Bi Y, Xiong Z F, Li J W, et al. Demodulation method for GaAs optical fiber temperature sensing based on reference filter and cross-correlation algorithm[J]. Opto-Electron Eng, 2024, 51(9): 240143. doi: 10.12086/oee.2024.240143
Citation: Bi Y, Xiong Z F, Li J W, et al. Demodulation method for GaAs optical fiber temperature sensing based on reference filter and cross-correlation algorithm[J]. Opto-Electron Eng, 2024, 51(9): 240143. doi: 10.12086/oee.2024.240143

Demodulation method for GaAs optical fiber temperature sensing based on reference filter and cross-correlation algorithm

    Fund Project: Project supported by National Natural Science Foundation of China (62205364), and Shenzhen Research Foundation (JSGG20220831103402004)
More Information
  • This paper presents a new demodulation approach for optical fiber temperature sensors based on GaAs, leveraging reference filtering and a cross-correlation algorithm. It preprocesses the data through double Gaussian filtering for smoothing and implements an enhanced cross-correlation algorithm adopting a long-pass filter (LPF) waveform as the reference signal to demodulate the GaAs optical fiber temperature sensor. Using the correlated data from cross-correlation operations, it applies a multiple polynomial fitting strategy to further augment the precision of the cross-correlation algorithm’s demodulation. Across a temperature sensing range of −30 to 250 ℃, the wavelength demodulation error of this method can reach ±0.0016 nm, and the temperature demodulation accuracy is ±0.388 ℃. Relative to the prevailing normalized optical intensity demodulation method, the cross-correlation algorithm employing an LPF waveform as the reference demonstrates a 2.64-fold increase in noise immunity and a 2.08-fold improvement over cross-correlation algorithms without the LPF reference waveform.
  • 加载中
  • [1] 李天夫, 巴德欣, 周登望, 等. 前向受激布里渊散射光纤传感研究进展[J]. 光电工程, 2022, 49(9): 220021. doi: 10.12086/oee.2022.220021

    CrossRef Google Scholar

    Li T F, Ba D X, Zhou D W, et al. Recent progress in optical fiber sensing based on forward stimulated Brillouin scattering[J]. Opto-Electron Eng, 2022, 49(9): 220021. doi: 10.12086/oee.2022.220021

    CrossRef Google Scholar

    [2] Leal-Junior A, Avellar L, Biazi V, et al. Multifunctional flexible optical waveguide sensor: On the bioinspiration for ultrasensitive sensors development[J]. Opto-Electron Adv, 2022, 5(10): 210098. doi: 10.29026/oea.2022.210098

    CrossRef Google Scholar

    [3] 周朕蕊, 邱宗甲, 李康, 等. 光纤法布里-珀罗传感器的解调方法研究综述[J]. 光电工程, 2022, 49(6): 210411. doi: 10.12086/oee.2022.210411

    CrossRef Google Scholar

    Zhou Z R, Qiu Z J, Li K, et al. Review on demodulation methods for optic fiber Fabry-Perot sensors[J]. Opto-Electron Eng, 2022, 49(6): 210411. doi: 10.12086/oee.2022.210411

    CrossRef Google Scholar

    [4] Zhu C, Gerald R E, Huang J. Progress toward sapphire optical fiber sensors for high-temperature applications[J]. IEEE Trans Instrum Meas, 2020, 69(11): 8639−8655. doi: 10.1109/TIM.2020.3024462

    CrossRef Google Scholar

    [5] Roriz P, Silva S, Frazão O, et al. Optical fiber temperature sensors and their biomedical applications[J]. Sensors, 2020, 20(7): 2113. doi: 10.3390/s20072113

    CrossRef Google Scholar

    [6] Zhou X, Gong P Q, Ai Y, et al. Miniature optical fiber DNA hybridization sensor with temperature compensation using a gold nanofilm-coated optical fiber[J]. IEEE Sens J, 2023, 23(7): 6931−6938. doi: 10.1109/JSEN.2023.3247599

    CrossRef Google Scholar

    [7] Liu H J, Zhou C M, Pang Y D, et al. High-resolution optical fiber temperature sensor based on draw tower grating array[J]. Sensors, 2022, 22(8): 2846. doi: 10.3390/s22082846

    CrossRef Google Scholar

    [8] Lei X Q, Dong X P, Lu C X, et al. Underwater pressure and temperature sensor based on a special dual-mode optical fiber[J]. IEEE Access, 2020, 8: 146463−146471. doi: 10.1109/ACCESS.2020.3015195

    CrossRef Google Scholar

    [9] Liu H H, Hu D J J, Sun Q Z, et al. Specialty optical fibers for advanced sensing applications[J]. Opto-Electron Sci, 2023, 2(2): 220025. doi: 10.29026/oes.2023.220025

    CrossRef Google Scholar

    [10] 肖文哲, 程静, 张大伟, 等. 用于光纤干涉传感器的高稳定PGC解调技术[J]. 光电工程, 2022, 49(3): 210368. doi: 10.12086/oee.2022.210368

    CrossRef Google Scholar

    Xiao W Z, Cheng J, Zhang D W, et al. High stability PGC demodulation technique for fiber-optic interferometric sensor[J]. Opto-Electron Eng, 2022, 49(3): 210368. doi: 10.12086/oee.2022.210368

    CrossRef Google Scholar

    [11] Chen Y C, Li J P, Guo X J, et al. On-chip high-sensitivity photonic temperature sensor based on a GaAs microresonator[J]. Opt Lett, 2020, 45(18): 5105−5108. doi: 10.1364/OL.399397

    CrossRef Google Scholar

    [12] Kolesnikova E A, Uglov V V, Drapezo A P, et al. Study of temperature coefficient of resistance of n-InSb films On i-GaAs (100) substrate and temperature sensors based on them[J]. High Temp Mater Processes, 2022, 26(3): 31−38. doi: 10.1615/HighTempMatProc.2022043589

    CrossRef Google Scholar

    [13] Yang T Y, Zhang X Y, Liu Z Y, et al. Thermal optical fiber sensor based on GaAs film for fluid velocity measurement[J]. IEEE Sens J, 2024, 24(8): 12358−12365. doi: 10.1109/JSEN.2024.3369053

    CrossRef Google Scholar

    [14] Calahorra Y, Husmann A, Bourdelain A, et al. Highly sensitive piezotronic pressure sensors based on undoped GaAs nanowire ensembles[J]. J Phys D Appl Phys, 2019, 52(29): 294002. doi: 10.1088/1361-6463/ab1386

    CrossRef Google Scholar

    [15] Zhang Z Q, Guo Y, Li F, et al. A sandwich-type thermoelectric microwave power sensor for GaAs MMIC-compatible applications[J]. IEEE Electron Device Lett, 2016, 37(12): 1639−1641. doi: 10.1109/LED.2016.2619380

    CrossRef Google Scholar

    [16] Zhang Z Q, Gu R Q, Jiang Y F, et al. A near-zero thermoelectric RF power sensor for high dynamic range applications[J]. J Microelectromech Syst, 2024, 33(1): 9−11. doi: 10.1109/JMEMS.2023.3330574

    CrossRef Google Scholar

    [17] Wu J W, Yuan T T, Liu J J, et al. Terahertz metamaterial sensor with ultra-high sensitivity and tunability based on photosensitive semiconductor GaAs[J]. IEEE Sens J, 2022, 22(16): 15961−15966. doi: 10.1109/JSEN.2022.3190414

    CrossRef Google Scholar

    [18] 胡昆, 傅惠南, 罗星星, 等. 多通道自校准砷化镓吸收式光纤温度监测系统[J]. 中国激光, 2015, 42(11): 1105001. doi: 10.3788/CJL201542.1105001

    CrossRef Google Scholar

    Hu K, Fu H N, Luo X X, et al. Multi-channels self-calibrating gallium arsenide absorption fiber optic temperature monitoring system[J]. Chin J Lasers, 2015, 42(11): 1105001. doi: 10.3788/CJL201542.1105001

    CrossRef Google Scholar

    [19] 胡昆, 董玉明, 傅惠南, 等. 砷化镓吸收式光纤温度传感技术的解调方法[J]. 光电工程, 2015, 42(10): 61−66. doi: 10.3969/j.issn.1003-501X.2015.10.011

    CrossRef Google Scholar

    Hu K, Dong Y M, Fu H N, et al. Demodulation method about gallium arsenide absorption fiber optic temperature sensing technology[J]. Opto-Electron Eng, 2015, 42(10): 61−66. doi: 10.3969/j.issn.1003-501X.2015.10.011

    CrossRef Google Scholar

    [20] Chen K, Wang Z L, Guo M, et al. Single-mode fiber-optic Fabry-Perot interferometry sensor based on optical cross-correlation demodulation[J]. Opt Eng, 2019, 58(2): 026106. doi: 10.1117/1.OE.58.2.026106

    CrossRef Google Scholar

    [21] Guo M, Chen K, Zhang G Y, et al. High-sensitivity fiber-optic low-frequency acoustic detector based on cross-correlation demodulation[J]. J Lightwave Technol, 2022, 40(13): 4481−4488. doi: 10.1109/JLT.2022.3164134

    CrossRef Google Scholar

    [22] Zhu W S, Jiang J F, Wang J, et al. Research on wavelength demodulation method based on optical fiber Fabry-Perot tunable filter[J]. Proc SPIE, 2018, 10821: 1082106. doi: 10.1117/12.2500618

    CrossRef Google Scholar

    [23] 孟华, 李海洋, 曹占启. 一种用于海洋温度快速测量的光纤法布里-珀罗温度传感器[J]. 中国激光, 2018, 45(12): 1210001. doi: 10.3788/CJL201845.1210001

    CrossRef Google Scholar

    Meng H, Li H Y, Cao Z Q. An optical fiber farby-perot temperature sensor for rapid ocean temperature measurement[J]. Chin J Lasers, 2018, 45(12): 1210001. doi: 10.3788/CJL201845.1210001

    CrossRef Google Scholar

    [24] Wang L X, Liu H J, Pan Z, et al. Temperature demodulation for optical fiber F-P sensor based on DBNs with ensemble learning[J]. Opt Laser Technol, 2023, 162: 109275. doi: 10.1016/j.optlastec.2023.109275

    CrossRef Google Scholar

  • GaAs, as a unique semiconductor material, is widely used in the field of optical communication and the production of various sensors. The temperature characteristics of GaAs material play an important role, but the existing demodulation technologies for the temperature response characteristics of GaAs have problems such as low noise resistance, low precision, and low accuracy. Therefore, a high precision and noise immunity demodulation method for the temperature response of GaAs crystals is needed. This paper proposes a new demodulation approach for optical fiber temperature sensors based on GaAs, leveraging the reference filtering and a cross-correlation algorithm. The algorithm mainly consists of a double Gaussian filtering algorithm for filtering and smoothing the original collected waveform, a cross-correlation algorithm using a low-pass filter (LPF) waveform as the reference waveform, and a multi-quadratic polynomial fitting algorithm for improving the demodulation precision and accuracy. The double Gaussian filtering of this algorithm can reduce the impact of noise during data collection, enhancing the algorithm's noise resistance. Compared with cross-correlation algorithms without the LPF reference waveform, this algorithm uses the LPF waveform collected by the same experimental data acquisition system as the reference waveform, solving the problem of low noise resistance when using the collected waveform as the reference and the inability of virtual waveforms to reflect the error impact of unstable factors in the collection system, such as the light source and spectrometer. At the same time, the use of a multi-quadratic polynomial fitting method ensures the accuracy and reliability of the maximum cross-correlation coefficient acquisition. Compared with the existing GaAs temperature response demodulation technologies, the noise resistance of this algorithm can be improved by up to 2.64 times. Meanwhile, the wavelength demodulation error of this method can reach ±0.0016 nm, and the temperature demodulation accuracy is ±0.388 ℃ with a temperature sensing range of −30 to 250 ℃, meeting the high-precision demodulation requirements in various application scenarios.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint