Yi Z Y, Li Y, Liang H K, et al. Design of an orbital angular momentum demultiplexing system based on off-axis cascaded metasurfaces[J]. Opto-Electron Eng, 2024, 51(8): 240161. doi: 10.12086/oee.2024.240161
Citation: Yi Z Y, Li Y, Liang H K, et al. Design of an orbital angular momentum demultiplexing system based on off-axis cascaded metasurfaces[J]. Opto-Electron Eng, 2024, 51(8): 240161. doi: 10.12086/oee.2024.240161

Design of an orbital angular momentum demultiplexing system based on off-axis cascaded metasurfaces

    Fund Project: Project supported by Youth Science Foundation of the National Natural Science Foundation of China (62005187)
More Information
  • When designing metasurface systems, the actual efficiency of the metasurface is much different from the theoretical design efficiency. This can lead to stray light caused by insufficient modulation efficiency of the metasurfaces, which acts as background noise and is magnified in cascaded metasurface systems step by step, affecting system functionality. To reduce the impact of metasurfaces with limited efficiency on system performance, this paper proposes a design method for an orbital angular momentum demultiplexing system based on off-axis cascaded metasurfaces. By incorporating an off-axis phase design, the stray light generated by the reduced efficiency of the metasurface in a cascaded metasurface system is effectively eliminated. Using FDTD (finite difference time domain) simulation software for calculation and validation, the results demonstrate that the off-axis cascaded metasurface system can effectively reduce stray light caused by insufficient modulation efficiency. Compared to the on-axis system, it achieves a maximum reduction in crosstalk of 4.15 dB and an average of 80% stray light elimination, showing a significant performance advantage.
  • 加载中
  • [1] García-Escartín J C, Chamorro-Posada P. Quantum multiplexing with the orbital angular momentum of light[J]. Phys Rev A, 2008, 78(6): 062320. doi: 10.1103/PhysRevA.78.062320

    CrossRef Google Scholar

    [2] Yan Y, Xie G D, Lavery M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nat Commun, 2014, 5: 4876. doi: 10.1038/ncomms5876

    CrossRef Google Scholar

    [3] Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Adv Opt Photonics, 2015, 7(1): 66−106. doi: 10.1364/AOP.7.000066

    CrossRef Google Scholar

    [4] Yuan X Y, Xu Q, Lang Y H, et al. Tailoring spatiotemporal dynamics of plasmonic vortices[J]. Opto-Electron Adv, 2023, 6(4): 220133. doi: 10.29026/oea.2023.220133

    CrossRef Google Scholar

    [5] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phys Rev A, 1992, 45(11): 8185−8189. doi: 10.1103/PhysRevA.45.8185

    CrossRef Google Scholar

    [6] Allen L, Padgett M J, Babiker M. IV the orbital angular momentum of light[J]. Prog Opt, 1999, 39: 291−372. doi: 10.1016/S0079-6638(08)70391-3

    CrossRef Google Scholar

    [7] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780−1782. doi: 10.1126/science.1125907

    CrossRef Google Scholar

    [8] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nat Mater, 2014, 13(2): 139−150. doi: 10.1038/nmat3839

    CrossRef Google Scholar

    [9] Luo X G, Pu M B, Ma X L, et al. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices[J]. Int J Antennas Propag, 2015, 2015: 204127. doi: 10.1155/2015/204127

    CrossRef Google Scholar

    [10] 张飞, 郭迎辉, 蒲明博, 等. 基于非对称光子自旋—轨道相互作用的超构表面[J]. 光电工程, 2020, 47(10): 200366. doi: 10.12086/oee.2020.200366

    CrossRef Google Scholar

    Zhang F, Guo Y H, Pu M B, et al. Metasurfaces enabled by asymmetric photonic spin-orbit interactions[J]. Opto-Electron Eng, 2020, 47(10): 200366. doi: 10.12086/oee.2020.200366

    CrossRef Google Scholar

    [11] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [12] Li Y, Li X, Chen L W, et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface[J]. Adv Opt Mater, 2017, 5(2): 1600502. doi: 10.1002/adom.201600502

    CrossRef Google Scholar

    [13] Berkhout G C G, Lavery M P J, Courtial J, et al. Efficient sorting of orbital angular momentum states of light[J]. Phys Rev Lett, 2010, 105(15): 153601. doi: 10.1103/PhysRevLett.105.153601

    CrossRef Google Scholar

    [14] Lavery M P J, Robertson D J, Berkhout G C G, et al. Refractive elements for the measurement of the orbital angular momentum of a single photon[J]. Opt Express, 2012, 20(3): 2110−2115. doi: 10.1364/OE.20.002110

    CrossRef Google Scholar

    [15] Ruffato G, Massari M, Parisi G, et al. Test of mode-division multiplexing and demultiplexing in free-space with diffractive transformation optics[J]. Opt Express, 2017, 25(7): 7859−7868. doi: 10.1364/OE.25.007859

    CrossRef Google Scholar

    [16] Ruffato G, Massari M, Romanato F. Compact sorting of optical vortices by means of diffractive transformation optics[J]. Opt Lett, 2017, 42(3): 551−554. doi: 10.1364/OL.42.000551

    CrossRef Google Scholar

    [17] Ruffato G, Girardi M, Massari M, et al. A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams[J]. Sci Rep, 2018, 8(1): 10248. doi: 10.1038/s41598-018-28447-1

    CrossRef Google Scholar

    [18] Ruffato G, Capaldo P, Massari M, et al. Total angular momentum sorting in the telecom infrared with silicon Pancharatnam-Berry transformation optics[J]. Opt Express, 2019, 27(11): 15750−15764. doi: 10.1364/OE.27.015750

    CrossRef Google Scholar

    [19] Ruffato G, Massari M, Girardi M, et al. Non-paraxial design and fabrication of a compact OAM sorter in the telecom infrared[J]. Opt Express, 2019, 27(17): 24123−24134. doi: 10.1364/OE.27.024123

    CrossRef Google Scholar

    [20] Cheng J P, Sha X B, Zhang H, et al. Ultracompact orbital angular momentum sorter on a CMOS chip[J]. Nano Lett, 2022, 22(10): 3993−3999. doi: 10.1021/acs.nanolett.2c00572

    CrossRef Google Scholar

    [21] Wang B M, Wen Y H, Zhu J B, et al. Sorting full angular momentum states with Pancharatnam-Berry metasurfaces based on spiral transformation[J]. Opt Express, 2020, 28(11): 16342−16351. doi: 10.1364/OE.393859

    CrossRef Google Scholar

    [22] Li Y, Hong M H. Diffractive efficiency optimization in metasurface design via electromagnetic coupling compensation[J]. Materials (Basel), 2019, 12(7): 1005. doi: 10.3390/ma12071005

    CrossRef Google Scholar

    [23] Yang Z Y, Wang Z K, Wang Y X, et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling[J]. Nat Commun, 2018, 9(1): 4607. doi: 10.1038/s41467-018-07056-6

    CrossRef Google Scholar

    [24] Chen R, Zhou Y, Chen W J, et al. Multifunctional metasurface: coplanar embedded design for metalens and nanoprinted display[J]. ACS Photonics, 2020, 7(5): 1171−1177. doi: 10.1021/acsphotonics.9b01795

    CrossRef Google Scholar

    [25] Fan Y L, Xu Y K, Qiu M, et al. Phase-controlled metasurface design via optimized genetic algorithm[J]. Nanophotonics, 2020, 9(12): 3931−3939. doi: 10.1515/nanoph-2020-0132

    CrossRef Google Scholar

    [26] Huang M, Zheng B, Cai T, et al. Machine–learning-enabled metasurface for direction of arrival estimation[J]. Nanophotonics, 2022, 11(9): 2001−2010. doi: 10.1515/nanoph-2021-0663

    CrossRef Google Scholar

    [27] Ji W Y, Chang J, Xu H X, et al. Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods[J]. Light Sci Appl, 2023, 12(1): 169. doi: 10.1038/s41377-023-01218-y

    CrossRef Google Scholar

    [28] Xu M F, Pu M B, Sang D, et al. Topology-optimized catenary-like metasurface for wide-angle and high-efficiency deflection: from a discrete to continuous geometric phase[J]. Opt Express, 2021, 29(7): 10181−10191. doi: 10.1364/OE.422112

    CrossRef Google Scholar

    [29] Nishijima Y, Balčytis A, Naganuma S, et al. Kirchhoff’s metasurfaces towards efficient photo-thermal energy conversion[J]. Sci Rep, 2019, 9(1): 8284. doi: 10.1038/s41598-019-44781-4

    CrossRef Google Scholar

    [30] Xu Z J, Dong Y, Tseng C K, et al. CMOS-compatible all-Si metasurface polarizing bandpass filters on 12-inch wafers[J]. Opt Express, 2019, 27(18): 26060−26069. doi: 10.1364/OE.27.026060

    CrossRef Google Scholar

    [31] Meng W J, Hua Y L, Cheng K, et al. 100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution[J]. Opto-Electron Sci, 2022, 1(9): 220004. doi: 10.29026/oes.2022.220004

    CrossRef Google Scholar

    [32] Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 2015, 10(4): 308−312. doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [33] Pancharatnam S. Generalized theory of interference, and its applications: part I. Coherent pencils[J]. Proc Indian Acad Sci-Sec A, 1956, 44(5): 247−262. doi: 10.1007/BF03046050

    CrossRef Google Scholar

    [34] Berry M V, Dennis M R. Polarization singularities in isotropic random vector waves[J]. Proc R Soc Lond A Math Phys Sci, 2001, 457(2005): 141−155. doi: 10.1098/rspa.2000.0660

    CrossRef Google Scholar

    [35] Li S Q, Li X Y, Zhang L, et al. Efficient optical angular momentum manipulation for compact multiplexing and demultiplexing using a dielectric metasurface[J]. Adv Opt Mater, 2020, 8(8): 1901666. doi: 10.1002/adom.201901666

    CrossRef Google Scholar

    [36] Mirhosseini M, Malik M, Shi Z M, et al. Efficient separation of the orbital angular momentum eigenstates of light[J]. Nat Commun, 2013, 4: 2781. doi: 10.1038/ncomms3781

    CrossRef Google Scholar

    [37] Wen Y H, Chremmos I, Chen Y J, et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes[J]. Phys Rev Lett, 2018, 120(19): 193904. doi: 10.1103/PhysRevLett.120.193904

    CrossRef Google Scholar

  • Optical orbital angular momentum (OAM) has garnered widespread attention in the fields of high-speed optical communication and quantum communication due to its characteristic of spatial orthogonality. The beam carrying OAM has a spiral phase structure exp(i) in the spatial phase distribution, where the topological charge l can take any integer, which can theoretically provide an infinite number of channels, thus greatly enhancing the capacity of the communication system. As an array of miniature planar structures composed of sub-wavelength structures, the metasurface, with its unique planar structure and precise control of light waves, shows great application potential in promoting miniaturization and integration of space OAM communication systems. When designing metasurface systems, factors such as electromagnetic coupling between metasurface unit structures and insufficient processing precision can lead to the actual efficiency of the metasurface are much different from the theoretical design efficiency. This can often result in stray light due to insufficient modulation efficiency of the metasurface, and the influence of these stray light as background noise in the cascade metasurfaces system will be magnified step by step, affecting the system function. In order to improve the modulation efficiency of metasurface, researchers often use genetic algorithms, topology optimization, and machine learning to design more efficient metasurface structures or use higher precision machining processes to fabricate metasurface. However, these methods are often accompanied by complex computing processes and high manufacturing price costs, which largely limit the widespread use of metasurface in practical optical systems. To reduce the impact of metasurface with limited efficiency on system performance and to decrease the demand for fabricating high-efficiency metasurface structures in high signal-to-noise ratio metasurface systems, based on the coordinate transformation method proposed by Berkhout et al, this paper proposes a design method for an orbital angular momentum demultiplexing system based on off-axis cascaded metasurfaces. By introducing an off-axis design, this work effectively separates the stray light produced in cascaded metasurface systems due to reduced metasurface efficiency. Compared to traditional methods of improving system performance by optimizing the modulation efficiency of metasurface structure, the approach presented in this paper avoids complex structural optimization and the fabrication process of high-efficiency metasurfaces, while also significantly improving optical performance. This design method can be extended to the cascade of multi-level metasurfaces to solve the problem of limiting the number of layers of cascaded super-surfaces, which is of potential application value and significance for the miniaturization and integration of optical systems.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint