Zhao S, Liu Y X, Zhang H, et al. Study of optical solar mirrors based on metamaterials[J]. Opto-Electron Eng, 2024, 51(11): 240186. doi: 10.12086/oee.2024.240186
Citation: Zhao S, Liu Y X, Zhang H, et al. Study of optical solar mirrors based on metamaterials[J]. Opto-Electron Eng, 2024, 51(11): 240186. doi: 10.12086/oee.2024.240186

Study of optical solar mirrors based on metamaterials

    Fund Project: Project supported by the National Natural Science Foundation of China (62105131), Taiyuan University of Science and Technology Postgraduate Joint Cultivation Demonstration Base Project (JD2022007), and Jinzhong Municipal Science and Technology Key Research and Development Project (Y201027)
More Information
  • A metamaterial-based optical solar reflector (OSR) consisting of a three-layer structure of aluminum-doped zinc oxide (AZO) metasurface, a MgF2 dielectric layer and an Ag metal reflector layer is investigated. In the thermal infrared, the AZO metasurface excites the surface equipartition excitation resonance to enhance the electromagnetic absorption, the stability of the MgF2 dielectric constant reduces the reflection caused by the absorption oscillations. In the visible light, the transparent properties of AZO and MgF2 provide the low loss for the solar radiation, and the Ag reflector layer effectively suppresses the transmission. Simulation results show that the optimized OSR has a low solar absorptivity of 17.6% in 0.3~2.5 µm and a high IR emissivity of 86.5% in 2.5~30 µm. In addition, polarization and angle of incidence have a small effect on its performance. The structure achieves good absorption in the infrared band and also has potential applications in infrared thermography, radiative cooling, and other fields.
  • 加载中
  • [1] 陈帅朋. 基于超表面的热辐射特性研究[D]. 太原: 太原科技大学, 2023.

    Google Scholar

    [2] 邢亚娟, 孙波, 高坤, 等. 航天飞行器热防护系统及防热材料研究现状[J]. 宇航材料工艺, 2018, 48(4): 9−15. doi: 10.12044/j.issn.1007-2330.2018.04.002

    CrossRef Google Scholar

    Xing Y J, Sun B, Gao K, et al. Research status of thermal protection system and thermal protection materials for aerospace vehicles[J]. Aerosp Mater Technol, 2018, 48(4): 9−15. doi: 10.12044/j.issn.1007-2330.2018.04.002

    CrossRef Google Scholar

    [3] 李灿伦, 倪俊, 郭腾, 等. 无色聚酰亚胺薄膜二次表面镜的光学特性研究[J]. 真空, 2024, 61(3): 70−73. doi: 10.13385/j.cnki.vacuum.2024.03.12

    CrossRef Google Scholar

    Li C L, Ni J, Guo T, et al. Research on optical properties of CPI film second surface mirror[J]. Vacuum, 2024, 61(3): 70−73. doi: 10.13385/j.cnki.vacuum.2024.03.12

    CrossRef Google Scholar

    [4] Zhou C, Zhou H, He Y C, et al. Optical and irradiation-resistant properties of ITO films on F46 and PI substrates[J]. Trans Tianjin Univ, 2019, 25(2): 195−200 doi: 10.1007/s12209-018-0153-7

    CrossRef Google Scholar

    [5] 向艳超, 高鸿, 文明, 等. 航天器热控材料及应用研究进展[J]. 材料导报, 2022, 36(22): 22050193. doi: 10.11896/cldb.22050193

    CrossRef Google Scholar

    Xiang Y C, Gao H, Wen M, et al. Review of spacecraft thermal control materials and applications[J]. Mater Rep, 2022, 36(22): 22050193. doi: 10.11896/cldb.22050193

    CrossRef Google Scholar

    [6] 李振宇, 韩海鹰, 刘炳清, 等. 长寿命载人航天器热控白漆退化性能试验研究[J]. 航天器环境工程, 2020, 37(1): 102−106. doi: 10.12126/see.2020.01.016

    CrossRef Google Scholar

    Li Z Y, Han H Y, Liu B Q, et al. Tests of environmental degradation performance of thermal control white coating used for long-life manned spacecraft[J]. Spacecr Environ Eng, 2020, 37(1): 102−106. doi: 10.12126/see.2020.01.016

    CrossRef Google Scholar

    [7] 刘博, 谢鑫, 甘雪涛, 等. 全金属超表面在电磁波相位调控中的应用及进展[J]. 光电工程, 2023, 50(9): 230119 doi: 10.12086/oee.2023.230119

    CrossRef Google Scholar

    Liu B, Xie X, Gan X T, et al. Applications and progress of all-metal metasurfaces in phase manipulation of electromagnetic waves[J]. Opto-Electron Eng, 2023, 50(9): 230119 doi: 10.12086/oee.2023.230119

    CrossRef Google Scholar

    [8] 朱潜, 田翰闱, 蒋卫祥. 电磁超表面对辐射波的调控与应用[J]. 光电工程, 2023, 50(9): 230115. doi: 10.12086/oee.2023.230115

    CrossRef Google Scholar

    Zhu Q, Tian H W, Jiang W X. Manipulations and applications of radiating waves using electromagnetic metasurfaces[J]. Opto-Electron Eng, 2023, 50(9): 230115. doi: 10.12086/oee.2023.230115

    CrossRef Google Scholar

    [9] Sun K, Riedel C A, Wang Y D, et al. Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft[J]. ACS Photonics, 2018, 5(2): 495−501 doi: 10.1021/acsphotonics.7b00991

    CrossRef Google Scholar

    [10] Yildirim D U, Ghobadi A, Soydan M C, et al. Disordered and densely packed ITO nanorods as an excellent lithography-free optical solar reflector metasurface[J]. ACS Photonics, 2019, 6(7): 1812−1822 doi: 10.1021/acsphotonics.9b00636

    CrossRef Google Scholar

    [11] Sun K, Xiao W, Wheeler C, et al. VO2 metasurface smart thermal emitter with high visual transparency for passive radiative cooling regulation in space and terrestrial applications[J]. Nanophotonics, 2022, 11(17): 4101−4114. doi: 10.1515/nanoph-2022-0020

    CrossRef Google Scholar

    [12] Wu B Y, Mao Q J, Li H J, et al. Spacecraft smart radiation device with near-zero solar absorption based on cascaded photonic crystals[J]. Case Stud Therm Eng, 2023, 50: 103473 doi: 10.1016/J.CSITE.2023.103473

    CrossRef Google Scholar

    [13] Xiao W, Dai P, Singh H J, et al. Flexible thin film optical solar reflectors with Ta2O5-based multimaterial coatings for space radiative cooling[J]. APL Photonics, 2023, 8(9): 090802 doi: 10.1063/5.0156526

    CrossRef Google Scholar

    [14] Gaspari M, Mengali S, Simeoni M, et al. Metamaterial-based smart and flexible optical solar reflectors[J]. IOP Conf Ser Mater Sci Eng, 2023, 1287: 012003. doi: 10.1088/1757-899X/1287/1/012003

    CrossRef Google Scholar

    [15] Qin Z, Meng D J, Yang F M, et al. Broadband long-wave infrared metamaterial absorber based on single-sized cut-wire resonators[J]. Opt Express, 2021, 29(13): 20275−20285 doi: 10.1364/OE.430068

    CrossRef Google Scholar

    [16] Cueva A, Carretero E. Comparison of the optical properties of different dielectric materials (SnO2, ZnO, AZO, or SiAlNx) used in silver-based low-emissivity coatings[J]. Coatings, 2023, 13(10): 1709. doi: 10.3390/coatings13101709

    CrossRef Google Scholar

    [17] Yang F M, Liang Z Z, Shi X Y, et al. Broadband long-wave infrared metamaterial absorbers based on germanium resonators[J]. Results Phys, 2023, 51: 106660 doi: 10.1016/J.RINP.2023.106660

    CrossRef Google Scholar

    [18] Yang H U, D'Archangel J, Sundheimer M L, et al. Optical dielectric function of silver[J]. Phys Rev B, 2015, 91(23): 235137 doi: 10.1103/PhysRevB.91.235137

    CrossRef Google Scholar

    [19] Shkondin E, Takayama O, Panah M E A, et al. Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials[J]. Opt Mater Express, 2017, 7(5): 1606−1627 doi: 10.1364/OME.7.001606

    CrossRef Google Scholar

    [20] Gao H X, Zhou D P, Cui W L, et al. Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands[J]. J Opt Soc Am A, 2019, 36(2): 264−269 doi: 10.1364/JOSAA.36.000264

    CrossRef Google Scholar

    [21] 刘坤, 刘媛媛, 邓芳, 等. 嵌入式长波红外超宽带完美吸收器[J]. 光学学报, 2021, 41(24): 2423002. doi: 10.3788/AOS202141.2423002

    CrossRef Google Scholar

    Liu K, Liu Y Y, Deng F, et al. Long-wave infrared ultra-broadband perfect absorber with embedded structure[J]. Acta Opt Sin, 2021, 41(24): 2423002. doi: 10.3788/AOS202141.2423002

    CrossRef Google Scholar

    [22] 张婷, 郭泰铭, 闫俊伢, 等. 可调谐四宽带太赫兹吸收器设计[J]. 光学学报, 2024, 44(5): 0523002. doi: 10.3788/AOS231751

    CrossRef Google Scholar

    Zhang T, Guo T M, Yan J Y, et al. Design of tunable four-broadband terahertz absorber[J]. Acta Opt Sin, 2024, 44(5): 0523002. doi: 10.3788/AOS231751

    CrossRef Google Scholar

    [23] 邵磊, 阮琦锋, 王建方, 等. 局域表面等离激元[J]. 物理, 2014, 43(5): 290−298. doi: 10.7693/wl20140501

    CrossRef Google Scholar

    Shao L, Ruan Q F, Wang J F, et al. Localized surface plasmons[J]. Physics, 2014, 43(5): 290−298. doi: 10.7693/wl20140501

    CrossRef Google Scholar

    [24] 郑盛梅, 江孝伟, 江达飞, 等. 基于黑磷的双频带超材料吸收体及其传感特性[J]. 激光技术, 2023, 47(6): 846−853. doi: 10.7510/jgjs.issn.1001-3806.2023.06.017

    CrossRef Google Scholar

    Zheng S M, Jiang X W, Jiang D F, et al. Dual-band metamaterial absorber based on black phosphorus and its sensing characteristics[J]. Laser Technol, 2023, 47(6): 846−853. doi: 10.7510/jgjs.issn.1001-3806.2023.06.017

    CrossRef Google Scholar

  • Optical solar reflector (OSR), also known as a secondary surface mirror, has low absorption and high reflection of the solar spectrum in the 0.3~2.5 µm band, and strong absorption (emission) of the infrared spectrum in the 2.5~30 µm band. OSR is used on the outer surface of spacecraft radiator panels to reflect the solar spectrum radiation and radiate the heat from the radiator panels in the form of infrared, which plays a vital role in the thermal control of spacecraft.

    The traditional OSR consists of quartz and metal reflective layers. Quartz has excellent optical and thermal properties; however, quartz is easy to break during processing, and the specific gravity increases the satellite launch cost. At present, our satellite thermal control coatings are mainly various paint-type white lacquers, which can meet the spaceflight requirements. However, the white paint has a large gap rate and is easily contaminated, leading to performance degradation. With the expanding depth and breadth of deep space exploration, the thermal control materials need to be adapted to the new space environment. It is difficult to find a natural material that combines both low absorption in the solar spectrum and high emission in the infrared, thus requiring the use of metasurfaces with artificially designed structures.

    Currently, most of the research focuses on enhancing the IR emissivity or reducing the solar absorptivity alone, since both properties of a material are often jointly affected by its physical and spectral properties. When one parameter is increased, the other is also increased, which is detrimental to the OSR. In this paper, an OSR constructed from an AZO (aluminum-doped zinc oxide) metasurface, MgF2 dielectric layer, and Ag metal reflective layer is designed by considering both properties simultaneously. The transparent properties of AZO and MgF2 reduce the visible absorption and enable lower solar absorptivity. Most of the materials show strong perturbations in spectral absorption in the mid-infrared (MI) band, due to the complex dielectric constants. The trough position brings additional reflections, leading to a decrease in IR emissivity. At the same time, the stability of the dielectric constant of MgF2 in the IR band does not affect its interference conditions as a λ/4 spacer, and the absorption bandwidth and stability ensure a high IR emissivity. The optimized OSR achieves a low solar absorptivity of 17.6% in the UV to NIR and an IR emissivity of 86.5% in the thermal IR band.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(4)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint