Citation: | Bi Y, Xiong Z F, Li J W, et al. Demodulation method for GaAs optical fiber temperature sensing based on reference filter and cross-correlation algorithm[J]. Opto-Electron Eng, 2024, 51(9): 240143. doi: 10.12086/oee.2024.240143 |
[1] | 李天夫, 巴德欣, 周登望, 等. 前向受激布里渊散射光纤传感研究进展[J]. 光电工程, 2022, 49(9): 220021. doi: 10.12086/oee.2022.220021 Li T F, Ba D X, Zhou D W, et al. Recent progress in optical fiber sensing based on forward stimulated Brillouin scattering[J]. Opto-Electron Eng, 2022, 49(9): 220021. doi: 10.12086/oee.2022.220021 |
[2] | Leal-Junior A, Avellar L, Biazi V, et al. Multifunctional flexible optical waveguide sensor: On the bioinspiration for ultrasensitive sensors development[J]. Opto-Electron Adv, 2022, 5(10): 210098. doi: 10.29026/oea.2022.210098 |
[3] | 周朕蕊, 邱宗甲, 李康, 等. 光纤法布里-珀罗传感器的解调方法研究综述[J]. 光电工程, 2022, 49(6): 210411. doi: 10.12086/oee.2022.210411 Zhou Z R, Qiu Z J, Li K, et al. Review on demodulation methods for optic fiber Fabry-Perot sensors[J]. Opto-Electron Eng, 2022, 49(6): 210411. doi: 10.12086/oee.2022.210411 |
[4] | Zhu C, Gerald R E, Huang J. Progress toward sapphire optical fiber sensors for high-temperature applications[J]. IEEE Trans Instrum Meas, 2020, 69(11): 8639−8655. doi: 10.1109/TIM.2020.3024462 |
[5] | Roriz P, Silva S, Frazão O, et al. Optical fiber temperature sensors and their biomedical applications[J]. Sensors, 2020, 20(7): 2113. doi: 10.3390/s20072113 |
[6] | Zhou X, Gong P Q, Ai Y, et al. Miniature optical fiber DNA hybridization sensor with temperature compensation using a gold nanofilm-coated optical fiber[J]. IEEE Sens J, 2023, 23(7): 6931−6938. doi: 10.1109/JSEN.2023.3247599 |
[7] | Liu H J, Zhou C M, Pang Y D, et al. High-resolution optical fiber temperature sensor based on draw tower grating array[J]. Sensors, 2022, 22(8): 2846. doi: 10.3390/s22082846 |
[8] | Lei X Q, Dong X P, Lu C X, et al. Underwater pressure and temperature sensor based on a special dual-mode optical fiber[J]. IEEE Access, 2020, 8: 146463−146471. doi: 10.1109/ACCESS.2020.3015195 |
[9] | Liu H H, Hu D J J, Sun Q Z, et al. Specialty optical fibers for advanced sensing applications[J]. Opto-Electron Sci, 2023, 2(2): 220025. doi: 10.29026/oes.2023.220025 |
[10] | 肖文哲, 程静, 张大伟, 等. 用于光纤干涉传感器的高稳定PGC解调技术[J]. 光电工程, 2022, 49(3): 210368. doi: 10.12086/oee.2022.210368 Xiao W Z, Cheng J, Zhang D W, et al. High stability PGC demodulation technique for fiber-optic interferometric sensor[J]. Opto-Electron Eng, 2022, 49(3): 210368. doi: 10.12086/oee.2022.210368 |
[11] | Chen Y C, Li J P, Guo X J, et al. On-chip high-sensitivity photonic temperature sensor based on a GaAs microresonator[J]. Opt Lett, 2020, 45(18): 5105−5108. doi: 10.1364/OL.399397 |
[12] | Kolesnikova E A, Uglov V V, Drapezo A P, et al. Study of temperature coefficient of resistance of n-InSb films On i-GaAs (100) substrate and temperature sensors based on them[J]. High Temp Mater Processes, 2022, 26(3): 31−38. doi: 10.1615/HighTempMatProc.2022043589 |
[13] | Yang T Y, Zhang X Y, Liu Z Y, et al. Thermal optical fiber sensor based on GaAs film for fluid velocity measurement[J]. IEEE Sens J, 2024, 24(8): 12358−12365. doi: 10.1109/JSEN.2024.3369053 |
[14] | Calahorra Y, Husmann A, Bourdelain A, et al. Highly sensitive piezotronic pressure sensors based on undoped GaAs nanowire ensembles[J]. J Phys D Appl Phys, 2019, 52(29): 294002. doi: 10.1088/1361-6463/ab1386 |
[15] | Zhang Z Q, Guo Y, Li F, et al. A sandwich-type thermoelectric microwave power sensor for GaAs MMIC-compatible applications[J]. IEEE Electron Device Lett, 2016, 37(12): 1639−1641. doi: 10.1109/LED.2016.2619380 |
[16] | Zhang Z Q, Gu R Q, Jiang Y F, et al. A near-zero thermoelectric RF power sensor for high dynamic range applications[J]. J Microelectromech Syst, 2024, 33(1): 9−11. doi: 10.1109/JMEMS.2023.3330574 |
[17] | Wu J W, Yuan T T, Liu J J, et al. Terahertz metamaterial sensor with ultra-high sensitivity and tunability based on photosensitive semiconductor GaAs[J]. IEEE Sens J, 2022, 22(16): 15961−15966. doi: 10.1109/JSEN.2022.3190414 |
[18] | 胡昆, 傅惠南, 罗星星, 等. 多通道自校准砷化镓吸收式光纤温度监测系统[J]. 中国激光, 2015, 42(11): 1105001. doi: 10.3788/CJL201542.1105001 Hu K, Fu H N, Luo X X, et al. Multi-channels self-calibrating gallium arsenide absorption fiber optic temperature monitoring system[J]. Chin J Lasers, 2015, 42(11): 1105001. doi: 10.3788/CJL201542.1105001 |
[19] | 胡昆, 董玉明, 傅惠南, 等. 砷化镓吸收式光纤温度传感技术的解调方法[J]. 光电工程, 2015, 42(10): 61−66. doi: 10.3969/j.issn.1003-501X.2015.10.011 Hu K, Dong Y M, Fu H N, et al. Demodulation method about gallium arsenide absorption fiber optic temperature sensing technology[J]. Opto-Electron Eng, 2015, 42(10): 61−66. doi: 10.3969/j.issn.1003-501X.2015.10.011 |
[20] | Chen K, Wang Z L, Guo M, et al. Single-mode fiber-optic Fabry-Perot interferometry sensor based on optical cross-correlation demodulation[J]. Opt Eng, 2019, 58(2): 026106. doi: 10.1117/1.OE.58.2.026106 |
[21] | Guo M, Chen K, Zhang G Y, et al. High-sensitivity fiber-optic low-frequency acoustic detector based on cross-correlation demodulation[J]. J Lightwave Technol, 2022, 40(13): 4481−4488. doi: 10.1109/JLT.2022.3164134 |
[22] | Zhu W S, Jiang J F, Wang J, et al. Research on wavelength demodulation method based on optical fiber Fabry-Perot tunable filter[J]. Proc SPIE, 2018, 10821: 1082106. doi: 10.1117/12.2500618 |
[23] | 孟华, 李海洋, 曹占启. 一种用于海洋温度快速测量的光纤法布里-珀罗温度传感器[J]. 中国激光, 2018, 45(12): 1210001. doi: 10.3788/CJL201845.1210001 Meng H, Li H Y, Cao Z Q. An optical fiber farby-perot temperature sensor for rapid ocean temperature measurement[J]. Chin J Lasers, 2018, 45(12): 1210001. doi: 10.3788/CJL201845.1210001 |
[24] | Wang L X, Liu H J, Pan Z, et al. Temperature demodulation for optical fiber F-P sensor based on DBNs with ensemble learning[J]. Opt Laser Technol, 2023, 162: 109275. doi: 10.1016/j.optlastec.2023.109275 |
GaAs, as a unique semiconductor material, is widely used in the field of optical communication and the production of various sensors. The temperature characteristics of GaAs material play an important role, but the existing demodulation technologies for the temperature response characteristics of GaAs have problems such as low noise resistance, low precision, and low accuracy. Therefore, a high precision and noise immunity demodulation method for the temperature response of GaAs crystals is needed. This paper proposes a new demodulation approach for optical fiber temperature sensors based on GaAs, leveraging the reference filtering and a cross-correlation algorithm. The algorithm mainly consists of a double Gaussian filtering algorithm for filtering and smoothing the original collected waveform, a cross-correlation algorithm using a low-pass filter (LPF) waveform as the reference waveform, and a multi-quadratic polynomial fitting algorithm for improving the demodulation precision and accuracy. The double Gaussian filtering of this algorithm can reduce the impact of noise during data collection, enhancing the algorithm's noise resistance. Compared with cross-correlation algorithms without the LPF reference waveform, this algorithm uses the LPF waveform collected by the same experimental data acquisition system as the reference waveform, solving the problem of low noise resistance when using the collected waveform as the reference and the inability of virtual waveforms to reflect the error impact of unstable factors in the collection system, such as the light source and spectrometer. At the same time, the use of a multi-quadratic polynomial fitting method ensures the accuracy and reliability of the maximum cross-correlation coefficient acquisition. Compared with the existing GaAs temperature response demodulation technologies, the noise resistance of this algorithm can be improved by up to 2.64 times. Meanwhile, the wavelength demodulation error of this method can reach ±0.0016 nm, and the temperature demodulation accuracy is ±0.388 ℃ with a temperature sensing range of −30 to 250 ℃, meeting the high-precision demodulation requirements in various application scenarios.
Schematic diagram of demodulation method for GaAs fiber optic temperature sensing
GaAs temperature response data acquisition device diagram
Wavelength shift curve of GaAs crystals at different temperatures (scale-down). (a) Original spectrum; (b) Filtered normalized spectrum
(a) The LPF waveform after filtering and normalization processing; (b) Multi-quadratic polynomial fitting curve of cross-correlation shift number and correlation coefficient at 60 ℃
Temperature-wavelength shift fitting curve
Reflection spectrum with Gaussian noise at SNR of 20 dB
Comparison of noise resistance performance of different demodulation methods under Gaussian noise with SNR ratio of 3 to 54 dB
Enhancement ratio of LPF-C's noise resistance over NI and TC, in three channels