Yang H, He H R, Hu Y Q, et al. Metasurface-empowered vector light field regulation, detection and application[J]. Opto-Electron Eng, 2024, 51(8): 240168. doi: 10.12086/oee.2024.240168
Citation: Yang H, He H R, Hu Y Q, et al. Metasurface-empowered vector light field regulation, detection and application[J]. Opto-Electron Eng, 2024, 51(8): 240168. doi: 10.12086/oee.2024.240168

Metasurface-empowered vector light field regulation, detection and application

    Fund Project: Project supported the National Natural Science Foundation of China (62275078, 12204165, 52221001, 62205250), Natural Science Foundation of Hunan Province of China (2022JJ20020, 2023JJ40112), and Shenzhen Science and Technology Program (JCYJ20220530160405013)
More Information
  • The vector light field carrying angular momentum finds wide applications in various fields, such as particle manipulation, optical communication and display, optical information encryption, and high-dimensional quantum information processing. However, the conventional approach to vector light field regulation typically involves a series of cascaded optical elements, such as spiral phase plates, polarizers, quarter wave plates, vortex wave plates, spatial light modulators, etc., resulting in a bulky device that does not meet the requirements for future photonic device integration. The rapid development of metasurfaces offers a transformative solution for realizing integrated meta-devices for vector light field control. In this paper, we summarize the research progress on metasurface-based control and detection of vector light fields. Then, we systematically summarize the current applications of metasurface-based vector light fields in particle manipulation, edge enhancement imaging, holographic display, machine vision, and so on. Finally, we have summarized and discussed the full text as well as the challenges and provided an outlook on this emerging field.
  • 加载中
  • [1] Hao J M, Yuan Y, Ran L X, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Phys Rev Lett, 2007, 99(6): 063908. doi: 10.1103/PhysRevLett.99.063908

    CrossRef Google Scholar

    [2] Cao G T, Xu H X, Zhou L M, et al. Infrared metasurface-enabled compact polarization nanodevices[J]. Mater Today, 2021, 50: 499−515. doi: 10.1016/j.mattod.2021.06.014

    CrossRef Google Scholar

    [3] Li C H, Wieduwilt T, Wendisch F J, et al. Metafiber transforming arbitrarily structured light[J]. Nat Commun, 2023, 14(1): 7222. doi: 10.1038/s41467-023-43068-7

    CrossRef Google Scholar

    [4] Li X P, Venugopalan P, Ren H R, et al. Super-resolved pure-transverse focal fields with an enhanced energy density through focus of an azimuthally polarized first-order vortex beam[J]. Opt Lett, 2014, 39(20): 5961−5964. doi: 10.1364/OL.39.005961

    CrossRef Google Scholar

    [5] Choi Y, Yoon C, Kim M, et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber[J]. Phys Rev Lett, 2012, 109(20): 203901. doi: 10.1103/PhysRevLett.109.203901

    CrossRef Google Scholar

    [6] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313−316. doi: 10.1038/35085529

    CrossRef Google Scholar

    [7] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nat Photonics, 2012, 6(7): 488−496. doi: 10.1038/nphoton.2012.138

    CrossRef Google Scholar

    [8] Erhard M, Fickler R, Krenn M, et al. Twisted photons: new quantum perspectives in high dimensions[J]. Light Sci Appl, 2018, 7: 17146. doi: 10.1038/lsa.2017.146

    CrossRef Google Scholar

    [9] Bégin J L, Jain A, Parks A, et al. Nonlinear helical dichroism in chiral and achiral molecules[J]. Nat Photonics, 2023, 17(1): 82−88. doi: 10.1038/s41566-022-01100-0

    CrossRef Google Scholar

    [10] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [11] Dorrah A H, Capasso F. Tunable structured light with flat optics[J]. Science, 2022, 376(6591): eabi6860. doi: 10.1126/science.abi6860

    CrossRef Google Scholar

    [12] Xiong B, Liu Y, Xu Y H, et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise[J]. Science, 2023, 379(6629): 294−299. doi: 10.1126/science.ade5140

    CrossRef Google Scholar

    [13] Yang H, Ou K, Wan HY, et al. Metasurface-empowered optical cryptography[J]. Mater Today, 2023, 67: 424−445. doi: 10.1016/j.mattod.2023.06.003

    CrossRef Google Scholar

    [14] Yang Y, Seong J, Choi M, et al. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform[J]. Light Sci Appl, 2023, 12(1): 152. doi: 10.1038/s41377-023-01169-4

    CrossRef Google Scholar

    [15] 许可, 王星儿, 范旭浩, 等. 超表面全息术: 从概念到实现[J]. 光电工程, 2022, 49(10): 220183. doi: 10.12086/oee.2022.220183

    CrossRef Google Scholar

    Xu K, Wang X E, Fan X H, et al. Meta-holography: from concept to realization[J]. Opto-Electron Eng, 2022, 49(10): 220183. doi: 10.12086/oee.2022.220183

    CrossRef Google Scholar

    [16] Sun S L, Yang K Y, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Lett, 2012, 12(12): 6223−6229. doi: 10.1021/nl3032668

    CrossRef Google Scholar

    [17] Hu Y Q, Luo X H, Chen Y Q, et al. 3D-Integrated metasurfaces for full-colour holography[J]. Light Sci Appl, 2019, 8: 86. doi: 10.1038/s41377-019-0198-y

    CrossRef Google Scholar

    [18] Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 2015, 10(4): 308−312. doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [19] Zheng P X, Dai Q, Li Z L, et al. Metasurface-based key for computational imaging encryption[J]. Sci Adv, 2021, 7(21): eabg0363. doi: 10.1126/sciadv.abg0363

    CrossRef Google Scholar

    [20] Defienne H, Ndagano B, Lyons A, et al. Polarization entanglement-enabled quantum holography[J]. Nat Phys, 2021, 17(5): 591−597. doi: 10.1038/s41567-020-01156-1

    CrossRef Google Scholar

    [21] Qu G Y, Yang W H, Song Q H, et al. Reprogrammable meta-hologram for optical encryption[J]. Nat Commun, 2020, 11(1): 5484. doi: 10.1038/s41467-020-19312-9

    CrossRef Google Scholar

    [22] Zhao R Z, Huang L L, Wang Y T. Recent advances in multi-dimensional metasurfaces holographic technologies[J]. PhotoniX, 2020, 1(1): 20. doi: 10.1186/s43074-020-00020-y

    CrossRef Google Scholar

    [23] Yin X B, Ye Z L, Rho J, et al. Photonic spin Hall effect at metasurfaces[J]. Science, 2013, 339(6126): 1405−1407. doi: 10.1126/science.1231758

    CrossRef Google Scholar

    [24] Xiao S Y, Zhong F, Liu H, et al. Flexible coherent control of plasmonic spin-Hall effect[J]. Nat Commun, 2015, 6: 8360. doi: 10.1038/ncomms9360

    CrossRef Google Scholar

    [25] Ou K, Yu F L, Li G H, et al. Mid-infrared polarization-controlled broadband achromatic metadevice[J]. Sci Adv, 2020, 6(37): eabc0711. doi: 10.1126/sciadv.abc0711

    CrossRef Google Scholar

    [26] Hu Y Q, Jiang Y T, Zhang Y, et al. Asymptotic dispersion engineering for ultra-broadband meta-optics[J]. Nat Commun, 2023, 14(1): 6649. doi: 10.1038/s41467-023-42268-5

    CrossRef Google Scholar

    [27] Rubin N A, D’Aversa G, Chevalier P, et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J]. Science, 2019, 365(6448): eaax1839. doi: 10.1126/science.aax1839

    CrossRef Google Scholar

    [28] Wang Y J, Chen Q M, Yang W H, et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window[J]. Nat Commun, 2021, 12(1): 5560. doi: 10.1038/s41467-021-25797-9

    CrossRef Google Scholar

    [29] Xie L Y, Wan H Y, Ou K, et al. High‐efficiency broadband achromatic metadevice for spin‐to‐orbital angular momentum conversion of light in the near-infrared[J]. Small Sci, 2024, 4(5): 2300273. doi: 10.1002/smsc.202300273

    CrossRef Google Scholar

    [30] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat Nanotechnol, 2015, 10(11): 937−943. doi: 10.1038/nnano.2015.186

    CrossRef Google Scholar

    [31] Yang H, Xie Z W, Zhou Z Y, et al. Full-space polarization-regulated lightwave steering via single-layer metasurfaces[J]. J Phys D Appl Phys, 2020, 54(1): 015102. doi: 10.1088/1361-6463/abb7b8

    CrossRef Google Scholar

    [32] Yu N F, Aieta F, Genevet P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Lett, 2012, 12(12): 6328−6333. doi: 10.1021/nl303445u

    CrossRef Google Scholar

    [33] Hu Y Q, Wang X D, Luo X H, et al. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications[J]. Nanophotonics, 2020, 9(12): 3755−3780. doi: 10.1515/nanoph-2020-0220

    CrossRef Google Scholar

    [34] Wen D D, Pan K, Meng J J, et al. Broadband multichannel cylindrical vector beam generation by a single metasurface[J]. Laser Photon Rev, 2022, 16(10): 2200206. doi: 10.1002/lpor.202200206

    CrossRef Google Scholar

    [35] Shen Y J, Wang X J, Xie Z W, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light Sci Appl, 2019, 8: 90. doi: 10.1038/s41377-019-0194-2

    CrossRef Google Scholar

    [36] Wang H T, Wang H, Ruan Q F, et al. Coloured vortex beams with incoherent white light illumination[J]. Nat Nanotechnol, 2023, 18(3): 264−272. doi: 10.1038/s41565-023-01319-0

    CrossRef Google Scholar

    [37] Yang H, Xie Z W, He H R, et al. A perspective on twisted light from on-chip devices[J]. APL Photonics, 2021, 6(11): 110901. doi: 10.1063/5.0060736

    CrossRef Google Scholar

    [38] 张雪妍, 郁步昭, 王吉明, 等. 基于几何相位超表面的Ince-Gaussian矢量涡旋光场聚焦[J]. 激光技术, 2022, 46(1): 85−93. doi: 10.7510/jgjs.issn.1001-3806.2022.01.008

    CrossRef Google Scholar

    Zhang X Y, Yu B Z, Wang J M, et al. Focusing of Ince-Gaussian vector vortex optical field based on geometric phase metasurface[J]. Laser Technol, 2022, 46(1): 85−93. doi: 10.7510/jgjs.issn.1001-3806.2022.01.008

    CrossRef Google Scholar

    [39] Azzam R M A, Bashara N M. Ellipsometry and Polarized Light[M]. Amsterdam: North-Holland Pub. Co. , 1977.

    Google Scholar

    [40] Milione G, Sztul H I, Nolan D A, et al. Higher-order poincaré sphere, stokes parameters, and the angular momentum of light[J]. Phys Rev Lett, 2011, 107(5): 053601. doi: 10.1103/PhysRevLett.107.053601

    CrossRef Google Scholar

    [41] Naidoo D, Roux F S, Dudley A, et al. Controlled generation of higher-order Poincaré sphere beams from a laser[J]. Nat Photonics, 2016, 10(5): 327−332. doi: 10.1038/nphoton.2016.37

    CrossRef Google Scholar

    [42] Xu R, Chen P, Tang J, et al. Perfect higher-order poincaré sphere beams from digitalized geometric phases[J]. Phys Rev Appl, 2018, 10(3): 034061. doi: 10.1103/PhysRevApplied.10.034061

    CrossRef Google Scholar

    [43] Huang L L, Song X, Reineke B, et al. Volumetric generation of optical vortices with metasurfaces[J]. ACS Photonics, 2017, 4(2): 338−346. doi: 10.1021/acsphotonics.6b00808

    CrossRef Google Scholar

    [44] Wang X W, Nie Z Q, Liang Y, et al. Recent advances on optical vortex generation[J]. Nanophotonics, 2018, 7(9): 1533−1556. doi: 10.1515/nanoph-2018-0072

    CrossRef Google Scholar

    [45] Devlin R C, Ambrosio A, Rubin N A, et al. Arbitrary spin-to–orbital angular momentum conversion of light[J]. Science, 2017, 358(6365): 896−901. doi: 10.1126/science.aao5392

    CrossRef Google Scholar

    [46] Yang Y M, Wang W Y, Moitra P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Lett, 2014, 14(3): 1394−1399. doi: 10.1021/nl4044482

    CrossRef Google Scholar

    [47] Pu M B, Li X, Ma X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Sci Adv, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [48] Luo X G, Pu M B, Li X, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light Sci Appl, 2017, 6(6): e16276. doi: 10.1038/lsa.2016.276

    CrossRef Google Scholar

    [49] Zhang F, Pu M B, Li X, et al. Extreme‐angle silicon infrared optics enabled by streamlined surfaces[J]. Adv Mater, 2021, 33(11): 2008157. doi: 10.1002/adma.202008157

    CrossRef Google Scholar

    [50] Zhang X H, Chen Q M, Tang D L, et al. Broadband high-efficiency dielectric metalenses based on quasi-continuous nanostrips[J]. Opto-Electron Adv, 2024, 7(5): 230126. doi: 10.29026/oea.2024.230126

    CrossRef Google Scholar

    [51] Guo Y H, Pu M B, Zhao Z Y, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022−2029. doi: 10.1021/acsphotonics.6b00564

    CrossRef Google Scholar

    [52] Zhang F, Pu M B, Luo J, et al. Symmetry breaking of photonic spin-orbit interactions in metasurfaces[J]. Opto-Electron Eng, 2017, 44(3): 319−325. doi: 10.3969/j.issn.1003-501X.2017.03.006

    CrossRef Google Scholar

    [53] Bao Y J, Ni J C, Qiu C W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams[J]. Adv Mater, 2020, 32(6): 1905659. doi: 10.1002/adma.201905659

    CrossRef Google Scholar

    [54] Liu M Z, Huo P C, Zhu W Q, et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface[J]. Nat Commun, 2021, 12(1): 2230. doi: 10.1038/s41467-021-22462-z

    CrossRef Google Scholar

    [55] Ahmed H, Ansari M A, Li Y, et al. Dynamic control of hybrid grafted perfect vector vortex beams[J]. Nat Commun, 2023, 14(1): 3915. doi: 10.1038/s41467-023-39599-8

    CrossRef Google Scholar

    [56] Chen Q M, Qu G Y, Yin J, et al. Highly efficient vortex generation at the nanoscale[J]. Nat Nanotechnol, 2024, 19(7): 1000−1006. doi: 10.1038/s41565-024-01636-y

    CrossRef Google Scholar

    [57] Chen C F, Ku C T, Tai Y H, et al. Creating optical near-field orbital angular momentum in a gold metasurface[J]. Nano Lett, 2015, 15(4): 2746−2750. doi: 10.1021/acs.nanolett.5b00601

    CrossRef Google Scholar

    [58] Liu A P, Zou C L, Ren X F, et al. On-chip generation and control of the vortex beam[J]. Appl Phys Lett, 2016, 108(18): 181103. doi: 10.1063/1.4948519

    CrossRef Google Scholar

    [59] Ren H R, Li X P, Zhang Q M, et al. On-chip noninterference angular momentum multiplexing of broadband light[J]. Science, 2016, 352(6287): 805−809. doi: 10.1126/science.aaf1112

    CrossRef Google Scholar

    [60] Xie Z W, Lei T, Li F, et al. Ultra-broadband on-chip twisted light emitter for optical communications[J]. Light Sci Appl, 2018, 7: 18001. doi: 10.1038/lsa.2018.1

    CrossRef Google Scholar

    [61] Zhou N, Zheng S, Cao X P, et al. Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6× 3.6 μm2 footprint[J]. Sci Adv, 2019, 5(5): eaau9593. doi: 10.1126/sciadv.aau9593

    CrossRef Google Scholar

    [62] Ji J T, Wang Z Z, Sun J C, et al. Metasurface-enabled on-chip manipulation of higher-order poincaré sphere beams[J]. Nano Lett, 2023, 23(7): 2750−2757. doi: 10.1021/acs.nanolett.3c00021

    CrossRef Google Scholar

    [63] Dorrah A H, Rubin N A, Tamagnone M, et al. Structuring total angular momentum of light along the propagation direction with polarization-controlled meta-optics[J]. Nat Commun, 2021, 12: 6249. doi: 10.1038/s41467-021-26253-4

    CrossRef Google Scholar

    [64] Buono W T, Forbes A. Nonlinear optics with structured light[J]. Opto-Electron Adv, 2022, 5(6): 210174. doi: 10.29026/oea.2022.210174

    CrossRef Google Scholar

    [65] Luo X G, Pu M B, Zhang F, et al. Vector optical field manipulation via structural functional materials: tutorial[J]. J Appl Phys, 2022, 131(18): 181101. doi: 10.1063/5.0089859

    CrossRef Google Scholar

    [66] Nan T, Zhao H, Guo J Y, et al. Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces[J]. Opto-Electron Sci, 2024, 3(5): 230052 doi: 10.29026/oes.2024.230052

    CrossRef Google Scholar

    [67] Song Q H, Liu X S, Qiu C W, et al. Vectorial metasurface holography[J]. Appl Phys Rev, 2022, 9(1): 011311. doi: 10.1063/5.0078610

    CrossRef Google Scholar

    [68] Zhao R Z, Sain B, Wei Q S, et al. Multichannel vectorial holographic display and encryption[J]. Light Sci Appl, 2018, 7: 95. doi: 10.1038/s41377-018-0091-0

    CrossRef Google Scholar

    [69] Rubin N A, Zaidi A, Dorrah A H, et al. Jones matrix holography with metasurfaces[J]. Sci Adv, 2021, 7(33): eabg7488. doi: 10.1126/sciadv.abg7488

    CrossRef Google Scholar

    [70] Ding F, Chang B D, Wei Q S, et al. Versatile polarization generation and manipulation using dielectric metasurfaces[J]. Laser Photon Rev, 2020, 14(11): 2000116. doi: 10.1002/lpor.202000116

    CrossRef Google Scholar

    [71] Bao Y J, Wen L, Chen Q, et al. Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface[J]. Sci Adv, 2021, 7(25): eabh0365. doi: 10.1126/sciadv.abh0365

    CrossRef Google Scholar

    [72] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Phys Rev Lett, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901

    CrossRef Google Scholar

    [73] Deng Z L, Tu Q A, Wang Y J, et al. Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography[J]. Adv Mater, 2021, 33(43): 2103472. doi: 10.1002/adma.202103472

    CrossRef Google Scholar

    [74] Hu Y Q, Li L, Wang Y J, et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface[J]. Nano Lett, 2020, 20(2): 994−1002. doi: 10.1021/acs.nanolett.9b04107

    CrossRef Google Scholar

    [75] Deng Z L, Deng J H, Zhuang X, et al. Diatomic metasurface for vectorial holography[J]. Nano Lett, 2018, 18(5): 2885−2892. doi: 10.1021/acs.nanolett.8b00047

    CrossRef Google Scholar

    [76] Song Q H, Baroni A, Sawant R, et al. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces[J]. Nat Commun, 2020, 11(1): 2651. doi: 10.1038/s41467-020-16437-9

    CrossRef Google Scholar

    [77] Kim I, Jang J, Kim G, et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform[J]. Nat Commun, 2021, 12(1): 3614. doi: 10.1038/s41467-021-23814-5

    CrossRef Google Scholar

    [78] Yang H, Jiang Y T, Hu Y Q, et al. Noninterleaved metasurface for full‐polarization three‐dimensional vectorial holography[J]. Laser Photon Rev, 2022, 16(11): 2200351. doi: 10.1002/lpor.202200351

    CrossRef Google Scholar

    [79] Kim J, Jeon D, Seong J, et al. Photonic encryption platform via dual-band vectorial metaholograms in the ultraviolet and visible[J]. ACS Nano, 2022, 16(3): 3546−3553. doi: 10.1021/acsnano.1c10100

    CrossRef Google Scholar

    [80] Guo X Y, Zhong J Z, Li B J, et al. Full‐color holographic display and encryption with full‐polarization degree of freedom[J]. Adv Mater, 2022, 34(3): 2103192. doi: 10.1002/adma.202103192

    CrossRef Google Scholar

    [81] Yang H, He P, Ou K, et al. Angular momentum holography via a minimalist metasurface for optical nested encryption[J]. Light Sci Appl, 2023, 12(1): 79. doi: 10.1038/s41377-023-01125-2

    CrossRef Google Scholar

    [82] Yang Z Y, Wang Z K, Wang Y X, et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling[J]. Nat Commun, 2018, 9(1): 4607. doi: 10.1038/s41467-018-07056-6

    CrossRef Google Scholar

    [83] Mei S T, Huang K, Liu H, et al. On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits[J]. Nanoscale, 2016, 8(4): 2227−2233. doi: 10.1039/C5NR07374J

    CrossRef Google Scholar

    [84] Ou K, Li G H, Li T X, et al. High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces[J]. Nanoscale, 2018, 10(40): 19154−19161. doi: 10.1039/C8NR07480A

    CrossRef Google Scholar

    [85] Zhang S, Huo P C, Zhu W Q, et al. Broadband detection of multiple spin and orbital angular momenta via dielectric metasurface[J]. Laser Photon Rev, 2020, 14(9): 2000062. doi: 10.1002/lpor.202000062

    CrossRef Google Scholar

    [86] Feng F, Si G Y, Min C J, et al. On-chip plasmonic spin-Hall nanograting for simultaneously detecting phase and polarization singularities[J]. Light Sci Appl, 2020, 9: 95. doi: 10.1038/s41377-020-0330-z

    CrossRef Google Scholar

    [87] Chen J, Chen X, Li T, et al. On‐chip detection of orbital angular momentum beam by plasmonic nanogratings[J]. Laser Photon Rev, 2018, 12(8): 1700331. doi: 10.1002/lpor.201700331

    CrossRef Google Scholar

    [88] Guo Y H, Zhang S C, Pu M B, et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation[J]. Light Sci Appl, 2021, 10(1): 63. doi: 10.1038/s41377-021-00497-7

    CrossRef Google Scholar

    [89] Li X Y, Chen C, Guo Y H, et al. Monolithic spiral metalens for ultrahigh‐capacity and single‐shot sorting of full angular momentum state[J]. Adv Funct Mater, 2024, 34(7): 2311286. doi: 10.1002/adfm.202311286

    CrossRef Google Scholar

    [90] Chen C, Xiao X J, Ye X, et al. Neural network assisted high-spatial-resolution polarimetry with non-interleaved chiral metasurfaces[J]. Light Sci Appl, 2023, 12(1): 288. doi: 10.1038/s41377-023-01337-6

    CrossRef Google Scholar

    [91] Yang H, Xie Z W, Li G H, et al. All-dielectric metasurface for fully resolving arbitrary beams on a higher-order Poincaré sphere[J]. Photonics Res, 2021, 9(3): 331−343. doi: 10.1364/PRJ.411503

    CrossRef Google Scholar

    [92] Chantakit T, Schlickriede C, Sain B, et al. All-dielectric silicon metalens for two-dimensional particle manipulation in optical tweezers[J]. Photonics Res, 2020, 8(9): 1435−1440. doi: 10.1364/PRJ.389200

    CrossRef Google Scholar

    [93] Fang J C, Xie Z W, Lei T, et al. Spin-dependent optical geometric transformation for cylindrical vector beam multiplexing communication[J]. ACS Photonics, 2018, 5(9): 3478−3484. doi: 10.1021/acsphotonics.8b00680

    CrossRef Google Scholar

    [94] Kim Y, Lee G Y, Sung J, et al. Spiral metalens for phase contrast imaging[J]. Adv Funct Mater, 2022, 32(5): 2106050. doi: 10.1002/adfm.202106050

    CrossRef Google Scholar

    [95] Zhao H, Quan B G, Wang X K, et al. Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band[J]. ACS Photonics, 2018, 5(5): 1726−1732. doi: 10.1021/acsphotonics.7b01149

    CrossRef Google Scholar

    [96] Huo P C, Zhang C, Zhu W Q, et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging[J]. Nano Lett, 2020, 20(4): 2791−2798. doi: 10.1021/acs.nanolett.0c00471

    CrossRef Google Scholar

    [97] Li Y, Li X, Chen L W, et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface[J]. Adv Opt Mater, 2017, 5(2): 1600502. doi: 10.1002/adom.201600502

    CrossRef Google Scholar

    [98] Ren H R, Briere G, Fang X Y, et al. Metasurface orbital angular momentum holography[J]. Nat Commun, 2019, 10(1): 2986. doi: 10.1038/s41467-019-11030-1

    CrossRef Google Scholar

    [99] Ren H R, Fang X Y, Jang J, et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nat Nanotechnol, 2020, 15(11): 948−955. doi: 10.1038/s41565-020-0768-4

    CrossRef Google Scholar

    [100] Fang X Y, Hu X N, Li B L, et al. Orbital angular momentum-mediated machine learning for high-accuracy mode-feature encoding[J]. Light Sci Appl, 2024, 13(1): 49. doi: 10.1038/s41377-024-01386-5

    CrossRef Google Scholar

    [101] Han Z L, Frydendahl C, Mazurski N, et al. MEMS cantilever–controlled plasmonic colors for sustainable optical displays[J]. Sci Adv, 2022, 8(16): eabn0889. doi: 10.1126/sciadv.abn0889

    CrossRef Google Scholar

    [102] Ahmed R, Butt H. Strain‐multiplex metalens array for tunable focusing and imaging[J]. Adv Sci, 2021, 8(4): 2003394. doi: 10.1002/advs.202003394

    CrossRef Google Scholar

    [103] Shaltout A M, Shalaev V M, Brongersma M L. Spatiotemporal light control with active metasurfaces[J]. Science, 2019, 364(6441): eaat3100. doi: 10.1126/science.aat3100

    CrossRef Google Scholar

    [104] Yu P, Li J X, Liu N. Electrically tunable optical metasurfaces for dynamic polarization conversion[J]. Nano Lett, 2021, 21(15): 6690−6695. doi: 10.1021/acs.nanolett.1c02318

    CrossRef Google Scholar

    [105] Jung C, Kim G, Jeong M, et al. Metasurface-driven optically variable devices[J]. Chem Rev, 2021, 121(21): 13013−13050. doi: 10.1021/acs.chemrev.1c00294

    CrossRef Google Scholar

    [106] Shang X J, Xu L, Yang H, et al. Graphene-enabled reconfigurable terahertz wavefront modulator based on complete Fermi level modulated phase[J]. New J Phys, 2020, 22: 063054. doi: 10.1088/1367-2630/ab9428

    CrossRef Google Scholar

    [107] Fei Z, Rodin A S, Andreev G O, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature, 2012, 487(7405): 82−85. doi: 10.1038/nature11253

    CrossRef Google Scholar

    [108] Rajabalipanah H, Rouhi K, Abdolali A, et al. Real-time terahertz meta-cryptography using polarization-multiplexed graphene-based computer-generated holograms[J]. Nanophotonics, 2020, 9(9): 2861−2877. doi: 10.1515/nanoph-2020-0110

    CrossRef Google Scholar

    [109] Han S J, Kim S, Kim S, et al. Complete complex amplitude modulation with electronically tunable graphene plasmonic metamolecules[J]. ACS Nano, 2020, 14(1): 1166−1175. doi: 10.1021/acsnano.9b09277

    CrossRef Google Scholar

    [110] de Galarreta C R, Alexeev A M, Au Y Y, et al. Nonvolatile reconfigurable phase‐change metadevices for beam steering in the near infrared[J]. Adv Funct Mater, 2018, 28(10): 1704993. doi: 10.1002/adfm.201704993

    CrossRef Google Scholar

    [111] Liu H L, Dong W L, Wang H, et al. Rewritable color nanoprints in antimony trisulfide films[J]. Sci adv, 2020, 6(51): eabb7171. doi: 10.1126/sciadv.abb7171

    CrossRef Google Scholar

    [112] Zhang F, Xie X, Pu M B, et al. Multistate switching of photonic angular momentum coupling in phase‐change metadevices[J]. Adv Mater, 2020, 32(39): 1908194. doi: 10.1002/adma.201908194

    CrossRef Google Scholar

    [113] Xu Z Q, Luo H, Zhu H Z, et al. Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting[J]. Nano Lett, 2021, 21(12): 5269−5276. doi: 10.1021/acs.nanolett.1c01396

    CrossRef Google Scholar

    [114] Yang H, Xie Z W, He H R, et al. Switchable imaging between edge-enhanced and bright-field based on a phase-change metasurface[J]. Opt Lett, 2021, 46(15): 3741−3744. doi: 10.1364/OL.428870

    CrossRef Google Scholar

    [115] Hu Y Q, Ou X N, Zeng T B, et al. Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region[J]. Nano Lett, 2021, 21(11): 4554−4562. doi: 10.1021/acs.nanolett.1c00104

    CrossRef Google Scholar

    [116] Li J X, Yu P, Zhang S, et al. Electrically-controlled digital metasurface device for light projection displays[J]. Nat Commun, 2020, 11(1): 3574. doi: 10.1038/s41467-020-17390-3

    CrossRef Google Scholar

    [117] Li S Q, Xu X W, Veetil R M, et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J]. Science, 2019, 364(6445): 1087−1090. doi: 10.1126/science.aaw6747

    CrossRef Google Scholar

    [118] Michel A K U, Heßler A, Meyer S, et al. Advanced optical programming of individual meta‐atoms beyond the effective medium approach[J]. Adv Mater, 2019, 31(29): 1901033. doi: 10.1002/adma.201901033

    CrossRef Google Scholar

    [119] Li L L, Jun Cui T, Ji W, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nat Commun, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9

    CrossRef Google Scholar

    [120] Ma W, Liu Z C, Kudyshev Z A, et al. Deep learning for the design of photonic structures[J]. Nat Photonics, 2021, 15(2): 77−90. doi: 10.1038/s41566-020-0685-y

    CrossRef Google Scholar

    [121] Molesky S, Lin Z, Piggott A Y, et al. Inverse design in nanophotonics[J]. Nat Photonics, 2018, 12(11): 659−670. doi: 10.1038/s41566-018-0246-9

    CrossRef Google Scholar

    [122] Xu M F, He Q, Pu M B, et al. Emerging long‐range order from a freeform disordered metasurface[J]. Adv Mater, 2022, 34(12): 2108709. doi: 10.1002/adma.202108709

    CrossRef Google Scholar

    [123] Luo X H, Hu Y Q, Ou X N, et al. Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible[J]. Light Sci Appl, 2022, 11(1): 158. doi: 10.1038/s41377-022-00844-2

    CrossRef Google Scholar

    [124] Zheng H Y, Zhou Y, Ugwu C F, et al. Large-scale metasurfaces based on grayscale nanosphere lithography[J]. ACS Photonics, 2021, 8(6): 1824−1831. doi: 10.1021/acsphotonics.1c00424

    CrossRef Google Scholar

    [125] Chen Y Q, Shu Z W, Zhang S, et al. Sub-10 nm fabrication: methods and applications[J]. Int J Extrem Manuf, 2021, 3(3): 032002. doi: 10.1088/2631-7990/ac087c

    CrossRef Google Scholar

    [126] Lu X L, Wang X J, Wang S S, et al. Polarization-directed growth of spiral nanostructures by laser direct writing with vector beams[J]. Nat Commun, 2023, 14(1): 1422. doi: 10.1038/s41467-023-37048-0

    CrossRef Google Scholar

  • The vector light field carrying angular momentum finds wide applications in various fields such as particle manipulation, optical communication and display, optical information encryption, and high-dimensional quantum information processing. However, the conventional approach to vector light field regulation and detection typically involves a series of cascaded optical elements, such as spiral phase plates, polarizers, quarter wave plates, vortex wave plates, spatial light modulators, etc., resulting in a bulky device that does not meet the requirements for future photonic device integration. Metasurfaces, which are subwavelength spatially arrayed nanostructures at an interface, possess the ability to accurately control the abundant physical dimensions of light, including phase, amplitude, wavelength, polarization, and angular momentum. Owning to the unprecedented wavefront manipulation capacities, metasurfaces have enabled a series of highly compact and efficient meta-devices. The rapid development of metasurfaces also offers a transformative solution for realizing integrated meta-devices for vector light field control. In this paper, we summarize the research progress on metasurface-based control and detection of vector light fields. The basic principle and typical design strategy for vector light field modulation and detection are introduced in detail. For vector light field modulation, we review the principles and methods of generating vortex light field (donut distribution of light field energy) and vector holography (various patterns of light field energy), respectively. For vector light field detection based on metasurfaces, we introduce the development process from angular momentum detection to total Stokes parameters detection. Then, we systematically summarize the current applications of metasurface-based vector light fields in particle manipulation, edge enhancement imaging, holographic display, machine vision, and so on. Finally, we have summarized and discussed the full text as well as the challenges and provided an outlook on this emerging field.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint