Citation: | Yang S D, Zhu W B, Huang Y, et al. A method for suppressing aiming error of dynamic goniometer[J]. Opto-Electron Eng, 2024, 51(12): 240209. doi: 10.12086/oee.2024.240209 |
[1] | Wang S T, Ma R, Cao F F, et al. A review: high-precision angle measurement technologies[J]. Sensors (Basel), 2024, 24(6): 1755. doi: 10.3390/s24061755 |
[2] | Kumar A S A, George B, Mukhopadhyay S C. Technologies and applications of angle sensors: a review[J]. IEEE Sens J, 2021, 21(6): 7195−7206. doi: 10.1109/JSEN.2020.3045461 |
[3] | 马新宇, 朱维斌, 黄垚, 等. 基于Kalman的动态角度测量方法研究[J]. 仪器仪表学报, 2023, 44(3): 119−127. doi: 10.19650/j.cnki.cjsi.J2210697 Ma X Y, Zhu W B, Huang Y, et al. Research on the dynamic angle measurement method based on Kalman[J]. Chin J Sci Instrum, 2023, 44(3): 119−127. doi: 10.19650/j.cnki.cjsi.J2210697 |
[4] | Filatov Y V, Bohkman E D, Ivanov P A, et al. Calibration of angle-measurement system for direction measurements[J]. Proc SPIE, 2016, 10023: 100230W. doi: 10.1117/12.2245626 |
[5] | 程霖. 基于自准直仪的绝对式测角仪装置设计与研究[D]. 天津: 天津大学, 2021. https://doi.org/10.27356/d.cnki.gtjdu.2021.000667. Cheng L. Design and research of absolute goniometer device based on autocollimator[D]. Tianjin: Tianjin University, 2021. https://doi.org/10.27356/d.cnki.gtjdu.2021.000667. |
[6] | Filatov Y V, Pavlov P A, Velikoseltsev A A, et al. Precision angle measurement systems on the basis of ring laser gyro[J]. Sensors (Basel), 2020, 20(23): 6930. doi: 10.3390/s20236930 |
[7] | Hsieh T H, Lin M X, Yeh K T, et al. Calibration of a rotary encoder and a polygon using a two-autocollimator method[J]. Appl Sci, 2023, 13(3): 1865. doi: 10.3390/app13031865 |
[8] | Larichev R A, Filatov Y V. A model of angle measurement using an autocollimator and optical polygon[J]. Photonics, 2023, 10(12): 1359. doi: 10.3390/photonics10121359 |
[9] | 徐兴晨, 朱维斌, 黄垚, 等. 一种转台测角系统动态比对的信号同步方法[J]. 仪器仪表学报, 2022, 43(12): 112−119. doi: 10.19650/j.cnki.cjsi.J2210598 Xu X C, Zhu W B, Huang Y, et al. Signal synchronization method for dynamic comparison of turntable angle measurement system[J]. Chin J Sci Instrum, 2022, 43(12): 112−119. doi: 10.19650/j.cnki.cjsi.J2210598 |
[10] | Zhang J Y, Fan T Q, Cao X D. Dynamic photoelectric autocollimator based on two-dimension position sensitive detector[J]. Proc SPIE, 2007, 6723: 672315. doi: 10.1117/12.783135 |
[11] | 黄云, 黄海乐, 刘贱平, 等. 高精度双光束干涉指零仪的研制[J]. 红外与激光工程, 2012, 41(9): 2498−2502. doi: 10.3969/j.issn.1007-2276.2012.09.046 Huang Y, Huang H L, Liu J P, et al. Development on a high precision null-indicator by using two-beam interference[J]. Infrared Laser Eng, 2012, 41(9): 2498−2502. doi: 10.3969/j.issn.1007-2276.2012.09.046 |
[12] | Guo Y, Cheng H B, Wen Y F, et al. High-frequency small angle measurement using a dynamic autocollimator based on an improved k-means algorithm[J]. Opt Eng, 2018, 57(6): 064109. doi: 10.1117/1.OE.57.6.064109 |
[13] | Mou J P, Su J J, Miao L J, et al. Research on field application technology of dynamic angle measurement based on fiber optic gyroscope and autocollimator[J]. IEEE Sens J, 2021, 21(13): 15308−15317. doi: 10.1109/JSEN.2021.3072641 |
[14] | Larichev R A, Filatov Y V, Venediktov V. Dynamic angle measurements involving different optical null-indicator types[J]. Proc SPIE, 2023, 12769: 127690Q. doi: 10.1117/12.2687596 |
[15] | 陈建清. 半导体激光器光束准直微透镜的研究[D]. 长春: 长春理工大学, 2005. Chen J Q, Study on microlens applied in semiconductor laser beam collimation[D]. Changchun: Changchun University of Science and Technology, 2005. |
[16] | 张辉, 陈云善, 耿天文, 等. 四象限探测器位置检测精度的主要影响因素研究[J]. 中国激光, 2015, 42(12): 1217002. doi: 10.3788/CJL201542.1217002 Zhang H, Chen Y S, Geng T W, et al. Study on main factors affecting position detection accuracy of four-quadrant detector[J]. Chin J Lasers, 2015, 42(12): 1217002. doi: 10.3788/CJL201542.1217002 |
[17] | 仇浩, 刘晓杰, 刘书钢. 基于四象限探测器的激光稳定集成化系统设计[J]. 光通信技术, 2022, 46(6): 44−49. doi: 10.13921/j.cnki.issn1002-5561.2022.06.009 Qiu H, Liu X J, Liu S G. Design of laser stabilization integrated system based on four-quadrant detector[J]. Opt Commun Technol, 2022, 46(6): 44−49. doi: 10.13921/j.cnki.issn1002-5561.2022.06.009 |
[18] | Lucovsky G. Photoeffects in nonuniformly irradiated p-n junctions[J]. J Appl Phys, 1960, 31(6): 1088−1095. doi: 10.1063/1.1735750 |
[19] | 尚鸿雁, 张广军. 不同光源模式下位置敏感探测器响应特性分析[J]. 光电工程, 2005, 32(1): 93−96. doi: 10.3969/j.issn.1003-501X.2005.01.025 Shang H Y, Zhang G J. Analysis of the response characteristics of position sensitive detector under different modes of light source[J]. Opto-Electron Eng, 2005, 32(1): 93−96. doi: 10.3969/j.issn.1003-501X.2005.01.025 |
Dynamic goniometers are widely used in precision engineering and calibration tasks, but their accuracy is often compromised by aiming errors caused by light intensity fluctuations. These errors, prevalent during dynamic operations, limit the reliability of angle measurements and hinder their broader application. To address this issue, this study focuses on developing a robust aiming error suppression method to enhance the precision and repeatability of dynamic goniometers. The research is motivated by the need for stable and accurate aiming mechanisms under varying light conditions. A Gaussian spotlight intensity distribution model is proposed to analyze the mechanism of aiming error generation, providing a theoretical basis for error suppression strategies. Based on this model, a dynamic aiming system leveraging the lateral photovoltaic effect is designed. Unlike traditional methods reliant on intensity thresholds, this approach employs a position-sensitive detector (PSD) to detect spot center positions by utilizing the proportional relationship between electrode currents, effectively reducing dependency on absolute light intensity. Built a dynamic angle measurement system to evaluate the accuracy and repeatability of different aiming methods. Results showed that the system achieved the aiming repeatability of 0.19" and the aiming accuracy of 0.15", representing a 66% reduction in aiming errors compared to conventional methods. Furthermore, dynamic angle measurements were performed using the system on Grade 1 angle blocks, demonstrating that the system meets stringent calibration requirements. The method also exhibited consistent performance under varying rotational speeds, highlighting its robustness and adaptability to different operational conditions. This study contributes to the field by presenting an innovative suppression method for dynamic aiming errors. The findings underscore the potential of PSD-based lateral photovoltaic detection to improve measurement accuracy in dynamic environments. The proposed system not only advances the precision and repeatability of dynamic goniometers but also lays a foundation for further development of dynamic angle measurement technologies.
Schematic diagram of the composition and working principle of the dynamic goniometer. (a) Composition of the dynamic goniometer; (b) A side aiming diagram; (c) B side aiming diagram
Dynamic aiming error diagram
Schematic diagram of the Gaussian spot intensity distribution on the PSD photosensitive surface
Device diagram of dynamic targeting repeatability experiment system
Repeatability of aiming on each edge surface
Dynamic aiming error at different rotational speeds. (a) Dynamic aiming method based on light intensity threshold; (b) PSD dynamic aiming method
Experimental setup diagram for dynamic measurement of angle blocks