Xiang S Y, Song Z W, Zhang Y H, et al. Progress in the research of optical neural networks[J]. Opto-Electron Eng, 2024, 51(7): 240101. doi: 10.12086/oee.2024.240101
Citation: Xiang S Y, Song Z W, Zhang Y H, et al. Progress in the research of optical neural networks[J]. Opto-Electron Eng, 2024, 51(7): 240101. doi: 10.12086/oee.2024.240101

Progress in the research of optical neural networks

    Fund Project: Project supported by National Key Research and Development Program of China (2021YFB2801900, 2021YFB2801901, 2021YFB2801902, 2021YFB2801903, 2021YFB2801904, 2018YFE0201200), National Outstanding Youth Science Fund Project of National Natural Science Foundation of China (62022062), National Natural Science Foundation of China (61974177), and the Fundamental Research Funds for the Central Universities (QTZX23041)
More Information
  • In the era of massive data and information, electronic computer processing systems face increasingly greater demands on computing power and energy consumption. Bottlenecks such as the "memory wall" and "power wall" inherent in the traditional von Neumann architecture, coupled with the slowing down or even invalidation of Moore's Law, have posed significant challenges to electronic chips in terms of computing speed and power consumption. Utilizing optical computing as an alternative to traditional electronic computing represents one of the most promising avenues to address current challenges in computing power and power consumption. This review systematically summarized the research progress of optical neural network architectures and algorithms in both on-chip integration and free space, and described typical research efforts in detail. Then, the advantages and disadvantages of these two types of optical neural networks and the training strategies of optical neural networks were discussed and compared. Finally, the potential challenges that optical neural networks may encounter were discussed in depth, and a forward-looking perspective on their future development was offered.
  • 加载中
  • [1] McCarthy J, Minsky M L, Rochester N, et al. A proposal for the Dartmouth summer research project on artificial intelligence: August 31, 1955[J]. AI Mag, 2006, 27(4): 12−14. doi: 10.1609/aimag.v27i4.1904

    CrossRef Google Scholar

    [2] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436−444. doi: 10.1038/nature14539

    CrossRef Google Scholar

    [3] Moore G E. Cramming more components onto integrated circuits[J]. Electronics, 1965, 38 (8): 114–117.

    Google Scholar

    [4] Mead C. Neuromorphic electronic systems[J]. Proc IEEE, 1990, 78(10): 1629−1636. doi: 10.1109/5.58356

    CrossRef Google Scholar

    [5] Amunts K, Ebell C, Muller J, et al. The human brain project: creating a European research infrastructure to decode the human brain[J]. Neuron, 2016, 92(3): 574−581. doi: 10.1016/j.neuron.2016.10.046

    CrossRef Google Scholar

    [6] Insel T R, Landis S C, Collins F S. The NIH BRAIN initiative[J]. Science, 2013, 340(6133): 687−688. doi: 10.1126/science.1239276

    CrossRef Google Scholar

    [7] Martin C L, Chun M. The BRAIN initiative: building, strengthening, and sustaining[J]. Neuron, 2016, 92(3): 570−573. doi: 10.1016/j.neuron.2016.10.039

    CrossRef Google Scholar

    [8] Ngai J. BRAIN 2.0: transforming neuroscience[J]. Cell, 2022, 185(1): 4−8. doi: 10.1016/j.cell.2021.11.037

    CrossRef Google Scholar

    [9] Okano H, Sasaki E, Yamamori T, et al. Brain/MINDS: a Japanese national brain project for marmoset neuroscience[J]. Neuron, 2016, 92(3): 582−590. doi: 10.1016/j.neuron.2016.10.018

    CrossRef Google Scholar

    [10] Poo M M. Whereto the mega brain projects?[J]. Natl Sci Rev, 2014, 1(1): 12−14. doi: 10.1093/nsr/nwt019

    CrossRef Google Scholar

    [11] Poo M M, Du J L, Ip N Y, et al. China brain project: basic neuroscience, brain diseases, and brain-Inspired computing[J]. Neuron, 2016, 92(3): 591−596. doi: 10.1016/j.neuron.2016.10.050

    CrossRef Google Scholar

    [12] 蒲慕明, 徐波, 谭铁牛. 脑科学与类脑研究概述[J]. 中国科学院院刊, 2016, 31(7): 725−736 doi: 10.16418/j.issn.1000-3045.2016.07.001

    CrossRef Google Scholar

    Poo M M, Xu B, Tan T N. Brain science and brain-inspired intelligence technolog—an overview[J]. Bull Chin Acad Sci, 2016, 31(7): 725−736 doi: 10.16418/j.issn.1000-3045.2016.07.001

    CrossRef Google Scholar

    [13] 黄铁军, 施路平, 唐华锦, 等. 多媒体技术研究: 2015——类脑计算的研究进展与发展趋势[J]. 中国图象图形学报, 2016, 21(11): 1411−1424. doi: 10.11834/jig.20161101

    CrossRef Google Scholar

    Huang T J, Shi L P, Tang H J, et al. Research on multimedia technology 2015——advances and trend of brain-like computing[J]. J Image Graphics, 2016, 21(11): 1411−1424. doi: 10.11834/jig.20161101

    CrossRef Google Scholar

    [14] 项水英, 宋紫薇, 高爽, 等. 光神经形态计算研究进展与展望(特邀)[J]. 光子学报, 2021, 50(10): 1020001. doi: 10.3788/gzxb20215010.1020001

    CrossRef Google Scholar

    Xiang S Y, Song Z W, Gao S, et al. Progress and prospects of photonic neuromorphic computing (Invited)[J]. Acta Photonica Sin, 2021, 50(10): 1020001. doi: 10.3788/gzxb20215010.1020001

    CrossRef Google Scholar

    [15] Painkras E, Plana L A, Garside J, et al. SpiNNaker: a 1-W 18-core system-on-chip for massively-parallel neural network simulation[J]. IEEE J Solid-State Circuits, 2013, 48(8): 1943−1953. doi: 10.1109/JSSC.2013.2259038

    CrossRef Google Scholar

    [16] Benjamin B V, Gao P R, McQuinn E, et al. Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations[J]. Proc IEEE, 2014, 102(5): 699−716. doi: 10.1109/JPROC.2014.2313565

    CrossRef Google Scholar

    [17] Merolla P A, Arthur J V, Alvarez-Icaza R, et al. A million spiking-neuron integrated circuit with a scalable communication network and interface[J]. Science, 2014, 345(6197): 668−673. doi: 10.1126/science.1254642

    CrossRef Google Scholar

    [18] Schemmel J, Brüderle D, Grübl A, et al. A wafer-scale neuromorphic hardware system for large-scale neural modeling[C]//2010 IEEE International Symposium on Circuits and Systems (ISCAS), 2010: 1947–1950. https://doi.org/10.1109/ISCAS.2010.5536970.

    Google Scholar

    [19] Ma D, Shen J C, Gu Z H, et al. Darwin: a neuromorphic hardware co-processor based on spiking neural networks[J]. J Syst Archit, 2017, 77: 43−51. doi: 10.1016/j.sysarc.2017.01.003

    CrossRef Google Scholar

    [20] Davies M, Srinivasa N, Lin T H, et al. Loihi: a neuromorphic manycore processor with on-chip learning[J]. IEEE Micro, 2018, 38(1): 82−99. doi: 10.1109/MM.2018.112130359

    CrossRef Google Scholar

    [21] Orchard G, Frady E P, Rubin D B D, et al. Efficient neuromorphic signal processing with loihi 2[C]//2021 IEEE Workshop on Signal Processing Systems (SiPS), 2021: 254–259. https://doi.org/10.1109/SiPS52927.2021.00053.

    Google Scholar

    [22] Shi L P, Pei J, Deng N, et al. Development of a neuromorphic computing system[C]//2015 IEEE International Electron Devices Meeting (IEDM), 2015: 4.3.1–4.3.4. https://doi.org/10.1109/IEDM.2015.7409624.

    Google Scholar

    [23] Liu Z S, Chen S, Qu P Y, et al. SUSHI: ultra-high-speed and ultra-low-power neuromorphic chip using superconducting single-flux-quantum circuits[C]//Proceedings of the 56th Annual IEEE/ACM International Symposium on Microarchitecture, 2023: 614–627.

    Google Scholar

    [24] Miller D. Device requirements for optical interconnects to silicon chips[J]. Proc IEEE, 2009, 97(7): 1166−1185. doi: 10.1109/JPROC.2009.2014298

    CrossRef Google Scholar

    [25] Nahmias M A, De Lima T F, Tait A N, et al. Photonic multiply-accumulate operations for neural networks[J]. IEEE J Sel Top Quantum Electron, 2020, 26(1): 7701518. doi: 10.1109/JSTQE.2019.2941485

    CrossRef Google Scholar

    [26] Tait A N, Nahmias M A, Tian Y, et al. Photonic neuromorphic signal processing and computing[M]//Naruse M. Nanophotonic Information Physics: Nanointelligence and Nanophotonic Computing. Berlin: Springer, 2014: 183–222. https://doi.org/10.1007/978-3-642-40224-1_8.

    Google Scholar

    [27] Shastri B J, Chang J, Tait A N, et al. Ultrafast optical techniques for communication networks and signal processing[M]//Wabnitz S, Eggleton B J. All-Optical Signal Processing: Data Communication and Storage Applications. Cham: Springer, 2015: 469–503. https://doi.org/10.1007/978-3-319-14992-9_15.

    Google Scholar

    [28] Hopfield J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proc Natl Acad Sci, 1982, 79(8): 2554−2558. doi: 10.1073/pnas.79.8.2554

    CrossRef Google Scholar

    [29] Liu J, Wu Q H, Sui X, et al. Research progress in optical neural networks: theory, applications and developments[J]. PhotoniX, 2021, 2(1): 5. doi: 10.1186/s43074-021-00026-0

    CrossRef Google Scholar

    [30] Tsai F C F, O’Brien C J, Petrović N S, et al. Analysis of optical channel cross talk for free-space optical interconnects in the presence of higher-order transverse modes[J]. Appl Opt, 2005, 44(30): 6380−6387. doi: 10.1364/AO.44.006380

    CrossRef Google Scholar

    [31] Hu W H, Li X J, Yang J K, et al. Crosstalk analysis of aligned and misaligned free-space optical interconnect systems[J]. J Opt Soc Am A, 2010, 27(2): 200−205. doi: 10.1364/JOSAA.27.000200

    CrossRef Google Scholar

    [32] Xiang S Y, Wen A J, Pan W. Emulation of spiking response and spiking frequency property in VCSEL-based photonic neuron[J]. IEEE Photonics J, 2016, 8(5): 1−9. doi: 10.1109/JPHOT.2016.2614104

    CrossRef Google Scholar

    [33] Xiang S Y, Zhang H, Guo X X, et al. Cascadable neuron-like spiking dynamics in coupled VCSELs subject to orthogonally polarized optical pulse injection[J]. IEEE J Sel Top Quantum Electron, 2017, 23(6): 1−7. doi: 10.1109/jstqe.2017.2678170

    CrossRef Google Scholar

    [34] Xiang S Y, Zhang Y H, Guo X X, et al. Photonic generation of neuron-like dynamics using VCSELs subject to double polarized optical injection[J]. J Lightwave Technol, 2018, 36(19): 4227−4234. doi: 10.1109/JLT.2018.2818195

    CrossRef Google Scholar

    [35] Zhang Y H, Xiang S Y, Gong J K, et al. Spike encoding and storage properties in mutually coupled vertical-cavity surface-emitting lasers subject to optical pulse injection[J]. Appl Opt, 2018, 57(7): 1731. doi: 10.1364/AO.57.001731

    CrossRef Google Scholar

    [36] Zhang Y H, Xiang S Y, Guo X X, et al. Polarization-resolved and polarization- multiplexed spike encoding properties in photonic neuron based on VCSEL-SA[J]. Sci Rep, 2018, 8(1): 16095. doi: 10.1038/s41598-018-34537-x

    CrossRef Google Scholar

    [37] Zhang Y, Xiang S, Guo X, et al. All-optical inhibitory dynamics in photonic neuron based on polarization mode competition in a VCSEL with an embedded saturable absorber[J]. Opt Lett, 2019, 44(7): 1548−1551. doi: 10.1364/OL.44.001548

    CrossRef Google Scholar

    [38] Xiang S Y, Ren Z X, Zhang Y H, et al. All-optical neuromorphic XOR operation with inhibitory dynamics of a single photonic spiking neuron based on a VCSEL-SA[J]. Opt Lett, 2020, 45(5): 1104−1107. doi: 10.1364/OL.383942

    CrossRef Google Scholar

    [39] Xiang S Y, Gong J K, Zhang Y H, et al. Numerical implementation of wavelength-dependent photonic spike timing dependent plasticity based on VCSOA[J]. IEEE J Quantum Electron, 2018, 54(6): 8100107. doi: 10.1109/jqe.2018.2879484

    CrossRef Google Scholar

    [40] Song Z W, Xiang S Y, Cao X Y, et al. Experimental demonstration of photonic spike-timing-dependent plasticity based on a VCSOA[J]. Sci China Inf Sci, 2022, 65(8): 182401. doi: 10.1007/s11432-021-3350-9

    CrossRef Google Scholar

    [41] Xiang S Y, Han Y N, Guo X X, et al. Real-time optical spike-timing dependent plasticity in a single VCSEL with dual-polarized pulsed optical injection[J]. Sci China Inf Sci, 2020, 63(6): 160405. doi: 10.1007/s11432-020-2820-y

    CrossRef Google Scholar

    [42] Xiang S Y, Zhang Y H, Gong J K, et al. STDP-based unsupervised spike pattern learning in a photonic spiking neural network With VCSELs and VCSOAs[J]. IEEE J Sel Top Quantum Electron, 2019, 25(6): 1700109. doi: 10.1109/JSTQE.2019.2911565

    CrossRef Google Scholar

    [43] Xiang S Y, Ren Z X, Song Z W, et al. Computing primitive of fully VCSEL-based all-optical spiking neural network for supervised learning and pattern classification[J]. IEEE Trans Neural Networks Learn Syst, 2021, 32(6): 2494−2505. doi: 10.1109/TNNLS.2020.3006263

    CrossRef Google Scholar

    [44] Fu C T, Xiang S Y, Han Y N, et al. Multilayer photonic spiking neural networks: generalized supervised learning algorithm and network optimization[J]. Photonics, 2022, 9(4): 217. doi: 10.3390/photonics9040217

    CrossRef Google Scholar

    [45] Zhang Y H, Xiang S Y, Guo X X, et al. The winner-take-all mechanism for all-optical systems of pattern recognition and max-pooling operation[J]. J Lightwave Technol, 2020, 38(18): 5071−5077. doi: 10.1109/JLT.2020.3000670

    CrossRef Google Scholar

    [46] Han Y N, Xiang S Y, Ren Z X, et al. Delay-weight plasticity-based supervised learning in optical spiking neural networks[J]. Photonics Res, 2021, 9(4): B119−B127. doi: 10.1364/PRJ.413742

    CrossRef Google Scholar

    [47] Song Z W, Xiang S Y, Ren Z X, et al. Photonic spiking neural network based on excitable VCSELs-SA for sound azimuth detection[J]. Opt Express, 2020, 28(2): 1561−1573. doi: 10.1364/OE.381229

    CrossRef Google Scholar

    [48] Song Z W, Xiang S Y, Ren Z X, et al. Spike sequence learning in a photonic spiking neural network consisting of VCSELs-SA with supervised training[J]. IEEE J Sel Top Quantum Electron, 2020, 26(5): 1700209. doi: 10.1109/jstqe.2020.2975564

    CrossRef Google Scholar

    [49] Wang S H, Xiang S Y, Han G Q, et al. Photonic associative learning neural network based on VCSELs and STDP[J]. J Lightwave Technol, 2020, 38(17): 4691−4698. doi: 10.1109/JLT.2020.2995083

    CrossRef Google Scholar

    [50] Zhang Y H, Xiang S Y, Guo X X, et al. A modified supervised learning rule for training a photonic spiking neural network to recognize digital patterns[J]. Sci China Inf Sci, 2021, 64(2): 122403. doi: 10.1007/s11432-020-3040-1

    CrossRef Google Scholar

    [51] Gao S, Xiang S Y, Song Z W, et al. All-optical Sudoku solver with photonic spiking neural network[J]. Opt Commun, 2021, 495: 127068. doi: 10.1016/j.optcom.2021.127068

    CrossRef Google Scholar

    [52] Gao S, Xiang S Y, Song Z W, et al. Motion detection and direction recognition in a photonic spiking neural network consisting of VCSELs-SA[J]. Opt Express, 2022, 30(18): 31701−31713. doi: 10.1364/OE.465653

    CrossRef Google Scholar

    [53] Xiang S Y, Ren Z X, Zhang Y H, et al. Training a multi-layer photonic spiking neural network with modified supervised learning algorithm based on photonic STDP[J]. IEEE J Sel Top Quantum Electron, 2021, 27(2): 7500109. doi: 10.1109/JSTQE.2020.3005589

    CrossRef Google Scholar

    [54] Zhang Y H, Xiang S Y, Han Y N, et al. BP-based supervised learning algorithm for multilayer photonic spiking neural network and hardware implementation[J]. Opt Express, 2023, 31(10): 16549−16559. doi: 10.1364/OE.487047

    CrossRef Google Scholar

    [55] Song Z W, Xiang S Y, Zhao S H, et al. A multi-layer photonic spiking neural network with a modified backpropagation algorithm for nonlinear classification[J]. Opt Commun, 2023, 546: 129806. doi: 10.1016/j.optcom.2023.129806

    CrossRef Google Scholar

    [56] Xiang S Y, Zhang T R, Han Y N, et al. Neuromorphic speech recognition with photonic convolutional spiking neural networks[J]. IEEE J Sel Top Quantum Electron, 2023, 29(6): 7600507. doi: 10.1109/JSTQE.2023.3240248

    CrossRef Google Scholar

    [57] Han Y N, Xiang S Y, Zhang Y N, et al. An all-MRR-based photonic spiking neural network for spike sequence learning[J]. Photonics, 2022, 9(2): 120. doi: 10.3390/photonics9020120

    CrossRef Google Scholar

    [58] Zhang Y N, Xiang S Y, Han Y N, et al. Supervised learning and pattern recognition in photonic spiking neural networks based on MRR and phase-change materials[J]. Opt Commun, 2023, 549: 129870. doi: 10.1016/j.optcom.2023.129870

    CrossRef Google Scholar

    [59] Song Z W, Xiang S Y, Zhao S T, et al. A hybrid-integrated photonic spiking neural network framework based on an MZI array and VCSELs-SA[J]. IEEE J Sel Top Quantum Electron, 2023, 29(2): 8300211. doi: 10.1109/JSTQE.2022.3200942

    CrossRef Google Scholar

    [60] Zheng D Z, Xiang S Y, Guo X X, et al. Experimental demonstration of coherent photonic neural computing based on a Fabry–Perot laser with a saturable absorber[J]. Photonics Res, 2023, 11(1): 65−71. doi: 10.1364/PRJ.471950

    CrossRef Google Scholar

    [61] Song Z W, Xiang S Y, Guo X X, et al. Nonlinear neural computation in an integrated FP-SA spiking neuron subject to incoherent dual-wavelength optical pulse injections[J]. Sci China Inf Sci, 2023, 66(12): 229405. doi: 10.1007/s11432-022-3749-3

    CrossRef Google Scholar

    [62] Xiang S Y, Shi Y C, Guo X X, et al. Hardware-algorithm collaborative computing with photonic spiking neuron chip based on an integrated Fabry–Perot laser with a saturable absorber[J]. Optica, 2023, 10(2): 162−171. doi: 10.1364/OPTICA.468347

    CrossRef Google Scholar

    [63] Guo X X, Xiang S Y, Zhang Y H, et al. Hardware implementation of multi-layer photonic spiking neural network with three cascaded photonic spiking neurons[J]. J Lightwave Technol, 2023, 41(20): 6533−6541. doi: 10.1109/JLT.2023.3287647

    CrossRef Google Scholar

    [64] Han Y N, Xiang S Y, Gao S, et al. Experimental demonstration of delay-weight learning and pattern classification with a FP-SA-based photonic spiking neuron chip[J]. J Lightwave Technol, 2024, 42(5): 1497−1503. doi: 10.1109/JLT.2023.3322628

    CrossRef Google Scholar

    [65] Zhang Y H, Xiang S Y, Guo X X, et al. Spiking information processing in a single photonic spiking neuron chip with double integrated electronic dendrites[J]. Photonics Res, 2023, 11(12): 2033−2041. doi: 10.1364/PRJ.499767

    CrossRef Google Scholar

    [66] Gao S, Xiang S Y, Song Z W, et al. Hardware implementation of ultra-fast obstacle avoidance based on a single photonic spiking neuron[J]. Laser Photonics Rev, 2023, 17(12): 2300424. doi: 10.1002/lpor.202300424

    CrossRef Google Scholar

    [67] Xiang S Y, Gao S, Shi Y C, et al. Experimental demonstration of a photonic spiking neuron based on a DFB laser subject to side-mode optical pulse injection[J]. Sci China Inf Sci, 2024, 67(3): 132402. doi: 10.1007/s11432-023-3810-9

    CrossRef Google Scholar

    [68] Gao S, Xiang S Y, Zheng D Z, et al. Cascadable excitability and inhibition in DFB laser-based photonic spiking neurons[J]. Opt Commun, 2024, 554: 130207. doi: 10.1016/j.optcom.2023.130207

    CrossRef Google Scholar

    [69] Zhang Y N, Xiang S Y, Song Z W, et al. Evolution of neuron-like spiking response and spike-based all-optical XOR operation in a DFB with saturable absorber[J]. J Lightwave Technol, 2024, 42(6): 2026−2035. doi: 10.1109/JLT.2023.3331252

    CrossRef Google Scholar

    [70] Yu C Y, Xiang S Y, Zhang Y N, et al. Neuromorphic convolution with a spiking DFB-SA laser neuron based on rate coding[J]. Opt Express, 2023, 31(26): 43698−43711. doi: 10.1364/OE.499085

    CrossRef Google Scholar

    [71] Han Y N, Xiang S Y, Song Z W, et al. Pattern recognition in multi-synaptic photonic spiking neural networks based on a DFB-SA chip[J]. Opto-Electron Sci, 2023, 2(9): 230021−230021. doi: 10.29026/oes.2023.230021

    CrossRef Google Scholar

    [72] Xiang S Y, Shi Y C, Zhang Y H, et al. Photonic integrated neuro-synaptic core for convolutional spiking neural network[J]. Opto-Electron Adv, 2023, 6(11): 230140. doi: 10.29026/oea.2023.230140

    CrossRef Google Scholar

    [73] Hurtado A, Henning I D, Adams M J. Optical neuron using polarisation switching in a 1550nm-VCSEL[J]. Opt Express, 2010, 18(24): 25170−25176. doi: 10.1364/OE.18.025170

    CrossRef Google Scholar

    [74] Hurtado A, Schires K, Henning I D, et al. Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems[J]. Appl Phys Lett, 2012, 100(10): 103703. doi: 10.1063/1.3692726

    CrossRef Google Scholar

    [75] Robertson J, Deng T, Javaloyes J, et al. Controlled inhibition of spiking dynamics in VCSELs for neuromorphic photonics: theory and experiments[J]. Opt Lett, 2017, 42(8): 1560−1563. doi: 10.1364/OL.42.001560

    CrossRef Google Scholar

    [76] Hurtado A, Javaloyes J. Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems[J]. Appl Phys Lett, 2015, 107(24): 241103. doi: 10.1063/1.4937730

    CrossRef Google Scholar

    [77] Deng T, Robertson J, Hurtado A. Controlled propagation of spiking dynamics in vertical-cavity surface-emitting lasers: towards neuromorphic photonic networks[J]. IEEE J Sel Top Quantum Electron, 2017, 23(6): 1800408. doi: 10.1109/JSTQE.2017.2685140

    CrossRef Google Scholar

    [78] Robertson J, Hejda M, Bueno J, et al. Ultrafast optical integration and pattern classification for neuromorphic photonics based on spiking VCSEL neurons[J]. Sci Rep, 2020, 10(1): 6098. doi: 10.1038/s41598-020-62945-5

    CrossRef Google Scholar

    [79] Robertson J, Wade E, Kopp Y, et al. Toward neuromorphic photonic networks of ultrafast spiking laser neurons[J]. IEEE J Sel Top Quantum Electron, 2020, 26(1): 7700715. doi: 10.1109/jstqe.2019.2931215

    CrossRef Google Scholar

    [80] Robertson J, Kirkland P, Alanis J A, et al. Ultrafast neuromorphic photonic image processing with a VCSEL neuron[J]. Sci Rep, 2022, 12(1): 4874. doi: 10.1038/s41598-022-08703-1

    CrossRef Google Scholar

    [81] Robertson J, Kirkland P, Di Caterina G, et al. VCSEL-based photonic spiking neural networks for ultrafast detection and tracking[J]. Neuromorph Comput Eng, 2024, 4(1): 014010. doi: 10.1088/2634-4386/ad2d5c

    CrossRef Google Scholar

    [82] Chen Z J, Sludds A, Davis R, et al. Deep learning with coherent VCSEL neural networks[J]. Nat Photonics, 2023, 17(8): 723−730. doi: 10.1038/s41566-023-01233-w

    CrossRef Google Scholar

    [83] Wang J W, Sciarrino F, Laing A, et al. Integrated photonic quantum technologies[J]. Nat Photonics, 2020, 14(5): 273−284. doi: 10.1038/s41566-019-0532-1

    CrossRef Google Scholar

    [84] Tait A N, De Lima T F, Zhou E, et al. Neuromorphic photonic networks using silicon photonic weight banks[J]. Sci Rep, 2017, 7(1): 7430. doi: 10.1038/s41598-017-07754-z

    CrossRef Google Scholar

    [85] Mehrabian A, Al-Kabani Y, Sorger V J, et al. PCNNA: a photonic convolutional neural network accelerator[C]//2018 31st IEEE International System-on-Chip Conference (SOCC), 2018: 169–173. https://doi.org/10.1109/SOCC.2018.8618542.

    Google Scholar

    [86] Ma P Y, Tait A N, De Lima T F, et al. Photonic independent component analysis using an on-chip microring weight bank[J]. Opt Express, 2020, 28(2): 1827−1844. doi: 10.1364/OE.383603

    CrossRef Google Scholar

    [87] Bangari V, Marquez B A, Miller H, et al. Digital electronics and analog photonics for convolutional neural networks (DEAP-CNNs)[J]. IEEE J Sel Top Quantum Electron, 2020, 26(1): 7701213. doi: 10.1109/JSTQE.2019.2945540

    CrossRef Google Scholar

    [88] Sunny F, Mirza A, Nikdast M, et al. CrossLight: a cross-layer optimized silicon photonic neural network accelerator[C]//2021 58th ACM/IEEE Design Automation Conference (DAC), 2021: 1069–1074. https://doi.org/10.1109/DAC18074.2021.9586161.

    Google Scholar

    [89] Ohno S, Tang R, Toprasertpong K, et al. Si microring resonator crossbar array for on-chip inference and training of the optical neural network[J]. ACS Photonics, 2022, 9(8): 2614−2622. doi: 10.1021/acsphotonics.1c01777

    CrossRef Google Scholar

    [90] Xu S F, Wang J, Yi S C, et al. High-order tensor flow processing using integrated photonic circuits[J]. Nat Commun, 2022, 13(1): 7970. doi: 10.1038/s41467-022-35723-2

    CrossRef Google Scholar

    [91] Bai B W, Yang Q P, Shu H W, et al. Microcomb-based integrated photonic processing unit[J]. Nat Commun, 2023, 14(1): 66. doi: 10.1038/s41467-022-35506-9

    CrossRef Google Scholar

    [92] Reck M, Zeilinger A, Bernstein H J, et al. Experimental realization of any discrete unitary operator[J]. Phys Rev Lett, 1994, 73(1): 58−61. doi: 10.1103/PhysRevLett.73.58

    CrossRef Google Scholar

    [93] Clements W R, Humphreys P C, Metcalf B J, et al. Optimal design for universal multiport interferometers[J]. Optica, 2016, 3(12): 1460−1465. doi: 10.1364/OPTICA.3.001460

    CrossRef Google Scholar

    [94] Shen Y C, Harris N C, Skirlo S, et al. Deep learning with coherent nanophotonic circuits[J]. Nat Photonics, 2017, 11(7): 441−446. doi: 10.1038/nphoton.2017.93

    CrossRef Google Scholar

    [95] George J K, Nejadriahi H, Sorger V J. Towards on-chip optical FFTs for convolutional neural networks[C]//2017 IEEE International Conference on Rebooting Computing (ICRC), 2017: 1–4. https://doi.org/10.1109/ICRC.2017.8123675.

    Google Scholar

    [96] Fang M Y S, Manipatruni S, Wierzynski C, et al. Design of optical neural networks with component imprecisions[J]. Opt Express, 2019, 27(10): 14009−14029. doi: 10.1364/OE.27.014009

    CrossRef Google Scholar

    [97] Zhang T, Wang J, Dan Y H, et al. Efficient training and design of photonic neural network through neuroevolution[J]. Opt Express, 2019, 27(26): 37150−37163. doi: 10.1364/OE.27.037150

    CrossRef Google Scholar

    [98] Shokraneh F, Geoffroy-gagnon S, Liboiron-Ladouceur O. The diamond mesh, a phase-error- and loss-tolerant field-programmable MZI-based optical processor for optical neural networks[J]. Opt Express, 2020, 28(16): 23495−23508. doi: 10.1364/OE.395441

    CrossRef Google Scholar

    [99] Shokraneh F, Geoffroy-Gagnon S, Liboiron-Ladouceur O. Towards phase-error- and loss-tolerant programmable MZI-based optical processors for optical neural networks[C]//2020 IEEE Photonics Conference (IPC), 2020: 1–2. https://doi.org/10.1109/IPC47351.2020.9252466.

    Google Scholar

    [100] Tian Y, Zhao Y, Liu S P, et al. Scalable and compact photonic neural chip with low learning-capability-loss[J]. Nanophotonics, 2022, 11(2): 329−344. doi: 10.1515/nanoph-2021-0521

    CrossRef Google Scholar

    [101] Zhu H H, Zou J, Zhang H, et al. Space-efficient optical computing with an integrated chip diffractive neural network[J]. Nat Commun, 2022, 13(1): 1044. doi: 10.1038/s41467-022-28702-0

    CrossRef Google Scholar

    [102] Shi Y, Ren J Y, Chen G Y, et al. Nonlinear germanium-silicon photodiode for activation and monitoring in photonic neuromorphic networks[J]. Nat Commun, 2022, 13(1): 6048. doi: 10.1038/s41467-022-33877-7

    CrossRef Google Scholar

    [103] Wu B, Liu S J, Cheng J W, et al. Real-valued optical matrix computing with simplified MZI mesh[J]. Intell Comput, 2023, 2: 0047. doi: 10.34133/icomputing.0047

    CrossRef Google Scholar

    [104] Wright C D, Liu Y W, Kohary K I, et al. Arithmetic and biologically-inspired computing using phase-change materials[J]. Adv Mater, 2011, 23(30): 3408−3413. doi: 10.1002/adma.201101060

    CrossRef Google Scholar

    [105] Kuzum D, Jeyasingh R G D, Lee B, et al. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing[J]. Nano Lett, 2012, 12(5): 2179−2186. doi: 10.1021/nl201040y

    CrossRef Google Scholar

    [106] Cheng Z G, Ríos C, Pernice W H P, et al. On-chip photonic synapse[J]. Sci Adv, 2017, 3(9): e1700160. doi: 10.1126/sciadv.1700160

    CrossRef Google Scholar

    [107] Chakraborty I, Saha G, Roy K. Photonic in-memory computing primitive for spiking neural networks using phase-change materials[J]. Phys Rev Appl, 2019, 11(1): 014063. doi: 10.1103/PhysRevApplied.11.014063

    CrossRef Google Scholar

    [108] Feldmann J, Youngblood N, Wright C D, et al. All-optical spiking neurosynaptic networks with self-learning capabilities[J]. Nature, 2019, 569(7755): 208−214. doi: 10.1038/s41586-019-1157-8

    CrossRef Google Scholar

    [109] Feldmann J, Youngblood N, Karpov M, et al. Parallel convolutional processing using an integrated photonic tensor core[J]. Nature, 2021, 589(7840): 52−58. doi: 10.1038/s41586-020-03070-1

    CrossRef Google Scholar

    [110] Zhou W, Dong B W, Farmakidis N, et al. In-memory photonic dot-product engine with electrically programmable weight banks[J]. Nat Commun, 2023, 14(1): 2887. doi: 10.1038/s41467-023-38473-x

    CrossRef Google Scholar

    [111] Vandoorne K, Mechet P, Van Vaerenbergh T, et al. Experimental demonstration of reservoir computing on a silicon photonics chip[J]. Nat Commun, 2014, 5(1): 3541. doi: 10.1038/ncomms4541

    CrossRef Google Scholar

    [112] Xu X Y, Tan M X, Corcoran B, et al. 11 TOPS photonic convolutional accelerator for optical neural networks[J]. Nature, 2021, 589(7840): 44−51. doi: 10.1038/s41586-020-03063-0

    CrossRef Google Scholar

    [113] Ashtiani F, Geers A J, Aflatouni F. An on-chip photonic deep neural network for image classification[J]. Nature, 2022, 606(7914): 501−506. doi: 10.1038/s41586-022-04714-0

    CrossRef Google Scholar

    [114] Fu T Z, Zang Y B, Huang Y Y, et al. Photonic machine learning with on-chip diffractive optics[J]. Nat Commun, 2023, 14(1): 70. doi: 10.1038/s41467-022-35772-7

    CrossRef Google Scholar

    [115] Meng X Y, Zhang G J, Shi N N, et al. Compact optical convolution processing unit based on multimode interference[J]. Nat Commun, 2023, 14(1): 3000. doi: 10.1038/s41467-023-38786-x

    CrossRef Google Scholar

    [116] Lin X, Rivenson Y, Yardimci N T, et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 2018, 361(6406): 1004−1008. doi: 10.1126/science.aat8084

    CrossRef Google Scholar

    [117] Chang J L, Sitzmann V, Dun X, et al. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification[J]. Sci Rep, 2018, 8(1): 12324. doi: 10.1038/s41598-018-30619-y

    CrossRef Google Scholar

    [118] Bueno J, Maktoobi S, Froehly L, et al. Reinforcement learning in a large-scale photonic recurrent neural network[J]. Optica, 2018, 5(6): 756−760. doi: 10.1364/OPTICA.5.000756

    CrossRef Google Scholar

    [119] Lu L D, Zhu L Q, Zhang Q K, et al. Miniaturized diffraction grating design and processing for deep neural network[J]. IEEE Photonics Technol Lett, 2019, 31(24): 1952−1955. doi: 10.1109/LPT.2019.2948626

    CrossRef Google Scholar

    [120] Yan T, Wu J M, Zhou T K, et al. Fourier-space diffractive deep neural network[J]. Phys Rev Lett, 2019, 123(2): 023901. doi: 10.1103/PhysRevLett.123.023901

    CrossRef Google Scholar

    [121] Chen H, Feng J N, Jiang M W, et al. Diffractive deep neural networks at visible wavelengths[J]. Engineering, 2021, 7(10): 1483−1491. doi: 10.1016/j.eng.2020.07.032

    CrossRef Google Scholar

    [122] Zhou T K, Lin X, Wu J M, et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit[J]. Nat Photonics, 2021, 15(5): 367−373. doi: 10.1038/s41566-021-00796-w

    CrossRef Google Scholar

    [123] Goi E, Chen X, Zhang Q M, et al. Nanoprinted high-neuron-density optical linear perceptrons performing near-infrared inference on a CMOS chip[J]. Light Sci Appl, 2021, 10(1): 40. doi: 10.1038/S41377-021-00483-Z

    CrossRef Google Scholar

    [124] Fujita T, Sakaguchi H, Zhang J, et al. Magneto-optical diffractive deep neural network[J]. Opt Express, 2022, 30(20): 36889−36899. doi: 10.1364/OE.470513

    CrossRef Google Scholar

    [125] Duan Z Y, Chen H, Lin X. Optical multi-task learning using multi-wavelength diffractive deep neural networks[J]. Nanophotonics, 2023, 12(5): 893−903. doi: 10.1515/nanoph-2022-0615

    CrossRef Google Scholar

    [126] Chen Y T, Nazhamaiti M, Xu H, et al. All-analog photoelectronic chip for high-speed vision tasks[J]. Nature, 2023, 623(7985): 48−57. doi: 10.1038/s41586-023-06558-8

    CrossRef Google Scholar

    [127] Zuo Y, Li B H, Zhao Y J, et al. All-optical neural network with nonlinear activation functions[J]. Optica, 2019, 6(9): 1132−1137. doi: 10.1364/OPTICA.6.001132

    CrossRef Google Scholar

    [128] Hamerly R, Bernstein L, Sludds A, et al. Large-scale optical neural networks based on photoelectric multiplication[J]. Phys Rev X, 2019, 9(2): 021032. doi: 10.1103/PhysRevX.9.021032

    CrossRef Google Scholar

    [129] Sludds A, Bernstein L, Hamerly R, et al. A scalable optical neural network architecture using coherent detection[J]. Proc SPIE, 2020, 11299: 112990H. doi: 10.1117/12.2546940

    CrossRef Google Scholar

    [130] Rafayelyan M, Dong J, Tan Y Q, et al. Large-scale optical reservoir computing for spatiotemporal chaotic systems prediction[J]. Phys Rev X, 2020, 10(4): 041037. doi: 10.1103/PhysRevX.10.041037

    CrossRef Google Scholar

    [131] Xu Z H, Zhou T K, Ma M Z, et al. Large-scale photonic chiplet Taichi empowers 160-TOPS/W artificial general intelligence[J]. Science, 2024, 384(6692): 202−209. doi: 10.1126/science.adl1203

    CrossRef Google Scholar

    [132] Qian C, Lin X, Lin X B, et al. Performing optical logic operations by a diffractive neural network[J]. Light Sci Appl, 2020, 9(1): 59. doi: 10.1038/s41377-020-0303-2

    CrossRef Google Scholar

    [133] Wu C M, Yu H S, Lee S, et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network[J]. Nat Commun, 2021, 12(1): 96. doi: 10.1038/s41467-020-20365-z

    CrossRef Google Scholar

    [134] Liu C, Ma Q, Luo Z J, et al. A programmable diffractive deep neural network based on a digital-coding metasurface array[J]. Nat Electron, 2022, 5(2): 113−122. doi: 10.1038/s41928-022-00719-9

    CrossRef Google Scholar

    [135] Gu J Q, Zhao Z, Feng C H, et al. ROQ: a noise-aware quantization scheme towards robust optical neural networks with low-bit controls[C]//2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2020: 1586–1589. https://doi.org/10.23919/DATE48585.2020.9116521.

    Google Scholar

    [136] Mourgias-Alexandris G, Moralis-Pegios M, Tsakyridis A, et al. Noise-resilient and high-speed deep learning with coherent silicon photonics[J]. Nat Commun, 2022, 13(1): 5572. doi: 10.1038/s41467-022-33259-z

    CrossRef Google Scholar

    [137] Kirtas M, Oikonomou A, Passalis N, et al. Quantization-aware training for low precision photonic neural networks[J]. Neural Networks, 2022, 155: 561−573. doi: 10.1016/j.neunet.2022.09.015

    CrossRef Google Scholar

    [138] Feng C H, Gu J Q, Zhu H Q, et al. A compact butterfly-style silicon photonic–electronic neural chip for hardware-efficient deep learning[J]. ACS Photonics, 2022, 9(12): 3906−3916. doi: 10.1021/acsphotonics.2c01188

    CrossRef Google Scholar

    [139] Zhan Y C, Zhang H, Lin H X, et al. Physics-aware analytic-gradient training of photonic neural networks[J]. Laser Photonics Rev, 2024, 18(4): 2300445. doi: 10.1002/lpor.202300445

    CrossRef Google Scholar

    [140] Hughes T W, Minkov M, Shi Y, et al. Training of photonic neural networks through in situ backpropagation and gradient measurement[J]. Optica, 2018, 5(7): 864−871. doi: 10.1364/OPTICA.5.000864

    CrossRef Google Scholar

    [141] Zhou T K, Fang L, Yan T, et al. In situ optical backpropagation training of diffractive optical neural networks[J]. Photonics Res, 2020, 8(6): 940−953. doi: 10.1364/PRJ.389553

    CrossRef Google Scholar

    [142] Zheng Z Y, Duan Z Y, Chen H, et al. Dual adaptive training of photonic neural networks[J]. Nat Mach Intell, 2023, 5(10): 1119−1129. doi: 10.1038/s42256-023-00723-4

    CrossRef Google Scholar

    [143] Wu T W, Menarini M, Gao Z H, et al. Lithography-free reconfigurable integrated photonic processor[J]. Nat Photonics, 2023, 17(8): 710−716. doi: 10.1038/s41566-023-01205-0

    CrossRef Google Scholar

    [144] Pai S, Sun Z H, Hughes T W, et al. Experimentally realized in situ backpropagation for deep learning in photonic neural networks[J]. Science, 2023, 380(6643): 398−404. doi: 10.1126/science.ade8450

    CrossRef Google Scholar

  • The era of big data has placed greater demands on the computing power and speed of electronic computer processing systems. Issues such as the "memory wall" and "power wall" inherent in the traditional von Neumann architecture, coupled with the slowing down or even invalidation of Moore's Law, have posed significant challenges to electronic chips in terms of computing speed and power consumption. Utilizing optical computing as an alternative to traditional electronic computing represents one of the most promising avenues to address current challenges in computing power and power consumption.

    This review systematically summarized the research progress of optical neural network (ONN) architectures and algorithms in both on-chip integration and in free space, and described typical research efforts in detail. In terms of on-chip integrated ONNs, the research progress of ONNs based on semiconductor lasers, silicon micro-ring resonators, Mach-Zehnder interferometers, and phase change materials was presented. Meanwhile, progress in research on free-space-based ONNs, including diffractive deep neural networks and metasurface-based ONNs, was summarized. Then, the advantages and disadvantages of these two types of ONNs were discussed and compared. The free-space-based ONNs have excellent parallel computing capabilities and are suitable for large-scale computing tasks. But they suffer from large volume and high complexity. In contrast, on-chip integrated ONNs have the advantages of scalability, high power efficiency, compact footprint, and high programmability. However, how to ensure accuracy and robustness in the process of large-scale integration to better cope with increasingly complex and large-scale computing tasks is still an urgent problem to be solved. In addition, training is an important step in the construction of neural networks and determines the performance of the entire system. Therefore, the research progress of the in-situ training method and the hardware-aware offline training method used in ONNs was introduced.

    At last, the potential challenges that ONNs may encounter were discussed in depth, and a forward-looking perspective on their future development was offered. From the material and devices, to the system architecture, and ONNs are presenting a multi-level, cross-domain, and comprehensive development pattern for the algorithm implementation. By thoroughly exploring the potential of photon properties and deeply integrating them with artificial intelligence algorithms, the broad prospects and infinite possibilities of ONNs in building new intelligent computing systems can be demonstrated. Advances in ONNs can promote the development of the new computing paradigm of photonic brain-like computing, leading computing technology toward a more efficient and intelligent future.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint