Yan ZJ, Liu Z, Yang X, et al. Perovskite quantum dot color conversion Micro-LEDs: progress in stability and patterning[J]. Opto-Electron Eng, 2024, 51(7): 240088. doi: 10.12086/oee.2024.240088
Citation: Yan ZJ, Liu Z, Yang X, et al. Perovskite quantum dot color conversion Micro-LEDs: progress in stability and patterning[J]. Opto-Electron Eng, 2024, 51(7): 240088. doi: 10.12086/oee.2024.240088

Perovskite quantum dot color conversion Micro-LEDs: progress in stability and patterning

    Fund Project: Project supported by National Natural Science Foundation of China (62274138), Natural Science Foundation of Fujian Province of China (2023J06012), Science and Technology Plan Project in Fujian Province of China (2021H0011), Fundamental Research Funds for the Central Universities (20720230029), and Compound semiconductor technology Collaborative Innovation Platform project of FuXiaQuan National Independent Innovation Demonstration Zone (3502ZCQXT2022005)
More Information
  • Micro light-emitting diode (Micro-LED) display is considered the "next-generation" ultimate display technology due to its excellent display performance and optoelectronic properties. In order to meet the requirements of near-eye display applications, further miniaturization and integration of Micro-LED are necessary. With the continuous innovation of micro/nanopatterning technology, the fluorescent color conversion layer method has significant advantages such as low manufacturing cost. Compared to the three-color chip method, it is more suitable for virtual/augmented reality display applications that demand higher color gamut and resolution. Perovskite quantum dots (PQDs) are the most promising fluorescent color conversion materials. However, the inherent lattice instability of PQDs and degradation caused by external environmental factors pose significant challenges. Furthermore, it is crucial to develop micro-scale fluorescent array patterns that match the Micro-LED chip array. Therefore, this paper first discusses the factors that affect the structural instability of perovskite quantum dots. Then, it summarizes the applications of strategies such as ligand exchange, ion doping, surface coating, and chemical cross-linking in enhancing the stability of perovskite quantum dots. Finally, the latest research progress for fabricating high-resolution perovskite quantum dot fluorescent arrays using photolithography and inkjet printing techniques is summarized.
  • 加载中
  • [1] Xiong J H, Hsiang E L, He Z Q, et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives[J]. Light Sci Appl, 2021, 10(1): 216. doi: 10.1038/s41377-021-00658-8

    CrossRef Google Scholar

    [2] Yin K, Hsiang E L, Zou J Y, et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications[J]. Light Sci Appl, 2022, 11(1): 161. doi: 10.1038/s41377-022-00851-3

    CrossRef Google Scholar

    [3] Jin S X, Li J, Li J Z, et al. Gan microdisk light emitting diodes[J]. Appl Phys Lett, 2000, 76(5): 631−633. doi: 10.1063/1.125841

    CrossRef Google Scholar

    [4] Wu T Z, Sher C W, Lin Y, et al. Mini-LED and micro-LED: promising candidates for the next generation display technology[J]. Appl Sci, 2018, 8(9): 1557. doi: 10.3390/app8091557

    CrossRef Google Scholar

    [5] Lu T W, Lin Y, Zhang T Q, et al. Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications[J]. Opto-Electron Adv, 2024, 7(3): 230210. doi: 10.29026/oea.2024.230210

    CrossRef Google Scholar

    [6] Miao W C, Hsiao F H, Sheng Y J, et al. Microdisplays: mini-LED, micro-OLED, and micro-LED[J]. Adv Opt Mater, 2024, 12(7): 2300112. doi: 10.1002/adom.202300112

    CrossRef Google Scholar

    [7] Micro-LED: global strategic business report[EB/OL]. (2024). https://www.researchandmarkets.com/reports/4845811/micro-led-global-strategic-business-report.

    Google Scholar

    [8] Huang Y G, Tan G J, Gou F W, et al. Prospects and challenges of mini-LED and micro-LED displays[J]. J Soc Inf Disp, 2019, 27(7): 387−401. doi: 10.1002/jsid.760

    CrossRef Google Scholar

    [9] Lai S Q, Liu S B, Li Z L, et al. Applications of lasers: a promising route toward low-cost fabrication of high-efficiency full-color micro-LED displays[J]. Opto-Electron Sci, 2023, 2(10): 230028. doi: 10.29026/oes.2023.230028

    CrossRef Google Scholar

    [10] Yang F, Xu Y, Li L, et al. Optical and microstructural characterization of micro-LED with sidewall treatment[J]. J Phys D Appl Phys, 2022, 55(43): 435103. doi: 10.1088/1361-6463/ac8bdf

    CrossRef Google Scholar

    [11] Park J, Baek W, Geum D M, et al. Understanding the sidewall passivation effects in AlGaInP/GaInP micro-LED[J]. Nanoscale Res Lett, 2022, 17(1): 29. doi: 10.1186/s11671-022-03669-5

    CrossRef Google Scholar

    [12] Karpov S Y. Carrier localization in InGaN by composition fluctuations: implication to the "green gap"[J]. Photonics Res, 2017, 5(2): A7−A12. doi: 10.1364/PRJ.5.0000A7

    CrossRef Google Scholar

    [13] Yan Z J, Liu S Y, Sun Y, et al. Atomic layer deposition technology for the development of high-quality, full-colour micro-LED displays[J]. Next Nanotechnol, 2024, 5: 100051. doi: 10.1016/j.nxnano.2024.100051

    CrossRef Google Scholar

    [14] Lu T W, Lin X S, Guo W A, et al. High-speed visible light communication based on micro-LED: a technology with wide applications in next generation communication[J]. Opto-Electron Sci, 2022, 1(12): 220020. doi: 10.29026/oes.2022.220020

    CrossRef Google Scholar

    [15] Lee T Y, Huang Y M, Chiang H, et al. Increase in the efficiency of III-nitride micro LEDs by atomic layer deposition[J]. Opt Express, 2022, 30(11): 18552−18561. doi: 10.1364/OE.455726

    CrossRef Google Scholar

    [16] Wong M S, Kearns J A, Lee C, et al. Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments[J]. Opt Express, 2020, 28(4): 5787−5793. doi: 10.1364/OE.384127

    CrossRef Google Scholar

    [17] Zhao Y Z, Liang J Q, Zeng Q H, et al. 2000 ppi silicon-based AlGaInP red micro-LED arrays fabricated via wafer bonding and epilayer lift-off[J]. Opt Express, 2021, 29(13): 20217−20228. doi: 10.1364/OE.428482

    CrossRef Google Scholar

    [18] Yang X, Lin Y, Wu T Z, et al. An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities[J]. Opto-Electron Adv, 2022, 5(6): 210123. doi: 10.29026/oea.2022.210123

    CrossRef Google Scholar

    [19] Chaudhary B, Kshetri Y K, Kim H S, et al. Current status on synthesis, properties and applications of CsPbX3 (X = Cl, Br, I) perovskite quantum dots/nanocrystals[J]. Nanotechnology, 2021, 32(50): 502007. doi: 10.1088/1361-6528/ac2537

    CrossRef Google Scholar

    [20] Wu Y, Li X M, Zeng H B. Highly luminescent and stable halide perovskite nanocrystals[J]. ACS Energy Lett, 2019, 4(3): 673−681. doi: 10.1021/acsenergylett.8b02100

    CrossRef Google Scholar

    [21] Yan Z J, Ye F S, Xu L Y, et al. Optimum temperature of atomic layer deposition of alumina on CsPbBr3 quantum-dot for optical performance and environmental stability[J]. J Lumin, 2023, 261: 119905. doi: 10.1016/j.jlumin.2023.119905

    CrossRef Google Scholar

    [22] Shen J H, Wang Y, Zhu Y H, et al. A polymer-coated template-confinement CsPbBr3 perovskite quantum dot composite[J]. Nanoscale, 2021, 13(13): 6586−6591. doi: 10.1039/D1NR00201E

    CrossRef Google Scholar

    [23] Ho S J, Hsu H C, Yeh C W, et al. Inkjet-printed salt-encapsulated quantum dot film for UV-based RGB color-converted micro-light emitting diode displays[J]. ACS Appl Mater Interfaces, 2020, 12(29): 33346−33351. doi: 10.1021/acsami.0c05646

    CrossRef Google Scholar

    [24] Bi C H, Kershaw S V, Rogach A L, et al. Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol[J]. Adv Funct Mater, 2019, 29(29): 1902446. doi: 10.1002/adfm.201902446

    CrossRef Google Scholar

    [25] Bai D L, Zhang J R, Jin Z W, et al. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells[J]. ACS Energy Lett, 2018, 3(4): 970−978. doi: 10.1021/acsenergylett.8b00270

    CrossRef Google Scholar

    [26] Hou S C, Guo Y Z, Tang Y G, et al. Synthesis and stabilization of colloidal perovskite nanocrystals by multidentate polymer micelles[J]. ACS Appl Mater Interfaces, 2017, 9(22): 18417−18422. doi: 10.1021/acsami.7b03445

    CrossRef Google Scholar

    [27] Yang N, Zhu C, Chen Y H, et al. An in situ cross-linked 1D/3D perovskite heterostructure improves the stability of hybrid perovskite solar cells for over 3000 h operation[J]. Energy Environ Sci, 2020, 13(11): 4344−4352. doi: 10.1039/D0EE01736A

    CrossRef Google Scholar

    [28] Ma T, Chen J, Chen Z Y, et al. Progress in color conversion technology for micro-LED[J]. Adv Mater Technol, 2023, 8(1): 2200632. doi: 10.1002/admt.202200632

    CrossRef Google Scholar

    [29] Liang S Y, Liu Y F, Ji Z K, et al. High-resolution patterning of perovskite quantum dots via femtosecond laser-induced forward transfer[J]. Nano Lett, 2023, 23(9): 3769−3774. doi: 10.1021/acs.nanolett.3c00006

    CrossRef Google Scholar

    [30] Zhu L C, Tao J, Li P Y, et al. Microfluidic static droplet generated quantum dot arrays as color conversion layers for full-color micro-LED displays[J]. Nanoscale Adv, 2023, 5(10): 2743−2747. doi: 10.1039/D2NA00765G

    CrossRef Google Scholar

    [31] Zhao J Y, Chen L X, Li D Z, et al. Large-area patterning of full-color quantum dot arrays beyond 1000 pixels per inch by selective electrophoretic deposition[J]. Nat Commun, 2021, 12(1): 4603. doi: 10.1038/s41467-021-24931-x

    CrossRef Google Scholar

    [32] Ju M G, Chen M, Zhou Y Y, et al. Toward eco-friendly and stable perovskite materials for photovoltaics[J]. Joule, 2018, 2(7): 1231−1241. doi: 10.1016/j.joule.2018.04.026

    CrossRef Google Scholar

    [33] Zhou Y Y, Zhao Y X. Chemical stability and instability of inorganic halide perovskites[J]. Energy Environ Sci, 2019, 12(5): 1495−1511. doi: 10.1039/C8EE03559H

    CrossRef Google Scholar

    [34] Wei Y, Cheng Z Y, Lin J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs[J]. Chem Soc Rev, 2019, 48(1): 310−350. doi: 10.1039/C8CS00740C

    CrossRef Google Scholar

    [35] Nagabhushana G P, Shivaramaiah R, Navrotsky A. Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites[J]. Proc Natl Acad Sci USA, 2016, 113(28): 7717−7721. doi: 10.1073/pnas.1607850113

    CrossRef Google Scholar

    [36] Wu C, Zou Y T, Wu T, et al. Improved performance and stability of all-inorganic perovskite light-emitting diodes by antisolvent vapor treatment[J]. Adv Funct Mater, 2017, 27(28): 1700338. doi: 10.1002/adfm.201700338

    CrossRef Google Scholar

    [37] Guo J, Lu M, Zhang X Y, et al. Highly stable and efficient light-emitting diodes based on orthorhombic γ-CsPbI3 nanocrystals[J]. ACS Nano, 2023, 17(10): 9290−9301. doi: 10.1021/acsnano.3c00789

    CrossRef Google Scholar

    [38] Sutton R J, Filip M R, Haghighirad A A, et al. Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment[J]. ACS Energy Lett, 2018, 3(8): 1787−1794. doi: 10.1021/acsenergylett.8b00672

    CrossRef Google Scholar

    [39] Lin Y, Fan X T, Yang X, et al. Remarkable black-phase robustness of CsPbI3 nanocrystals sealed in solid SiO2/AlOx sub-micron particles[J]. Small, 2021, 17(50): 2103510. doi: 10.1002/smll.202103510

    CrossRef Google Scholar

    [40] Ke F, Wang C X, Jia C J, et al. Preserving a robust CsPbI3 perovskite phase via pressure-directed octahedral tilt[J]. Nat Commun, 2021, 12(1): 461. doi: 10.1038/s41467-020-20745-5

    CrossRef Google Scholar

    [41] Ma S, Kim S H, Jeong B, et al. Strain-mediated phase stabilization: a new strategy for ultrastable α-CsPbI3 perovskite by nanoconfined growth[J]. Small, 2019, 15(21): 1900219. doi: 10.1002/smll.201900219

    CrossRef Google Scholar

    [42] Steele J A, Jin H D, Dovgaliuk I, et al. Thermal unequilibrium of strained black CsPbI3 thin films[J]. Science, 2019, 365(6454): 679−684. doi: 10.1126/science.aax3878

    CrossRef Google Scholar

    [43] Moot T, Dikova D R, Hazarika A, et al. Beyond strain: controlling the surface chemistry of CsPbI3 nanocrystal films for improved stability against ambient reactive oxygen species[J]. Chem Mater, 2020, 32(18): 7850−7860. doi: 10.1021/acs.chemmater.0c02543

    CrossRef Google Scholar

    [44] Hayyan M, Hashim M A, AlNashef I M. Superoxide ion: generation and chemical implications[J]. Chem Rev, 2016, 116(5): 3029−3085. doi: 10.1021/acs.chemrev.5b00407

    CrossRef Google Scholar

    [45] Chen J S, Liu D Z, Al-Marri M J, et al. Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application[J]. Sci China-Mater, 2016, 59(9): 719−727. doi: 10.1007/s40843-016-5123-1

    CrossRef Google Scholar

    [46] Shwetharani R, Nayak V, Jyothi M S, et al. Review on recent advances of core-shell structured lead halide perovskites quantum dots[J]. J Alloys Compd, 2020, 834, 155246. doi: 10.1016/j.jallcom.2020.155246

    CrossRef Google Scholar

    [47] Gao Y J, Lin D X, Liu P Y, et al. Interaction mechanism between water molecules and perovskites[J]. Mater Chem Front, 2024, 8(3): 785−799. doi: 10.1039/D3QM00969F

    CrossRef Google Scholar

    [48] Calvin J J, Brewer A S, Alivisatos A P. The role of organic ligand shell structures in colloidal nanocrystal synthesis[J]. Nat Synth, 2022, 1(2): 127−137. doi: 10.1038/s44160-022-00025-4

    CrossRef Google Scholar

    [49] He X H, Yin Y L, Tang G, et al. Role of trioctylphosphine in the synthesis of quantum dots: a modulator of nucleation, growth, and solubility[J]. J Phys Chem C, 2023, 127(10): 5021−5028. doi: 10.1021/acs.jpcc.2c08346

    CrossRef Google Scholar

    [50] Liu M, Tang G, Liu Y, et al. Ligand exchange of quantum dots: a thermodynamic perspective[J]. J Phys Chem Lett, 2024, 15(7): 1975−1984. doi: 10.1021/acs.jpclett.3c03413

    CrossRef Google Scholar

    [51] Pan J, Quan L N, Zhao Y B, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering[J]. Adv Mater, 2016, 28(39): 8718−8725. doi: 10.1002/adma.201600784

    CrossRef Google Scholar

    [52] Huang Y H, Luan W L, Liu M K, et al. DDAB-assisted synthesis of iodine-rich CsPbI3 perovskite nanocrystals with improved stability in multiple environments[J]. J Mater Chem C, 2020, 8(7): 2381−2387. doi: 10.1039/C9TC06566K

    CrossRef Google Scholar

    [53] Cho S, Kim J, Jeong S M, et al. High-voltage and green-emitting perovskite quantum dot solar cells via solvent miscibility-induced solid-state ligand exchange[J]. Chem Mater, 2020, 32(20): 8808−8818. doi: 10.1021/acs.chemmater.0c02102

    CrossRef Google Scholar

    [54] Li Y M, Deng M, Zhang X Y, et al. Proton-prompted ligand exchange to achieve high-efficiency CsPbI3 quantum dot light-emitting diodes[J]. Nano-Micro Lett, 2024, 16(1): 105. doi: 10.1007/s40820-024-01321-8

    CrossRef Google Scholar

    [55] Tyagi P, Srivastava R, Giri L I, et al. Degradation of organic light emitting diode: heat related issues and solutions[J]. Synth Met, 2016, 216: 40−50. doi: 10.1016/j.synthmet.2015.10.016

    CrossRef Google Scholar

    [56] Wang Y K, Yuan F L, Dong Y T, et al. All-inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI3 perovskite[J]. Angew Chem Int Ed, 2021, 60(29): 16164−16170. doi: 10.1002/anie.202104812

    CrossRef Google Scholar

    [57] Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices[J]. Nat Photonics, 2018, 12(11): 681−687. doi: 10.1038/s41566-018-0260-y

    CrossRef Google Scholar

    [58] Krieg F, Ochsenbein S T, Yakunin S, et al. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability[J]. ACS Energy Lett, 2018, 3(3): 641−646. doi: 10.1021/acsenergylett.8b00035

    CrossRef Google Scholar

    [59] Zeng Z W, Meng Y H, Yang Z X, et al. Efficient CsPbBr3 perovskite light-emitting diodes via novel multi-step ligand exchange strategy based on zwitterionic molecules[J]. ACS Appl Mater Interfaces, 2024, 16(8): 10389−10397. doi: 10.1021/acsami.3c17324

    CrossRef Google Scholar

    [60] Ding N, Xu W, Zhou D L, et al. Extremely efficient quantum-cutting Cr3+, Ce3+, Yb3+ tridoped perovskite quantum dots for highly enhancing the ultraviolet response of silicon photodetectors with external quantum efficiency exceeding 70%[J]. Nano Energy, 2020, 78: 105278. doi: 10.1016/j.nanoen.2020.105278

    CrossRef Google Scholar

    [61] Gao Y, Yan C, Peng X D, et al. The metal doping strategy in all inorganic lead halide perovskites: synthesis, physicochemical properties, and optoelectronic applications[J]. Nanoscale, 2021, 13(43): 18010−18031. doi: 10.1039/D1NR04706J

    CrossRef Google Scholar

    [62] Goldschmidt V M. Die gesetze der krystallochemie[J]. Naturwissenschaften, 1926, 14(21): 477−485. doi: 10.1007/BF01507527

    CrossRef Google Scholar

    [63] Dunlap-Shohl W A, Zhou Y Y, Padture N P, et al. Synthetic approaches for halide perovskite thin films[J]. Chem Rev, 2019, 119(5): 3193−3295. doi: 10.1021/acs.chemrev.8b00318

    CrossRef Google Scholar

    [64] Ju M G, Dai J, Ma L, et al. Lead-free mixed tin and germanium perovskites for photovoltaic application[J]. J Am Chem Soc, 2017, 139(23): 8038−8043. doi: 10.1021/jacs.7b04219

    CrossRef Google Scholar

    [65] Travis W, Glover E N K, Bronstein H, et al. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system[J]. Chem Sci, 2016, 7(7): 4548−4556. doi: 10.1039/C5SC04845A

    CrossRef Google Scholar

    [66] Yao Z, Zhao W G, Chen S J, et al. Mn doping of CsPbI3 film towards high-efficiency solar cell[J]. ACS Appl Energy Mater, 2020, 3(6): 5190−5197. doi: 10.1021/acsaem.9b02468

    CrossRef Google Scholar

    [67] Linaburg M R, McClure E T, Majher J D, et al. Cs1– xRb xPbCl3 and Cs1– xRb xPbBr3 solid solutions: understanding octahedral tilting in lead halide perovskites[J]. Chem Mater, 2017, 29(8): 3507−3514. doi: 10.1021/acs.chemmater.6b05372

    CrossRef Google Scholar

    [68] Wu H, Yang Y, Zhou D C, et al. Rb+ cations enable the change of luminescence properties in perovskite (Rb xCs1− xPbBr3) quantum dots[J]. Nanoscale, 2018, 10(7): 3429−3437. doi: 10.1039/C7NR07776A

    CrossRef Google Scholar

    [69] Bi C H, Wang S X, Li Q, et al. Thermally stable copper(Ⅱ)-doped cesium lead halide perovskite quantum dots with strong blue emission[J]. J Phys Chem Lett, 2019, 10(5): 943−952. doi: 10.1021/acs.jpclett.9b00290

    CrossRef Google Scholar

    [70] Mondal N, De A, Samanta A. Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals[J]. ACS Energy Lett, 2019, 4(1): 32−39. doi: 10.1021/acsenergylett.8b01909

    CrossRef Google Scholar

    [71] Zhang Y Q, Tu D T, Wang L P, et al. Transition metal ion-doped cesium lead halide perovskite nanocrystals: doping strategies and luminescence design[J]. Mater Chem Front, 2024, 8(1): 192−209. doi: 10.1039/D3QM00691C

    CrossRef Google Scholar

    [72] Litvin A P, Margaryan I V, Yin W X, et al. B-site doping of metal halide perovskite nanoplatelets influences their optical properties[J]. Adv Opt Mater, 2024, 12(8): 2301001. doi: 10.1002/adom.202301001

    CrossRef Google Scholar

    [73] Dutta A, Pradhan N. Phase-stable red-emitting CsPbI3 nanocrystals: successes and challenges[J]. ACS Energy Lett, 2019, 4(3): 709−719. doi: 10.1021/acsenergylett.9b00138

    CrossRef Google Scholar

    [74] Behera R K, Dutta A, Ghosh D, et al. Doping the smallest shannon radii transition metal ion Ni(Ⅱ) for stabilizing α-CsPbI3 perovskite nanocrystals[J]. J Phys Chem Lett, 2019, 10(24): 7916−7921. doi: 10.1021/acs.jpclett.9b03306

    CrossRef Google Scholar

    [75] Liu M L, Jiang N Z, Huang H, et al. Ni2+-doped CsPbI3 perovskite nanocrystals with near-unity photoluminescence quantum yield and superior structure stability for red light-emitting devices[J]. Chem Eng J, 2021, 413: 127547. doi: 10.1016/j.cej.2020.127547

    CrossRef Google Scholar

    [76] Yang J N, Song Y, Yao J S, et al. Potassium bromide surface passivation on CsPbI3-xBr x nanocrystals for efficient and stable pure red perovskite light-emitting diodes[J]. J Am Chem Soc, 2020, 142(6): 2956−2967. doi: 10.1021/jacs.9b11719

    CrossRef Google Scholar

    [77] Hao X R, Liu H L, Ding W G, et al. Zn2+-doped lead-free CsMnCl3 nanocrystals enable efficient red emission with a high photoluminescence quantum yield[J]. J Phys Chem Lett, 2022, 13(21): 4688−4694. doi: 10.1021/acs.jpclett.2c01199

    CrossRef Google Scholar

    [78] Van Der Stam W, Geuchies J J, Altantzis T, et al. Highly emissive divalent-ion-doped colloidal CsPb1– xM xBr3 perovskite nanocrystals through cation exchange[J]. J Am Chem Soc, 2017, 139(11): 4087−4097. doi: 10.1021/jacs.6b13079

    CrossRef Google Scholar

    [79] Chiba T, Sato J, Ishikawa S, et al. Neodymium chloride-doped perovskite nanocrystals for efficient blue light-emitting devices[J]. ACS Appl Mater Interfaces, 2020, 12(48): 53891−53898. doi: 10.1021/acsami.0c11736

    CrossRef Google Scholar

    [80] Zhang H H, Wang X, Liao Q, et al. Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging[J]. Adv Funct Mater, 2017, 27(7): 1604382. doi: 10.1002/adfm.201604382

    CrossRef Google Scholar

    [81] Liang P T, Zhang P, Pan A Z, et al. Unusual stability and temperature-dependent properties of highly emissive CsPbBr3 perovskite nanocrystals obtained from in situ crystallization in poly(vinylidene difluoride)[J]. ACS Appl Mater Interfaces, 2019, 11(25): 22786−22793. doi: 10.1021/acsami.9b06811

    CrossRef Google Scholar

    [82] Yang L, Fu B W, Li X, et al. Poly(vinylidene fluoride)-passivated CsPbBr3 perovskite quantum dots with near-unity photoluminescence quantum yield and superior stability[J]. J Mater Chem C, 2021, 9(6): 1983−1991. doi: 10.1039/D0TC05103A

    CrossRef Google Scholar

    [83] Dong H R, Zhao H Y, Xuan T T, et al. Constructing perovskite/polymer core/shell nanocrystals with simultaneous high efficiency and stability for mini-LED backlights[J]. ACS Appl Mater Interfaces, 2023, 15(24): 29297−29307. doi: 10.1021/acsami.3c04337

    CrossRef Google Scholar

    [84] Xiao G J, Wang Y N, Han D, et al. Pressure-induced large emission enhancements of cadmium selenide nanocrystals[J]. J Am Chem Soc, 2018, 140(42): 13970−13975. doi: 10.1021/jacs.8b09416

    CrossRef Google Scholar

    [85] Zhou Q C, Bai Z L, Lu W G, et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights[J]. Adv Mater, 2016, 28(41): 9163−9168. doi: 10.1002/adma.201602651

    CrossRef Google Scholar

    [86] Wang Y N, He J, Chen H, et al. Ultrastable, highly luminescent organic–inorganic perovskite–polymer composite films[J]. Adv Mater, 2016, 28(48): 10710−10717. doi: 10.1002/adma.201603964

    CrossRef Google Scholar

    [87] Yang X, Valenzuela C, Zhang X, et al. Robust integration of polymerizable perovskite quantum dots with responsive polymers enables 4D-printed self-deployable information display[J]. Matter, 2023, 6(4): 1278−1294. doi: 10.1016/j.matt.2023.02.003

    CrossRef Google Scholar

    [88] Trinh C K, Ahmad Z. SiO2-coated lead halide perovskites core-shell and their applications: a mini-review[J]. R Soc Open Sci, 2024, 11(1): 230892. doi: 10.1098/rsos.230892

    CrossRef Google Scholar

    [89] Yang Y F, Zhang Y J, Li R, et al. Low-temperature atomic layer deposition of double-layer water vapor barrier for high humidity stable perovskite solar cells[J]. Adv Opt Mater, 2023, 11(14): 2300148. doi: 10.1002/adom.202300148

    CrossRef Google Scholar

    [90] He M D, Zhang Q G, Carulli F, et al. Ultra-stable, solution-processable CsPbBr3-SiO2 nanospheres for highly efficient color conversion in micro light-emitting diodes[J]. ACS Energy Lett, 2023, 8(1): 151−158. doi: 10.1021/acsenergylett.2c02062

    CrossRef Google Scholar

    [91] Zhou B Z, Liu M J, Wen Y W, et al. Atomic layer deposition for quantum dots based devices[J]. Opto-Electron Adv, 2020, 3(9): 190043. doi: 10.29026/oea.2020.190043

    CrossRef Google Scholar

    [92] Jing Y, Cao K, Zhou B Z, et al. Two-step hybrid passivation strategy for ultrastable photoluminescence perovskite nanocrystals[J]. Chem Mater, 2020, 32(24): 10653−10662. doi: 10.1021/acs.chemmater.0c03831

    CrossRef Google Scholar

    [93] Fang F, Liu M J, Chen W, et al. Atomic layer deposition assisted encapsulation of quantum dot luminescent microspheres toward display applications[J]. Adv Opt Mater, 2020, 8(12): 1902118. doi: 10.1002/adom.201902118

    CrossRef Google Scholar

    [94] Valdesueiro D, Prabhu M K, Guerra-Nunez C, et al. Deposition mechanism of aluminum oxide on quantum dot films at atmospheric pressure and room temperature[J]. J Phys Chem C, 2016, 120(8): 4266−4275. doi: 10.1021/acs.jpcc.5b11653

    CrossRef Google Scholar

    [95] Xiang Q Y, Zhou B Z, Cao K, et al. Bottom up stabilization of CsPbBr3 quantum dots-silica sphere with selective surface passivation via atomic layer deposition[J]. Chem Mater, 2018, 30(23): 8486−8494. doi: 10.1021/acs.chemmater.8b03096

    CrossRef Google Scholar

    [96] Bose R, Zheng Y Z, Guo T L, et al. Interface matters: enhanced photoluminescence and long-term stability of zero-dimensional cesium lead bromide nanocrystals via gas-phase aluminum oxide encapsulation[J]. ACS Appl Mater Interfaces, 2020, 12(31): 35598−35605. doi: 10.1021/acsami.0c07694

    CrossRef Google Scholar

    [97] Wang M, Lei Z Y, Du C, et al. Stabilization of CsPbBr3 nanocrystals via defect passivation and alumina encapsulation for high-power light-emitting diodes[J]. ACS Appl Nano Mater, 2023, 6(8): 6480−6487. doi: 10.1021/acsanm.2c04974

    CrossRef Google Scholar

    [98] Dong H Y, Zhang C H, Nie W J, et al. Interfacial chemistry triggers ultrafast radiative recombination in metal halide perovskites[J]. Angew Chem Int Ed, 2022, 61(13): e202115875. doi: 10.1002/anie.202115875

    CrossRef Google Scholar

    [99] Ravi V K, Saikia S, Yadav S, et al. CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability[J]. ACS Energy Lett, 2020, 5(6): 1794−1796. doi: 10.1021/acsenergylett.0c00858

    CrossRef Google Scholar

    [100] Chen X M, Zhang F, Ge Y, et al. Centimeter-sized Cs4PbBr6 crystals with embedded CsPbBr3 nanocrystals showing superior photoluminescence: nonstoichiometry induced transformation and light-emitting applications[J]. Adv Funct Mater, 2018, 28(16): 1706567. doi: 10.1002/adfm.201706567

    CrossRef Google Scholar

    [101] Dutta S K, Bera S, Pradhan N. Why is making epitaxially grown all inorganic perovskite–chalcogenide nanocrystal heterostructures challenging? Some facts and some strategies[J]. Chem Mater, 2021, 33(11): 3868−3877. doi: 10.1021/acs.chemmater.1c01000

    CrossRef Google Scholar

    [102] Bera S, Pradhan N. Perovskite nanocrystal heterostructures: synthesis, optical properties, and applications[J]. ACS Energy Lett, 2020, 5(9): 2858−2872. doi: 10.1021/acsenergylett.0c01449

    CrossRef Google Scholar

    [103] Shi J D, Ge W Y, Zhu J F, et al. Core–shell CsPbBr3@CdS quantum dots with enhanced stability and photoluminescence quantum yields for optoelectronic devices[J]. ACS Appl Nano Mater, 2020, 3(8): 7563−7571. doi: 10.1021/acsanm.0c01204

    CrossRef Google Scholar

    [104] Wu L Z, Hu H C, Xu Y, et al. From nonluminescent Cs4PbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: water-triggered transformation through a CsX-stripping mechanism[J]. Nano Lett, 2017, 17(9): 5799−5804. doi: 10.1021/acs.nanolett.7b02896

    CrossRef Google Scholar

    [105] Wang X R, Ding Z W, Huang X Z, et al. Cross-linking strategies for efficient and highly stable perovskite solar cells[J]. J Mater Chem C, 2024, 12(2): 351−387. doi: 10.1039/D3TC03183G

    CrossRef Google Scholar

    [106] Yin X, Wang Z Y, Zhao Y J, et al. Cross-linking polymerization boosts the performance of perovskite solar cells: from material design to performance regulation[J]. Energy Environ Sci, 2023, 16(10): 4251−4279. doi: 10.1039/D3EE01546G

    CrossRef Google Scholar

    [107] Liu Y, Sun W S, Xiao J, et al. Cross-linked polymer modified layered double hydroxide nanosheet stabilized CsPbBr3 perovskite quantum dots for white light-emitting diode[J]. Appl Clay Sci, 2022, 229: 106662. doi: 10.1016/j.clay.2022.106662

    CrossRef Google Scholar

    [108] Xiong P, Gong Y Q, Yang X L, et al. Effect of hydrophobic silica aerogels in-situ on encapsulation the stability of CsPbBr3 quantum dots for white light-emitting diodes[J]. J Alloys Compd, 2023, 938: 168541. doi: 10.1016/j.jallcom.2022.168541

    CrossRef Google Scholar

    [109] Hsu Y C, You Y H, Au-Duong A N, et al. Fabrication of intrinsic, elastic, self-healing, and luminescent CsPbBr3 quantum dot-polymer composites via thiol–ene cross-linking[J]. ACS Appl Polym Mater, 2022, 4(12): 8987−8995. doi: 10.1021/acsapm.2c01352

    CrossRef Google Scholar

    [110] Sun S Q, Jia P, Lu M, et al. Enhanced flexibility and stability of emissive layer enable high-performance flexible light-emitting diodes by cross-linking of biomass material[J]. Adv Funct Mater, 2022, 32(33): 2204286. doi: 10.1002/adfm.202204286

    CrossRef Google Scholar

    [111] Park S Y, Lee S, Yang J, et al. Patterning quantum dots via photolithography: a review[J]. Adv Mater, 2023, 35(41): 2300546. doi: 10.1002/adma.202300546

    CrossRef Google Scholar

    [112] Lee J, Jo H, Choi M, et al. Recent progress on quantum dot patterning technologies for commercialization of QD-LEDs: current status, future prospects, and exploratory approaches[J]. Small Methods, 2024, 8, 2301224. doi: 10.1002/smtd.202301224

    CrossRef Google Scholar

    [113] Harwell J, Burch J, Fikouras A, et al. Patterning multicolor hybrid perovskite films via top-down lithography[J]. ACS Nano, 2019, 13(4): 3823−3829. doi: 10.1021/acsnano.8b09592

    CrossRef Google Scholar

    [114] Jeon S, Lee S Y, Kim S K, et al. All-solution processed multicolor patterning technique of perovskite nanocrystal for color pixel array and flexible optoelectronic devices[J]. Adv Opt Mater, 2020, 8(17): 2000501. doi: 10.1002/adom.202000501

    CrossRef Google Scholar

    [115] Zhang P P, Yang G L, Li F, et al. Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes[J]. Nat Commun, 2022, 13(1): 6713. doi: 10.1038/s41467-022-34453-9

    CrossRef Google Scholar

    [116] Noh S H, Jeong W, Lee K H, et al. Photocrosslinkable zwitterionic ligands for perovskite nanocrystals: self-assembly and high-resolution direct patterning[J]. Adv Funct Mater, 2023, 33(41): 2304004. doi: 10.1002/adfm.202304004

    CrossRef Google Scholar

    [117] Lin C H, Zeng Q J, Lafalce E, et al. Large-area lasing and multicolor perovskite quantum dot patterns[J]. Adv Opt Mater, 2018, 6(16): 1800474. doi: 10.1002/adom.201800474

    CrossRef Google Scholar

    [118] Guo W S, Chen J, Ma T, et al. Direct photolithography patterning of quantum dot-polymer[J]. Adv Funct Mater, 2024, 34(10): 2310338. doi: 10.1002/adfm.202310338

    CrossRef Google Scholar

    [119] Maeng S, Park S J, Lee J, et al. Direct photocatalytic patterning of colloidal emissive nanomaterials[J]. Sci Adv, 2023, 9(33): eadi6950. doi: 10.1126/sciadv.adi6950

    CrossRef Google Scholar

    [120] Sun W C, Li F, Tao J, et al. Micropore filling fabrication of high resolution patterned PQDs with a pixel size less than 5 μm[J]. Nanoscale, 2022, 14(16): 5994−5998. doi: 10.1039/D2NR01115H

    CrossRef Google Scholar

    [121] Xuan T T, Shi S C, Wang L, et al. Inkjet-printed quantum dot color conversion films for high-resolution and full-color micro light-emitting diode displays[J]. J Phys Chem Lett, 2020, 11(13): 5184−5191. doi: 10.1021/acs.jpclett.0c01451

    CrossRef Google Scholar

    [122] Wilkinson N J, Smith M A A, Kay R W, et al. A review of aerosol jet printing–a non-traditional hybrid process for micro-manufacturing[J]. Int J Adv Manuf Technol, 2019, 105(11): 4599−4619. doi: 10.1007/s00170-019-03438-2

    CrossRef Google Scholar

    [123] Oakley C, Chahal P. Aerosol jet printed quasi-optical terahertz components[J]. IEEE Trans Terahertz Sci Technol, 2018, 8(6): 765−772. doi: 10.1109/TTHZ.2018.2873915

    CrossRef Google Scholar

    [124] Chen G, Gu Y, Tsang H, et al. The effect of droplet sizes on overspray in aerosol-jet printing[J]. Adv Eng Mater, 2018, 20(8): 1701084. doi: 10.1002/adem.201701084

    CrossRef Google Scholar

    [125] Kim S, Kang S, Baek S, et al. Highly thin film with aerosol-deposited perovskite quantum dot/metal oxide composite for perfect color conversion and luminance enhancement[J]. Chem Eng J, 2022, 441: 135991. doi: 10.1016/j.cej.2022.135991

    CrossRef Google Scholar

    [126] Kang G, Lee H, Moon J, et al. Electrohydrodynamic jet-printed MAPbBr3 perovskite/polyacrylonitrile nanostructures for water-stable, flexible, and transparent displays[J]. ACS Appl Nano Mater, 2022, 5(5): 6726−6735. doi: 10.1021/acsanm.2c00753

    CrossRef Google Scholar

    [127] Yang X, Wang S L, Hou Y Q, et al. Dual-ligand red perovskite ink for electrohydrodynamic printing color conversion arrays over 2540 dpi in near-eye micro-LED display[J]. Nano Lett, 2024, 24(12): 3661−3669. doi: 10.1021/acs.nanolett.3c04927

    CrossRef Google Scholar

    [128] Laurila M M. Super inkjet printed redistribution layer for a mems device[D]. Tampere: Tampere University of Technology, 2015: 73.

    Google Scholar

    [129] Yang X, Yan Z J, Zhong C M, et al. Electrohydrodynamically printed high-resolution arrays based on stabilized CsPbBr3 quantum dot inks[J]. Adv Opt Mater, 2023, 11(9): 2202673. doi: 10.1002/adom.202202673

    CrossRef Google Scholar

    [130] Chen S W H, Shen C C, Wu T Z, et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer[J]. Photonics Res, 2019, 7(4): 416−422. doi: 10.1364/PRJ.7.000416

    CrossRef Google Scholar

    [131] Wang Q L, Zhang G N, Zhang H Y, et al. High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based ink[J]. Adv Funct Mater, 2021, 31(28): 2100857. doi: 10.1002/adfm.202100857

    CrossRef Google Scholar

  • Micro-LEDs, as microscale light-emitting diode displays, are widely regarded as the ultimate choice for next-generation display technology due to their exceptional display performance and optoelectronic properties. Through miniaturization and high integration, Micro-LEDs have surpassed LCD and OLED technologies. Currently, the methods employed to achieve full-color Micro-LEDs primarily involve the use of trichromatic chips and photoluminescent quantum dot (PQD) conversion layers. However, one of the major challenges faced by the trichromatic chip approach is large-scale transfer technology, which affects transfer efficiency, precision, and yield. Moreover, the demand for ultra-high pixel density displays has led to a further reduction in Micro-LED chip size, increasing the difficulty of chip transfer and resulting in high manufacturing costs. Additionally, the impact of sidewall damage during the fabrication process on the performance of small-sized Micro-LEDs cannot be overlooked. In recent years, the fabrication of patterned full-color Micro-LED displays using PQDs conversion layers has garnered significant attention. However, a PQD possess ionic properties and low surface energy, making them highly susceptible to the external environment, including water, oxygen, heat, and light. The high dissociation of long-chain surface ligands leads to increased surface defects and particle aggregation, severely impacting the performance of PQD-based Micro-LED displays. To overcome these challenges, several strategies have been proposed, including ligand exchange, ion doping, surface encapsulation, and chemical cross-linking. These methods effectively passivate surface defects of PQDs, enhance lattice stability, and suppress non-radiative recombination pathways. By employing stability-enhancing techniques such as strong ligand bonding, lattice adjustment, organic/inorganic shell encapsulation, and covalent cross-linking, ion diffusion in PQDs can be inhibited, thereby improving their environmental stability. For achieving exceptional full-color Micro-LEDs, these stability-enhancing approaches can be combined with photolithography and inkjet printing techniques to fabricate PQDs conversion layers with high resolution, stability, and luminance. This review begins by elucidating the causes of structural instability in PQDs. Subsequently, it summarizes the applications of ligand exchange, ion doping, surface encapsulation, and chemical cross-linking in enhancing the stability of perovskite quantum dots. Finally, the latest research advancements in photolithography and inkjet printing techniques for fabricating high-resolution perovskite quantum dot fluorescent arrays are presented. By synthesizing these findings, this comprehensive review specifically emphasizes the strategies employed to enhance the stability and performance of patterned Micro-LED displays with perovskite quantum dot conversion layers.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint