Citation: | Zhao S, Liu Y X, Zhang H, et al. Study of optical solar mirrors based on metamaterials[J]. Opto-Electron Eng, 2024, 51(11): 240186. doi: 10.12086/oee.2024.240186 |
[1] | 陈帅朋. 基于超表面的热辐射特性研究[D]. 太原: 太原科技大学, 2023. |
[2] | 邢亚娟, 孙波, 高坤, 等. 航天飞行器热防护系统及防热材料研究现状[J]. 宇航材料工艺, 2018, 48(4): 9−15. doi: 10.12044/j.issn.1007-2330.2018.04.002 Xing Y J, Sun B, Gao K, et al. Research status of thermal protection system and thermal protection materials for aerospace vehicles[J]. Aerosp Mater Technol, 2018, 48(4): 9−15. doi: 10.12044/j.issn.1007-2330.2018.04.002 |
[3] | 李灿伦, 倪俊, 郭腾, 等. 无色聚酰亚胺薄膜二次表面镜的光学特性研究[J]. 真空, 2024, 61(3): 70−73. doi: 10.13385/j.cnki.vacuum.2024.03.12 Li C L, Ni J, Guo T, et al. Research on optical properties of CPI film second surface mirror[J]. Vacuum, 2024, 61(3): 70−73. doi: 10.13385/j.cnki.vacuum.2024.03.12 |
[4] | Zhou C, Zhou H, He Y C, et al. Optical and irradiation-resistant properties of ITO films on F46 and PI substrates[J]. Trans Tianjin Univ, 2019, 25(2): 195−200 doi: 10.1007/s12209-018-0153-7 |
[5] | 向艳超, 高鸿, 文明, 等. 航天器热控材料及应用研究进展[J]. 材料导报, 2022, 36(22): 22050193. doi: 10.11896/cldb.22050193 Xiang Y C, Gao H, Wen M, et al. Review of spacecraft thermal control materials and applications[J]. Mater Rep, 2022, 36(22): 22050193. doi: 10.11896/cldb.22050193 |
[6] | 李振宇, 韩海鹰, 刘炳清, 等. 长寿命载人航天器热控白漆退化性能试验研究[J]. 航天器环境工程, 2020, 37(1): 102−106. doi: 10.12126/see.2020.01.016 Li Z Y, Han H Y, Liu B Q, et al. Tests of environmental degradation performance of thermal control white coating used for long-life manned spacecraft[J]. Spacecr Environ Eng, 2020, 37(1): 102−106. doi: 10.12126/see.2020.01.016 |
[7] | 刘博, 谢鑫, 甘雪涛, 等. 全金属超表面在电磁波相位调控中的应用及进展[J]. 光电工程, 2023, 50(9): 230119 doi: 10.12086/oee.2023.230119 Liu B, Xie X, Gan X T, et al. Applications and progress of all-metal metasurfaces in phase manipulation of electromagnetic waves[J]. Opto-Electron Eng, 2023, 50(9): 230119 doi: 10.12086/oee.2023.230119 |
[8] | 朱潜, 田翰闱, 蒋卫祥. 电磁超表面对辐射波的调控与应用[J]. 光电工程, 2023, 50(9): 230115. doi: 10.12086/oee.2023.230115 Zhu Q, Tian H W, Jiang W X. Manipulations and applications of radiating waves using electromagnetic metasurfaces[J]. Opto-Electron Eng, 2023, 50(9): 230115. doi: 10.12086/oee.2023.230115 |
[9] | Sun K, Riedel C A, Wang Y D, et al. Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft[J]. ACS Photonics, 2018, 5(2): 495−501 doi: 10.1021/acsphotonics.7b00991 |
[10] | Yildirim D U, Ghobadi A, Soydan M C, et al. Disordered and densely packed ITO nanorods as an excellent lithography-free optical solar reflector metasurface[J]. ACS Photonics, 2019, 6(7): 1812−1822 doi: 10.1021/acsphotonics.9b00636 |
[11] | Sun K, Xiao W, Wheeler C, et al. VO2 metasurface smart thermal emitter with high visual transparency for passive radiative cooling regulation in space and terrestrial applications[J]. Nanophotonics, 2022, 11(17): 4101−4114. doi: 10.1515/nanoph-2022-0020 |
[12] | Wu B Y, Mao Q J, Li H J, et al. Spacecraft smart radiation device with near-zero solar absorption based on cascaded photonic crystals[J]. Case Stud Therm Eng, 2023, 50: 103473 doi: 10.1016/J.CSITE.2023.103473 |
[13] | Xiao W, Dai P, Singh H J, et al. Flexible thin film optical solar reflectors with Ta2O5-based multimaterial coatings for space radiative cooling[J]. APL Photonics, 2023, 8(9): 090802 doi: 10.1063/5.0156526 |
[14] | Gaspari M, Mengali S, Simeoni M, et al. Metamaterial-based smart and flexible optical solar reflectors[J]. IOP Conf Ser Mater Sci Eng, 2023, 1287: 012003. doi: 10.1088/1757-899X/1287/1/012003 |
[15] | Qin Z, Meng D J, Yang F M, et al. Broadband long-wave infrared metamaterial absorber based on single-sized cut-wire resonators[J]. Opt Express, 2021, 29(13): 20275−20285 doi: 10.1364/OE.430068 |
[16] | Cueva A, Carretero E. Comparison of the optical properties of different dielectric materials (SnO2, ZnO, AZO, or SiAlNx) used in silver-based low-emissivity coatings[J]. Coatings, 2023, 13(10): 1709. doi: 10.3390/coatings13101709 |
[17] | Yang F M, Liang Z Z, Shi X Y, et al. Broadband long-wave infrared metamaterial absorbers based on germanium resonators[J]. Results Phys, 2023, 51: 106660 doi: 10.1016/J.RINP.2023.106660 |
[18] | Yang H U, D'Archangel J, Sundheimer M L, et al. Optical dielectric function of silver[J]. Phys Rev B, 2015, 91(23): 235137 doi: 10.1103/PhysRevB.91.235137 |
[19] | Shkondin E, Takayama O, Panah M E A, et al. Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials[J]. Opt Mater Express, 2017, 7(5): 1606−1627 doi: 10.1364/OME.7.001606 |
[20] | Gao H X, Zhou D P, Cui W L, et al. Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands[J]. J Opt Soc Am A, 2019, 36(2): 264−269 doi: 10.1364/JOSAA.36.000264 |
[21] | 刘坤, 刘媛媛, 邓芳, 等. 嵌入式长波红外超宽带完美吸收器[J]. 光学学报, 2021, 41(24): 2423002. doi: 10.3788/AOS202141.2423002 Liu K, Liu Y Y, Deng F, et al. Long-wave infrared ultra-broadband perfect absorber with embedded structure[J]. Acta Opt Sin, 2021, 41(24): 2423002. doi: 10.3788/AOS202141.2423002 |
[22] | 张婷, 郭泰铭, 闫俊伢, 等. 可调谐四宽带太赫兹吸收器设计[J]. 光学学报, 2024, 44(5): 0523002. doi: 10.3788/AOS231751 Zhang T, Guo T M, Yan J Y, et al. Design of tunable four-broadband terahertz absorber[J]. Acta Opt Sin, 2024, 44(5): 0523002. doi: 10.3788/AOS231751 |
[23] | 邵磊, 阮琦锋, 王建方, 等. 局域表面等离激元[J]. 物理, 2014, 43(5): 290−298. doi: 10.7693/wl20140501 Shao L, Ruan Q F, Wang J F, et al. Localized surface plasmons[J]. Physics, 2014, 43(5): 290−298. doi: 10.7693/wl20140501 |
[24] | 郑盛梅, 江孝伟, 江达飞, 等. 基于黑磷的双频带超材料吸收体及其传感特性[J]. 激光技术, 2023, 47(6): 846−853. doi: 10.7510/jgjs.issn.1001-3806.2023.06.017 Zheng S M, Jiang X W, Jiang D F, et al. Dual-band metamaterial absorber based on black phosphorus and its sensing characteristics[J]. Laser Technol, 2023, 47(6): 846−853. doi: 10.7510/jgjs.issn.1001-3806.2023.06.017 |
Optical solar reflector (OSR), also known as a secondary surface mirror, has low absorption and high reflection of the solar spectrum in the 0.3~2.5 µm band, and strong absorption (emission) of the infrared spectrum in the 2.5~30 µm band. OSR is used on the outer surface of spacecraft radiator panels to reflect the solar spectrum radiation and radiate the heat from the radiator panels in the form of infrared, which plays a vital role in the thermal control of spacecraft.
The traditional OSR consists of quartz and metal reflective layers. Quartz has excellent optical and thermal properties; however, quartz is easy to break during processing, and the specific gravity increases the satellite launch cost. At present, our satellite thermal control coatings are mainly various paint-type white lacquers, which can meet the spaceflight requirements. However, the white paint has a large gap rate and is easily contaminated, leading to performance degradation. With the expanding depth and breadth of deep space exploration, the thermal control materials need to be adapted to the new space environment. It is difficult to find a natural material that combines both low absorption in the solar spectrum and high emission in the infrared, thus requiring the use of metasurfaces with artificially designed structures.
Currently, most of the research focuses on enhancing the IR emissivity or reducing the solar absorptivity alone, since both properties of a material are often jointly affected by its physical and spectral properties. When one parameter is increased, the other is also increased, which is detrimental to the OSR. In this paper, an OSR constructed from an AZO (aluminum-doped zinc oxide) metasurface, MgF2 dielectric layer, and Ag metal reflective layer is designed by considering both properties simultaneously. The transparent properties of AZO and MgF2 reduce the visible absorption and enable lower solar absorptivity. Most of the materials show strong perturbations in spectral absorption in the mid-infrared (MI) band, due to the complex dielectric constants. The trough position brings additional reflections, leading to a decrease in IR emissivity. At the same time, the stability of the dielectric constant of MgF2 in the IR band does not affect its interference conditions as a λ/4 spacer, and the absorption bandwidth and stability ensure a high IR emissivity. The optimized OSR achieves a low solar absorptivity of 17.6% in the UV to NIR and an IR emissivity of 86.5% in the thermal IR band.
Structure of the optical solar reflector. (a) Array graph; (b) Top view of individual unit; (c) Side view of individual unit
Spectral absorption of OSR on the AZO metasurface and blackbody radiation density distributions at 300 K and 5777 K
Spectral absorption curves of OSR for the AZO metasurface period p of 1.1 µm, 1.3 µm, and 1.5 µm, respectively
Electric field distributions of OSR at different feature scales for AZO metasurfaces
Absorption spectra of the structure at dimensions of l = 1.1 µm, 1.2 µm, 1.25 µm, and 1.3 µm, respectively
Absorption spectra of dielectric-layer thicknesses of 1.2 µm, 1.4 µm, 1.6 µm, and 1.8 µm, respectively
Absorption spectra corresponding to TE polarization and TM polarization at normal incidence
Absorption spectra at different angles of incidence for TE polarization
Absorption spectra at different angles of incidence for TM polarization