02.001

    CrossRef Google Scholar

    Zhao Z Y, Pu M B, Wang Y Q, et al. The generalized laws of refraction and reflection[J]. Opto-Electron Eng, 2017, 44(2): 129−139. doi: 10.3969/j.issn.1003-501X.2017.02.001

    CrossRef Google Scholar

  • The exchange of momentum between photons and objects is what optical force is all about. The research of optical forces can be traced back to the astronomer Kepler's observations of comet tails. The understanding of the optical force has been enhanced by the Maxwell's classical electromagnetic field theory and Einstein's light quantum model. The continuous development of lasers has led to a new stage in optical technology, such as optical tweezers, laser cooling, and solar sails. Light sails are considered one of the ways to achieve interstellar travel, with the advantages of not needing to carry propellant and carrying a high payload. In recent years, the continuous development of metasurface technology has enabled researchers to apply diffraction optical force technology based on sub-wavelength structures to light sails to solve the problems of traditional solar sails, such as difficult attitude control and limited acceleration, thereby improving the feasibility of light sail driving technology. Spatial positions have an impact on the polarization state of the vector optical. When combined with spatially multiplexed metamaterial surfaces, the degrees of freedom for attitude manipulation of the diffractive light sail can be increased, leading to greater maximum acceleration, self-stabilizing thrust, and attitude controllability. In space, even subtle mechanical effects can cause the flight trajectory of the diffraction light sail to deviate from the preset orbit. Experimentally verification is necessary for the mechanical effects between the diffraction light sail and the vector optical field. Therefore, accurately measuring the multi-axis optical force generated by the diffraction light sail under vector light fields is crucial. There are few experiments that directly measure optical force in the world, and the measurement accuracy is generally not high. These experiments usually use torsion pendulums, piezoelectric crystals, flat capacitors, and other measurement tools. Based on the weak force measurement technology of torsion pendulums, this paper proposes the design of optical force torsion pendulums for regular-shaped and irregular-shaped diffraction light sails, and performs error analysis on the two torsion pendulums. For regular-shaped light sails, measurement accuracy can be improved by strictly controlling the size of the torsion pendulum and the relative position errors of each component. The force measurement has a relative error of 0.55‰. In order to meet the optical force measurement of irregular-shaped light sails and reduce the requirements for the processing accuracy and assembly accuracy of each component of the torsion pendulum, this article proposes a design scheme for an optical torsion pendulum suitable for complex objects. The fundamental element is the mid torsion pendulum horizontal rod and two standard balls. Measurement of the torsion pendulum’s motion with and without the ball allows for accurate k-value estimation of the system. Different fixtures designed to match the main body of the torsion pendulum cam be used to measure the light force on different samples. Complex shapes can be accommodated by this design. The optical power measurement needs to be tested on the sample. The optical torsion pendulum for irregular-shaped light sails is theoretically capable of achieving a relative error of 0.38% through theoretical error analysis. The design of this article enhances the accuracy of optical force measurement and the efficiency and flexibility of experiments, paving the way for applications like laser-driven light sail propulsion and space debris remediation.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint