Yang S D, Zhu W B, Huang Y, et al. A method for suppressing aiming error of dynamic goniometer[J]. Opto-Electron Eng, 2024, 51(12): 240209. doi: 10.12086/oee.2024.240209
Citation: Yang S D, Zhu W B, Huang Y, et al. A method for suppressing aiming error of dynamic goniometer[J]. Opto-Electron Eng, 2024, 51(12): 240209. doi: 10.12086/oee.2024.240209

A method for suppressing aiming error of dynamic goniometer

    Fund Project: Project supported by National Key Research and Development Program of China (2023YFF0615703), The Zhejiang Provincial Basic Public Welfare Research Plan (TGC24E050001), and National Natural Science Foundation of China (52175526)
More Information
  • This study investigates methods for suppressing dynamic aiming errors, addressing the issue of dynamic goniometer accuracy being easily affected by light intensity stability during aiming. A Gaussian spotlight intensity distribution model is established, and the mechanism of dynamic aiming error generation is analyzed. The principle of the suppression method based on the lateral photovoltaic effect is demonstrated. A dynamic aiming system is constructed, and experiments are conducted to validate the aiming repeatability and accuracy of the proposed method. The results show that the aiming repeatability is 0.19″, and the aiming accuracy is 0.15″. Compared to the light intensity threshold aiming method, the aiming error is reduced by 66%. Dynamic measurement experiments with angle blocks are conducted, applying the proposed method to the dynamic goniometer system. The results demonstrate that the system accuracy meets the calibration requirements for the grade 1 angle block gauge.
  • 加载中
  • [1] Wang S T, Ma R, Cao F F, et al. A review: high-precision angle measurement technologies[J]. Sensors (Basel), 2024, 24(6): 1755. doi: 10.3390/s24061755

    CrossRef Google Scholar

    [2] Kumar A S A, George B, Mukhopadhyay S C. Technologies and applications of angle sensors: a review[J]. IEEE Sens J, 2021, 21(6): 7195−7206. doi: 10.1109/JSEN.2020.3045461

    CrossRef Google Scholar

    [3] 马新宇, 朱维斌, 黄垚, 等. 基于Kalman的动态角度测量方法研究[J]. 仪器仪表学报, 2023, 44(3): 119−127. doi: 10.19650/j.cnki.cjsi.J2210697

    CrossRef Google Scholar

    Ma X Y, Zhu W B, Huang Y, et al. Research on the dynamic angle measurement method based on Kalman[J]. Chin J Sci Instrum, 2023, 44(3): 119−127. doi: 10.19650/j.cnki.cjsi.J2210697

    CrossRef Google Scholar

    [4] Filatov Y V, Bohkman E D, Ivanov P A, et al. Calibration of angle-measurement system for direction measurements[J]. Proc SPIE, 2016, 10023: 100230W. doi: 10.1117/12.2245626

    CrossRef Google Scholar

    [5] 程霖. 基于自准直仪的绝对式测角仪装置设计与研究[D]. 天津: 天津大学, 2021. https://doi.org/10.27356/d.cnki.gtjdu.2021.000667.

    Google Scholar

    Cheng L. Design and research of absolute goniometer device based on autocollimator[D]. Tianjin: Tianjin University, 2021. https://doi.org/10.27356/d.cnki.gtjdu.2021.000667.

    Google Scholar

    [6] Filatov Y V, Pavlov P A, Velikoseltsev A A, et al. Precision angle measurement systems on the basis of ring laser gyro[J]. Sensors (Basel), 2020, 20(23): 6930. doi: 10.3390/s20236930

    CrossRef Google Scholar

    [7] Hsieh T H, Lin M X, Yeh K T, et al. Calibration of a rotary encoder and a polygon using a two-autocollimator method[J]. Appl Sci, 2023, 13(3): 1865. doi: 10.3390/app13031865

    CrossRef Google Scholar

    [8] Larichev R A, Filatov Y V. A model of angle measurement using an autocollimator and optical polygon[J]. Photonics, 2023, 10(12): 1359. doi: 10.3390/photonics10121359

    CrossRef Google Scholar

    [9] 徐兴晨, 朱维斌, 黄垚, 等. 一种转台测角系统动态比对的信号同步方法[J]. 仪器仪表学报, 2022, 43(12): 112−119. doi: 10.19650/j.cnki.cjsi.J2210598

    CrossRef Google Scholar

    Xu X C, Zhu W B, Huang Y, et al. Signal synchronization method for dynamic comparison of turntable angle measurement system[J]. Chin J Sci Instrum, 2022, 43(12): 112−119. doi: 10.19650/j.cnki.cjsi.J2210598

    CrossRef Google Scholar

    [10] Zhang J Y, Fan T Q, Cao X D. Dynamic photoelectric autocollimator based on two-dimension position sensitive detector[J]. Proc SPIE, 2007, 6723: 672315. doi: 10.1117/12.783135

    CrossRef Google Scholar

    [11] 黄云, 黄海乐, 刘贱平, 等. 高精度双光束干涉指零仪的研制[J]. 红外与激光工程, 2012, 41(9): 2498−2502. doi: 10.3969/j.issn.1007-2276.2012.09.046

    CrossRef Google Scholar

    Huang Y, Huang H L, Liu J P, et al. Development on a high precision null-indicator by using two-beam interference[J]. Infrared Laser Eng, 2012, 41(9): 2498−2502. doi: 10.3969/j.issn.1007-2276.2012.09.046

    CrossRef Google Scholar

    [12] Guo Y, Cheng H B, Wen Y F, et al. High-frequency small angle measurement using a dynamic autocollimator based on an improved k-means algorithm[J]. Opt Eng, 2018, 57(6): 064109. doi: 10.1117/1.OE.57.6.064109

    CrossRef Google Scholar

    [13] Mou J P, Su J J, Miao L J, et al. Research on field application technology of dynamic angle measurement based on fiber optic gyroscope and autocollimator[J]. IEEE Sens J, 2021, 21(13): 15308−15317. doi: 10.1109/JSEN.2021.3072641

    CrossRef Google Scholar

    [14] Larichev R A, Filatov Y V, Venediktov V. Dynamic angle measurements involving different optical null-indicator types[J]. Proc SPIE, 2023, 12769: 127690Q. doi: 10.1117/12.2687596

    CrossRef Google Scholar

    [15] 陈建清. 半导体激光器光束准直微透镜的研究[D]. 长春: 长春理工大学, 2005.

    Google Scholar

    Chen J Q, Study on microlens applied in semiconductor laser beam collimation[D]. Changchun: Changchun University of Science and Technology, 2005.

    Google Scholar

    [16] 张辉, 陈云善, 耿天文, 等. 四象限探测器位置检测精度的主要影响因素研究[J]. 中国激光, 2015, 42(12): 1217002. doi: 10.3788/CJL201542.1217002

    CrossRef Google Scholar

    Zhang H, Chen Y S, Geng T W, et al. Study on main factors affecting position detection accuracy of four-quadrant detector[J]. Chin J Lasers, 2015, 42(12): 1217002. doi: 10.3788/CJL201542.1217002

    CrossRef Google Scholar

    [17] 仇浩, 刘晓杰, 刘书钢. 基于四象限探测器的激光稳定集成化系统设计[J]. 光通信技术, 2022, 46(6): 44−49. doi: 10.13921/j.cnki.issn1002-5561.2022.06.009

    CrossRef Google Scholar

    Qiu H, Liu X J, Liu S G. Design of laser stabilization integrated system based on four-quadrant detector[J]. Opt Commun Technol, 2022, 46(6): 44−49. doi: 10.13921/j.cnki.issn1002-5561.2022.06.009

    CrossRef Google Scholar

    [18] Lucovsky G. Photoeffects in nonuniformly irradiated p-n junctions[J]. J Appl Phys, 1960, 31(6): 1088−1095. doi: 10.1063/1.1735750

    CrossRef Google Scholar

    [19] 尚鸿雁, 张广军. 不同光源模式下位置敏感探测器响应特性分析[J]. 光电工程, 2005, 32(1): 93−96. doi: 10.3969/j.issn.1003-501X.2005.01.025

    CrossRef Google Scholar

    Shang H Y, Zhang G J. Analysis of the response characteristics of position sensitive detector under different modes of light source[J]. Opto-Electron Eng, 2005, 32(1): 93−96. doi: 10.3969/j.issn.1003-501X.2005.01.025

    CrossRef Google Scholar

  • Dynamic goniometers are widely used in precision engineering and calibration tasks, but their accuracy is often compromised by aiming errors caused by light intensity fluctuations. These errors, prevalent during dynamic operations, limit the reliability of angle measurements and hinder their broader application. To address this issue, this study focuses on developing a robust aiming error suppression method to enhance the precision and repeatability of dynamic goniometers. The research is motivated by the need for stable and accurate aiming mechanisms under varying light conditions. A Gaussian spotlight intensity distribution model is proposed to analyze the mechanism of aiming error generation, providing a theoretical basis for error suppression strategies. Based on this model, a dynamic aiming system leveraging the lateral photovoltaic effect is designed. Unlike traditional methods reliant on intensity thresholds, this approach employs a position-sensitive detector (PSD) to detect spot center positions by utilizing the proportional relationship between electrode currents, effectively reducing dependency on absolute light intensity. Built a dynamic angle measurement system to evaluate the accuracy and repeatability of different aiming methods. Results showed that the system achieved the aiming repeatability of 0.19" and the aiming accuracy of 0.15", representing a 66% reduction in aiming errors compared to conventional methods. Furthermore, dynamic angle measurements were performed using the system on Grade 1 angle blocks, demonstrating that the system meets stringent calibration requirements. The method also exhibited consistent performance under varying rotational speeds, highlighting its robustness and adaptability to different operational conditions. This study contributes to the field by presenting an innovative suppression method for dynamic aiming errors. The findings underscore the potential of PSD-based lateral photovoltaic detection to improve measurement accuracy in dynamic environments. The proposed system not only advances the precision and repeatability of dynamic goniometers but also lays a foundation for further development of dynamic angle measurement technologies.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint