Ye Y Q, Pi D P, Gu M, et al. Research progress and applications of vectorial holography[J]. Opto-Electron Eng, 2024, 51(8): 240082. doi: 10.12086/oee.2024.240082
Citation: Ye Y Q, Pi D P, Gu M, et al. Research progress and applications of vectorial holography[J]. Opto-Electron Eng, 2024, 51(8): 240082. doi: 10.12086/oee.2024.240082

Research progress and applications of vectorial holography

    Fund Project: Project supported by National Natural Science Foundation of China (62005164), the Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23SG41), the Young Elite Scientist Sponsorship Program by Cast (20220042), the Shanghai Natural Science Foundation (23ZR1443700), the Science and Technology Commission of Shanghai Municipality (21DZ1100500), and the Shanghai Municipal Science and Technology Major Project, the Shanghai Frontiers Science Center Program (2021–2025 No. 20).
More Information
  • Holography, which can record and reconstruct all the information of object light waves, has made remarkable progress since its invention. In recent years, the emergence of vectorial holography has brought new developments to this field. Vectorial holography not only inherits the ability to record the amplitude and phase of traditional scalar holography but also introduces the additional control of the polarization dimension, which can significantly improve the density of the recorded information and has been widely used in many fields. This paper discusses vectorial holography in depth from the perspective of polarization modulation. Firstly, the concepts of scalar holography and vectorial holography are introduced, and their advantages and disadvantages are compared. Then, the two polarization modulation methods of vectorial holography are introduced in detail, including the polarization modulation of incident light and output light. Meanwhile, the applications of vectorial holography in the field of 3D display and encryption are described. Finally, the challenges faced by vectorial holography are summarized, and the future development of vectorial holography is expected.
  • 加载中
  • [1] Fang X Y, Ren H R, Gu M. Orbital angular momentum holography for high-security encryption[J]. Nat Photonics, 2020, 14(2): 102−108. doi: 10.1038/s41566-019-0560-x

    CrossRef Google Scholar

    [2] Shi L, Li B C, Kim C, et al. Towards real-time photorealistic 3D holography with deep neural networks[J]. Nature, 2021, 591(7849): 234−239. doi: 10.1038/s41586-020-03152-0

    CrossRef Google Scholar

    [3] Chang C L, Bang K, Wetzstein G, et al. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective[J]. Optica, 2020, 7(11): 1563−1578. doi: 10.1364/OPTICA.406004

    CrossRef Google Scholar

    [4] Blanche P A. Holography, and the future of 3D display[J]. Light Adv Manuf, 2021, 2(4): 446−459. doi: 10.37188/lam.2021.028

    CrossRef Google Scholar

    [5] Pi D P, Liu J, Wang Y T. Review of computer-generated hologram algorithms for color dynamic holographic three-dimensional display[J]. Light Sci Appl, 2022, 11(1): 231. doi: 10.1038/s41377-022-00916-3

    CrossRef Google Scholar

    [6] Gabor D. A new microscopic principle[J]. Nature, 1948, 161(4098): 777−778. doi: 10.1038/161777a0

    CrossRef Google Scholar

    [7] Leith E N, Upatnieks J. Reconstructed wavefronts and communication theory[J]. J Opt Soc Am, 1962, 52(10): 1123−1130. doi: 10.1364/JOSA.52.001123

    CrossRef Google Scholar

    [8] Leith EN, Upatnieks J. Wavefront reconstruction with continuous-tone objects[J]. J Opt Soc Am, 1963, 53(12): 1377−1381. doi: 10.1364/JOSA.53.001377

    CrossRef Google Scholar

    [9] Leith E N, Upatnieks J. Wavefront reconstruction with diffused illumination and three-dimensional objects[J]. J Opt Soc Am, 1964, 54(11): 1295−1301. doi: 10.1364/JOSA.54.00129

    CrossRef Google Scholar

    [10] Lohmann A W, Paris D P. Binary fraunhofer holograms, generated by computer[J]. Appl Opt, 1967, 6(10): 1739−1748. doi: 10.1364/AO.6.001739

    CrossRef Google Scholar

    [11] Lesem L B, Hirsch P M, Jordan J A. The kinoform: a new wavefront reconstruction device[J]. IBM J Res Dev, 1969, 13(2): 150−155. doi: 10.1147/rd.132.0150

    CrossRef Google Scholar

    [12] Lee W H. Binary computer-generated holograms[J]. Appl Opt, 1979, 18(21): 3661−3669. doi: 10.1364/AO.18.003661

    CrossRef Google Scholar

    [13] Pi D P, Liu J, Kang R F, et al. Reducing the memory usage of computer-generated hologram calculation using accurate high-compressed look-up-table method in color 3D holographic display[J]. Opt Express, 2019, 27(20): 28410−28422. doi: 10.1364/OE.27.028410

    CrossRef Google Scholar

    [14] Wang Z, Lv G Q, Feng Q B, et al. Resolution priority holographic stereogram based on integral imaging with enhanced depth range[J]. Opt Express, 2019, 27(3): 2689−2702. doi: 10.1364/OE.27.002689

    CrossRef Google Scholar

    [15] Wang Z, Zhu L M, Zhang X, et al. Computer-generated photorealistic hologram using ray-wavefront conversion based on the additive compressive light field approach[J]. Opt Lett, 2020, 45(3): 615−618. doi: 10.1364/OL.383508

    CrossRef Google Scholar

    [16] Chang C L, Cui W, Gao L. Holographic multiplane near-eye display based on amplitude-only wavefront modulation[J]. Opt Express, 2019, 27(21): 30960−30970. doi: 10.1364/OE.27.030960

    CrossRef Google Scholar

    [17] Sui X M, He Z H, Jin G F, et al. Band-limited double-phase method for enhancing image sharpness in complex modulated computer -generated holograms[J]. Opt Express, 2021, 29(2): 2597−2612. doi: 10.1364/OE.414299

    CrossRef Google Scholar

    [18] Slinger C, Cameron C, Stanley M. Computer-generated holography as a generic display technology[J]. Computer, 2005, 38(8): 46−53. doi: 10.1109/MC.2005.260

    CrossRef Google Scholar

    [19] Kelly D P, Monaghan D S, Pandey N, et al. Digital holographic capture and optoelectronic reconstruction for 3D displays[J]. Int J Digit Multimed Broadcast, 2010, 2010: 759323. doi: 10.1155/2010/75932

    CrossRef Google Scholar

    [20] Geng J. Three-dimensional display technologies[J]. Adv Opt Photonics, 2013, 5(4): 456−535. doi: 10.1364/AOP.5.000456

    CrossRef Google Scholar

    [21] Chen L Z, Zhu R Z, Zhang H. Speckle-free compact holographic near-eye display using camera-in-the-loop optimization with phase constraint[J]. Opt Express, 2022, 30(26): 46649−46665. doi: 10.1364/OE.475066

    CrossRef Google Scholar

    [22] Liu K X, Wu J C, He Z H, et al. 4K-DMDNet: diffraction model-driven network for 4K computer-generated holography[J]. Opto-Electron Adv, 2023, 6(5): 220135. doi: 10.29026/oea.2023.220135

    CrossRef Google Scholar

    [23] 隋晓萌, 何泽浩, 曹良才, 等. 基于液晶空间光调制器的计算全息波前编码方法[J]. 液晶与显示, 2022, 37(5): 613−624. doi: 10.37188/CJLCD.2022-0047

    CrossRef Google Scholar

    Sui X M, He Z H, Cao L C, et al. Wave-front encoding method of computer-generated holography based on liquid-crystal spatial light modulator[J]. Chin J Liq Cryst Dis, 2022, 37(5): 613−624. doi: 10.37188/CJLCD.2022-0047

    CrossRef Google Scholar

    [24] 刘娟, 皮大普, 王涌天. 实时全息三维显示技术研究进展[J]. 光学学报, 2023, 43(15): 1509001. doi: 10.3788/AOS230744

    CrossRef Google Scholar

    Liu J, Pi D P, Wang Y T. Research progress of real-time holographic 3D display technology[J]. Acta Opt Sin, 2023, 43(15): 1509001. doi: 10.3788/AOS230744

    CrossRef Google Scholar

    [25] Pi D P, Wang J, Liu J, et al. Color dynamic holographic display based on complex amplitude modulation with bandwidth constraint strategy[J]. Opt Lett, 2022, 47(17): 4379−4382. doi: 10.1364/OL.469463

    CrossRef Google Scholar

    [26] Sun K, Tan D Z, Fang X Y, et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass[J]. Science, 2022, 375(6578): 307−310. doi: 10.1126/science.abj2691

    CrossRef Google Scholar

    [27] Pi D P, Liu J, Wang J, et al. Optimized computer-generated hologram for enhancing depth cue based on complex amplitude modulation[J]. Opt Lett, 2022, 47(24): 6377−6380. doi: 10.1364/OL.476443

    CrossRef Google Scholar

    [28] Pi D P, Liu J, Han Y, et al. Acceleration of computer-generated hologram using wavefront-recording plane and look-up table in three-dimensional holographic display[J]. Opt Express, 2020, 28(7): 9833−9841. doi: 10.1364/OE.385388

    CrossRef Google Scholar

    [29] Peng Y, Nagase T, Kanamoto T, et al. A virtual optical holographic encryption system using expanded diffie-hellman algorithm[J]. IEEE Access, 2021, 9: 22071−22077. doi: 10.1109/ACCESS.2021.3055866

    CrossRef Google Scholar

    [30] Li J Y, Chen L, Cai W Y, et al. Holographic encryption algorithm based on bit-plane decomposition and hyperchaotic Lorenz system[J]. Opt Laser Technol, 2022, 152: 108127. doi: 10.1016/j.optlastec.2022.108127

    CrossRef Google Scholar

    [31] Hamadi I A, Jamal R K, Mousa S K. Image encryption based on computer generated hologram and rossler chaotic system[J]. Opt Quant Electron, 2022, 54(1): 33. doi: 10.1007/s11082-021-03406-9

    CrossRef Google Scholar

    [32] Dong Y B, Luan H T, Lin D J, et al. Laser-induced graphene hologram reconfiguration for countersurveillance multisecret sharing[J]. Laser Photonics Rev, 2023, 17(8): 2200805. doi: 10.1002/lpor.202200805

    CrossRef Google Scholar

    [33] Li K Y, Wang Y M, Pi D P, et al. Multi-dimensional multiplexing optical secret sharing framework with cascaded liquid crystal holograms[J]. Opto-Electron Adv, 2024, 7(1): 230121. doi: 10.29026/oea.2024.230121

    CrossRef Google Scholar

    [34] Song M H, Wang H J, Wu J B, et al. A robust watermarking hybrid algorithm for color image[J]. MATEC Web Conf, 2021, 336: 07012. doi: 10.1051/matecconf/202133607012

    CrossRef Google Scholar

    [35] Cheremkhin P A, Evtikhiev N N, Krasnov V V, et al. Iterative synthesis of binary inline fresnel holograms for high-quality reconstruction in divergent beams with DMD[J]. Opt Lasers Eng, 2022, 150: 106859. doi: 10.1016/j.optlaseng.2021.106859

    CrossRef Google Scholar

    [36] Huang L L, Chen X Z, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nat Commun, 2013, 4(1): 2808. doi: 10.1038/ncomms3808

    CrossRef Google Scholar

    [37] Wen D D, Cadusch J J, Meng J J, et al. Light field on a chip: metasurface-based multicolor holograms[J]. Adv Photonics, 2021, 3(2): 024001. doi: 10.1117/1.AP.3.2.024001

    CrossRef Google Scholar

    [38] Kim J, Seong J, Yang Y, et al. Tunable metasurfaces towards versatile metalenses and metaholograms: a review[J]. Adv Photonics, 2022, 4(2): 024001. doi: 10.1117/1.AP.4.2.024001

    CrossRef Google Scholar

    [39] Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 2015, 10(4): 308−312. doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [40] Ding X M, Wang Z C, Hu G W, et al. Metasurface holographic image projection based on mathematical properties of fourier transform[J]. PhotoniX, 2020, 1(1): 16. doi: 10.1186/s43074-020-00016-8

    CrossRef Google Scholar

    [41] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [42] Li G X, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces[J]. Nat Rev Mater, 2017, 2(5): 17010. doi: 10.1038/natrevmats.2017.10

    CrossRef Google Scholar

    [43] Chen S Q, Liu W W, Li Z C, et al. Metasurface‐empowered optical multiplexing and multifunction[J]. Ad Mater, 2020, 32(3): 1805912. doi: 10.1002/adma.201805912

    CrossRef Google Scholar

    [44] Deng Z L, Jin M K, Ye X, et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces[J]. Adv Funct Mater, 2020, 30(21): 1910610. doi: 10.1002/adfm.201910610

    CrossRef Google Scholar

    [45] Nemati A, Wang Q, Hong M H, et al. Tunable and reconfigurable metasurfaces and metadevices[J]. Opto-Electron Adv, 2018, 1(5): 180009. doi: 10.29026/oea.2018.180009

    CrossRef Google Scholar

    [46] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nat Mater, 2014, 13(2): 139−150. doi: 10.1038/nmat3839

    CrossRef Google Scholar

    [47] Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Lett, 2012, 12(9): 4932−4936. doi: 10.1021/nl302516v

    CrossRef Google Scholar

    [48] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009. doi: 10.1126/science.1232009

    CrossRef Google Scholar

    [49] Lin D M, Fan P Y, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298−302. doi: 10.1126/science.1253213

    CrossRef Google Scholar

    [50] Holloway C L, Kuester E F, Gordon J A, et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials[J]. IEEE Antennas Propag Mag, 2012, 54(2): 10−35. doi: 10.1109/MAP.2012.6230714

    CrossRef Google Scholar

    [51] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nat Commun, 2013, 4(1): 2807. doi: 10.1038/ncomms3807

    CrossRef Google Scholar

    [52] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat Nanotechnol, 2015, 10(11): 937−943. doi: 10.1038/nnano.2015.186

    CrossRef Google Scholar

    [53] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190−1194. doi: 10.1126/science.aaf6644

    CrossRef Google Scholar

    [54] Pors A, Nielsen M G, Eriksen R L, et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Lett, 2013, 13(2): 829−834. doi: 10.1021/nl304761m

    CrossRef Google Scholar

    [55] Wu P C, Tsai W Y, Chen W T, et al. Versatile polarization generation with an aluminum plasmonic metasurface[J]. Nano Lett, 2017, 17(1): 445−452. doi: 10.1021/acs.nanolett.6b04446

    CrossRef Google Scholar

    [56] Wang S, Deng Z L, Wang Y J, et al. Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincaré sphere polarizers[J]. Light Sci Appl, 2021, 10(1): 24. doi: 10.1038/s41377-021-00468-y

    CrossRef Google Scholar

    [57] Fan Q B, Liu M Z, Zhang C, et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces[J]. Phys Rev Lett, 2020, 125(26): 267402. doi: 10.1103/PhysRevLett.125.267402

    CrossRef Google Scholar

    [58] Cao L C, He Z H, Liu K X, et al. Progress and challenges in dynamic holographic 3D display for the metaverse (Invited)[J]. Infrared Laser Eng, 2022, 51(1): 20210935. doi: 10.3788/IRLA20210935

    CrossRef Google Scholar

    [59] 郑淑君, 林枭, 黄志云, 等. 基于偏光全息的光场调控研究进展[J]. 光电工程, 2022, 49(11): 220114. doi: 10.12086/oee.2022.220114

    CrossRef Google Scholar

    Zheng S J, Lin X, Huang Z Y, et al. Light field regulation based on polarization holography[J]. Opto-Electron Eng, 2022, 49(11): 220114. doi: 10.12086/oee.2022.220114

    CrossRef Google Scholar

    [60] 胡孟霞, 王志强, 李向平, 等. 超表面偏振信息编码[J]. 中国激光, 2023, 50(18): 1813010. doi: 10.3788/CJL230724

    CrossRef Google Scholar

    Hu M X, Wang Z Q, Li X P, et al. Metasurface polarization information encoding[J]. Chin J Lasers, 2023, 50(18): 1813010. doi: 10.3788/CJL230724

    CrossRef Google Scholar

    [61] Born M, Wolf E, Hecht E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light[J]. Phys Today, 2000, 53(10): 77−78. doi: 10.1063/1.1325200

    CrossRef Google Scholar

    [62] Dorrah A H, Rubin N A, Zaidi A, et al. Metasurface optics for on-demand polarization transformations along the optical path[J]. Nat Photonics, 2021, 15(4): 287−296. doi: 10.1038/s41566-020-00750-2

    CrossRef Google Scholar

    [63] Zhao R Z, Xiao X F, Geng G Z, et al. Polarization and holography recording in real- and k-space based on dielectric metasurface[J]. Adv Funct Mater, 2021, 31(27): 2100406. doi: 10.1002/adfm.202100406

    CrossRef Google Scholar

    [64] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304−1307. doi: 10.1126/science.1235399

    CrossRef Google Scholar

    [65] Gao Y J, Xiong X, Wang Z H, et al. Simultaneous generation of arbitrary assembly of polarization states with geometrical-scaling-induced phase modulation[J]. Phys Rev X, 2020, 10(3): 031035. doi: 10.1103/PhysRevX.10.031035

    CrossRef Google Scholar

    [66] Arbabi E, Kamali S M, Arbabi A, et al. Full-stokes imaging polarimetry using dielectric metasurfaces[J]. ACS Photonics, 2018, 5(8): 3132−3140. doi: 10.1021/acsphotonics.8b00362

    CrossRef Google Scholar

    [67] Balthasar Mueller J P, Rubin N A, Devlin RC, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Phys Rev Lett, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901

    CrossRef Google Scholar

    [68] Wen D D, Yue F Y, Li G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nat Commun, 2015, 6(1): 8241. doi: 10.1038/ncomms9241

    CrossRef Google Scholar

    [69] Goldstein D H. Polarized Light[M]. 3rd ed. Boca Raton: CRC Press, 2017.https://doi.org/10.1201/b10436.

    Google Scholar

    [70] Kumar A, Ghatak A. Polarization of Light with Applications in Optical Fibers[M]. Bellingham: SPIE Press, 2011.

    Google Scholar

    [71] Chipman R A, Lam W S T, Young G. Polarized Light and Optical Systems[M]. Boca Raton: CRC Press, 2018.https://doi.org/10.1201/9781351129121.

    Google Scholar

    [72] Azzam R M A, Bashara N M, Ballard S S. Ellipsometry and polarized light[J]. Phys Today, 1978, 31(11): 72−72. doi: 10.1063/1.2994821

    CrossRef Google Scholar

    [73] Ozaki M, Kato J I, Kawata S. Surface-plasmon holography with white-light illumination[J]. Science, 2011, 332(6026): 218−220. doi: 10.1126/science.1201045

    CrossRef Google Scholar

    [74] Montelongo Y, Tenorio-Pearl J O, Williams C, et al. Plasmonic nanoparticle scattering for color holograms[J]. Proc Natl Acad Sci USA, 2014, 111(35): 12679−12683. doi: 10.1073/pnas.1405262111

    CrossRef Google Scholar

    [75] Walther B, Helgert C, Rockstuhl C, et al. Spatial and spectral light shaping with metamaterials[J]. Adv Mater, 2012, 24(47): 6300−6304. doi: 10.1002/adma.201202540

    CrossRef Google Scholar

    [76] Huang Y W, Chen W T, Tsai W Y, et al. Aluminum plasmonic multicolor meta-hologram[J]. Nano Lett, 2015, 15(5): 3122−3127. doi: 10.1021/acs.nanolett.5b00184

    CrossRef Google Scholar

    [77] Wan W W, Gao J, Yang X D. Full-color plasmonic metasurface holograms[J]. ACS Nano, 2016, 10(12): 10671−10680. doi: 10.1021/acsnano.6b05453

    CrossRef Google Scholar

    [78] Masters B R. Fundamentals of photonics, second edition[J]. J Biomed Opt, 2008, 13(4): 049901. doi: 10.1117/1.2976006

    CrossRef Google Scholar

    [79] Zhao R Z, Sain B, Wei Q S, et al. Multichannel vectorial holographic display and encryption[J]. Light Sci Appl, 2018, 7: 95. doi: 10.1038/s41377-018-0091-0

    CrossRef Google Scholar

    [80] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35 (2): 237–246.

    Google Scholar

    [81] Hu Y Q, Li L, Wang Y J, et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface[J]. Nano Lett, 2020, 20(2): 994−1002. doi: 10.1021/acs.nanolett.9b04107

    CrossRef Google Scholar

    [82] Bao Y J, Wen L, Chen Q, et al. Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface[J]. Sci Adv, 2021, 7(25): eabh0365. doi: 10.1126/sciadv.abh0365

    CrossRef Google Scholar

    [83] Zhang S F, Huang L L, Geng G Z, et al. Full-stokes polarization transformations and time sequence metasurface holographic display[J]. Photonics Res, 2022, 10(4): 1031−1038. doi: 10.1364/PRJ.450354

    CrossRef Google Scholar

    [84] Bao Y J, Nan F, Yan J H, et al. Observation of full-parameter Jones matrix in bilayer metasurface[J]. Nat Commun, 2022, 13(1): 7550. doi: 10.1038/s41467-022-35313-2

    CrossRef Google Scholar

    [85] Zhang F, Pu M B, Luo J, et al. Symmetry breaking of photonic spin-orbit interactions in metasurfaces[J]. Opto-Electron Eng, 2017, 44(3): 319−325. doi: 10.3969/j.issn.1003-501X.2017.03.006

    CrossRef Google Scholar

    [86] Deng Z L, Deng J H, Zhuang X, et al. Diatomic metasurface for vectorial holography[J]. Nano Lett, 2018, 18(5): 2885−2892. doi: 10.1021/acs.nanolett.8b00047

    CrossRef Google Scholar

    [87] Ding F, Chang B D, Wei Q S, et al. Versatile polarization generation and manipulation using dielectric metasurfaces[J]. Laser Photonics Rev, 2020, 14(11): 2000116. doi: 10.1002/lpor.202000116

    CrossRef Google Scholar

    [88] Rubin N A, Zaidi A, Dorrah A H, et al. Jones matrix holography with metasurfaces[J]. Sci Adv, 2021, 7(33): eabg7488. doi: 10.1126/sciadv.abg7488

    CrossRef Google Scholar

    [89] Song Q H, Baroni A, Sawant R, et al. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces[J]. Nat Commun, 2020, 11(1): 2651. doi: 10.1038/s41467-020-16437-9

    CrossRef Google Scholar

    [90] Song Q, Khadir S, Vézian S, et al. Bandwidth-unlimited polarization-maintaining metasurfaces[J]. Sci Adv, 2021, 7(5): eabe1112. doi: 10.1126/sciadv.abe1112

    CrossRef Google Scholar

    [91] Wen D D, Cadusch J J, Meng J J, et al. Vectorial holograms with spatially continuous polarization distributions[J]. Nano Lett, 2021, 21(4): 1735−1741. doi: 10.1021/acs.nanolett.0c04555

    CrossRef Google Scholar

    [92] Song Q H, Baroni A, Wu P C, et al. Broadband decoupling of intensity and polarization with vectorial Fourier metasurfaces[J]. Nat Commun, 2021, 12(1): 3631. doi: 10.1038/s41467-021-23908-0

    CrossRef Google Scholar

    [93] Wan W P, Yang W H, Feng H, et al. Multiplexing vectorial holographic images with arbitrary metaholograms[J]. Adv Opt Mater, 2021, 9(20): 2100626. doi: 10.1002/adom.202100626

    CrossRef Google Scholar

    [94] Mao N B, Zhang G Q, Tang Y T, et al. Nonlinear vectorial holography with quad-atom metasurfaces[J]. Proc Natl Acad Sci USA, 2022, 119(22): e2204418119. doi: 10.1073/pnas.2204418119

    CrossRef Google Scholar

    [95] Jin L, Dong Z G, Mei S T, et al. Noninterleaved metasurface for (26–1) spin- and wavelength-encoded holograms[J]. Nano Lett, 2018, 18(12): 8016−8024. doi: 10.1021/acs.nanolett.8b04246

    CrossRef Google Scholar

    [96] Arbabi E, Kamali S M, Arbabi A, et al. Vectorial holograms with a dielectric metasurface: ultimate polarization pattern generation[J]. ACS Photonics, 2019, 6(11): 2712−2718. doi: 10.1021/acsphotonics.9b00678

    CrossRef Google Scholar

    [97] Kim I, Jang J, Kim G, et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform[J]. Nat Commun, 2021, 12(1): 3614. doi: 10.1038/s41467-021-23814-5

    CrossRef Google Scholar

    [98] Guo X Y, Zhong J Z, Li B J, et al. Full-color holographic display and encryption with full-polarization degree of freedom[J]. Adv Mater, 2022, 34(3): 2103192. doi: 10.1002/adma.202103192

    CrossRef Google Scholar

    [99] Wan W P, Yang W H, Ye S, et al. Tunable full-color vectorial meta-holography[J]. Adv Opt Mater, 2022, 10(22): 2201478. doi: 10.1002/adom.202201478

    CrossRef Google Scholar

    [100] Wang Z Y, Zhou Z, Zhang H, et al. Vectorial liquid-crystal holography[J]. eLight, 2024, 4(1): 5. doi: 10.1186/s43593-024-00061-x

    CrossRef Google Scholar

    [101] Ren H R, Shao W, Li Y, et al. Three-dimensional vectorial holography based on machine learning inverse design[J]. Sci Adv, 2020, 6(16): eaaz4261. doi: 10.1126/sciadv.aaz4261

    CrossRef Google Scholar

    [102] Fang X Y, Hu X N, Li B L, et al. Orbital angular momentum-mediated machine learning for high-accuracy mode-feature encoding[J]. Light Sci Appl, 2024, 13(1): 49. doi: 10.1038/s41377-024-01386-5

    CrossRef Google Scholar

    [103] Ni J C, Huang C, Zhou L M, et al. Multidimensional phase singularities in nanophotonics[J]. Science, 2021, 374(6566): eabj0039. doi: 10.1126/science.abj0039

    CrossRef Google Scholar

    [104] Ahmed S, Jiang X T, Wang C, et al. An insightful picture of nonlinear photonics in 2D materials and their applications: recent advances and future prospects[J]. Adv Opt Mater, 2021, 9(11): 2001671. doi: 10.1002/adom.202001671

    CrossRef Google Scholar

    [105] Fang X Y, Ren H R, Li K Y, et al. Nanophotonic manipulation of optical angular momentum for high-dimensional information optics[J]. Adv Opt Photonics, 2021, 13(4): 772−833. doi: 10.1364/AOP.414320

    CrossRef Google Scholar

    [106] Ren H R, Fang X Y, Jang J, et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nat Nanotechnol, 2020, 15(11): 948−955. doi: 10.1038/s41565-020-0768-4

    CrossRef Google Scholar

    [107] Meng W J, Hua Y H, Cheng K, et al. 100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution[J]. Opto-Electron Sci, 2022, 1(9): 220004. doi: 10.29026/oes.2022.220004

    CrossRef Google Scholar

    [108] Guo Y H, Pu M B, Zhao Z Y, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022−2029. doi: 10.1021/acsphotonics.6b00564

    CrossRef Google Scholar

    [109] Xiong B, Liu Y, Xu Y H, et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise[J]. Science, 2023, 379(6629): 294−299. doi: 10.1126/science.ade5140

    CrossRef Google Scholar

    [110] Liu Y C, Xu K, Fan X H, et al. Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates[J]. Opto-Electron Adv, 2024, 7(1): 230108. doi: 10.29026/oea.2024.230108

    CrossRef Google Scholar

    [111] Zhang F, Pu M B, Li X, et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions[J]. Adv Funct Mater, 2017, 27(47): 1704295. doi: 10.1002/adfm.201704295

    CrossRef Google Scholar

    [112] Li X P, Ren H R, Chen X, et al. Athermally photoreduced graphene oxides for three-dimensional holographic images[J]. Nat Commun, 2015, 6(1): 6984. doi: 10.1038/ncomms7984

    CrossRef Google Scholar

    [113] Li X, Chen L W, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Sci Adv, 2016, 2(11): e1601102. doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [114] Lim K T P, Liu H L, Liu Y J, et al. Holographic colour prints for enhanced optical security by combined phase and amplitude control[J]. Nat Commun, 2019, 10(1): 25. doi: 10.1038/s41467-018-07808-4

    CrossRef Google Scholar

    [115] Feldmann J, Youngblood N, Wright C D, et al. All-optical spiking neurosynaptic networks with self-learning capabilities[J]. Nature, 2019, 569(7755): 208−214. doi: 10.1038/s41586-019-1157-8

    CrossRef Google Scholar

    [116] Li X, Chen Q M, Zhang X, et al. Time-sequential color code division multiplexing holographic display with metasurface[J]. Opto-Electron Adv, 2023, 6(8): 220060. doi: 10.29026/oea.2023.220060

    CrossRef Google Scholar

    [117] Zhu S K, Zheng Z H, Meng W J, et al. Harnessing disordered photonics via multi-task learning towards intelligent four-dimensional light field sensors[J]. PhotoniX, 2023, 4(1): 26. doi: 10.1186/s43074-023-00102-7

    CrossRef Google Scholar

    [118] Wang J Y, Tan X D, Qi P L, et al. Linear polarization holography[J]. Opto-Electron Sci, 2022, 1(2): 210009. doi: 10.29026/oes.2022.210009

    CrossRef Google Scholar

    [119] Lalanne P, Astilean S, Chavel P, et al. Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff[J]. J Opt Soc Am A, 1999, 16(5): 1143−1156. doi: 10.1364/JOSAA.16.001143

    CrossRef Google Scholar

    [120] Genevet P, Capasso F, Aieta F, et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 2017, 4(1): 139−152. doi: 10.1364/OPTICA.4.000139

    CrossRef Google Scholar

    [121] Lalanne P, Chavel P. Metalenses at visible wavelengths: past, present, perspectives[J]. Laser Photonics Rev, 2017, 11(3): 1600295. doi: 10.1002/lpor.201600295

    CrossRef Google Scholar

    [122] Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications[J]. Rep Prog Phys, 2016, 79(7): 076401. doi: 10.1088/0034-4885/79/7/076401

    CrossRef Google Scholar

    [123] Wang S M, Wu P C, Su V C, et al. A broadband achromatic metalens in the visible[J]. Nat Nanotechnol, 2018, 13(3): 227−232. doi: 10.1038/s41565-017-0052-4

    CrossRef Google Scholar

    [124] Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pancharatnam–berry phase optical elements with computer-generated subwavelength gratings[J]. Opt Lett, 2002, 27(13): 1141−1143. doi: 10.1364/OL.27.001141

    CrossRef Google Scholar

    [125] Yan L B, Zhu W M, Karim M F, et al. 0.2 λ0 Thick adaptive retroreflector made of spin‐locked metasurface[J]. Adv Mater, 2018, 30(39): 1802721. doi: 10.1002/adma.201802721

    CrossRef Google Scholar

    [126] Song Q H, Wu P C, Zhu W M, et al. Split archimedean spiral metasurface for controllable GHz asymmetric transmission[J]. Appl Phys Lett, 2019, 114(15): 151105. doi: 10.1063/1.5084329

    CrossRef Google Scholar

    [127] Lassaline N, Brechbühler R, Vonk S J W, et al. Optical fourier surfaces[J]. Nature, 2020, 582(7813): 506−510. doi: 10.1038/s41586-020-2390-x

    CrossRef Google Scholar

    [128] Ren H R, Briere G, Fang X Y, et al. Metasurface orbital angular momentum holography[J]. Nat Commun, 2019, 10(1): 2986. doi: 10.1038/s41467-019-11030-1

    CrossRef Google Scholar

    [129] Yin X B, Ye Z L, Rho J, et al. Photonic spin hall effect at metasurfaces[J]. Science, 2013, 339(6126): 1405−1407. doi: 10.1126/science.1231758

    CrossRef Google Scholar

    [130] Devlin R C, Ambrosio A, Rubin N A, et al. Arbitrary spin-to–orbital angular momentum conversion of light[J]. Science, 2017, 358(6365): 896−901. doi: 10.1126/science.aao5392

    CrossRef Google Scholar

    [131] Zhao H, Wang X K, Liu S T, et al. Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band[J]. Opto-Electron Adv, 2023, 6(2): 220012. doi: 10.29026/oea.2023.220012

    CrossRef Google Scholar

  • Holography can record and reconstruct the full information of object light waves based on the principle of interference and diffraction. Due to its outstanding ability, holography is widely used in the fields of display, imaging, communication, encryption, etc. However, scalar holography only records the amplitude and phase information and has certain limitations in polarization information. The emergence of vectorial holography provides the possibility of modulating polarization information. Different from scalar holography, vectorial holography technology can record not only amplitude and phase information but also polarization information, which improves the freedom of modulation and the density of the recorded. Hence, vectorial holography holds promising applications in high-definition display, high-quality imaging, high-security encryption and high-speed communication. According to the development history of holography technology, this paper introduces the principles of scalar holography, and vectorial holography and highlights the advantages of vectorial holography in the aspect of polarization modulation. At the same time, the principles and designs of two different polarization control methods of vectorial holography are described, including the polarization control of incident light and output light, which provide important guidance and theoretical support for researchers. For the polarization control of reconstructed light waves, a 2×2 Jones matrix is widely used to express the relationship between the polarization state of the incident light wave and the outgoing light wave. In practice, the parameters of the hologram are deliberately designed to match the unique relationships between the polarization state of the incident light wave and the outgoing light wave for different reconstructed images. In this way, different reconstructed images can be switched by selecting the desired polarization with negligible polarization crosstalk. For the polarization control of output light, the incident light wave is decomposed into a couple of orthogonal polarized light, such as left circular polarization and right circular polarization, x-polarized light and y-polarized light, etc. By intentionally controlling the phase and amplitude of the two orthogonal polarized lights, an arbitrary state of polarization that covers the entire Poincare sphere can be generated. In addition, the advantages of vectorial holography in the field of display and encryption are demonstrated. Compared with scalar holography, vectorial holography has the advantages of being able to improve the quality of holographic images, better flexibility, and applicability, and solves some of the problems that scalar holography is currently facing. Finally, the problems and possible solutions in the development of vectorial holography technology and the future development trend are also discussed.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(4)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint