Mao W J, Lin S L, Lin J P, et al. Color correction of electrowetting electronic paper based on color space transformation[J]. Opto-Electron Eng, 2025, 52(2): 240226. doi: 10.12086/oee.2025.240226
Citation: Mao W J, Lin S L, Lin J P, et al. Color correction of electrowetting electronic paper based on color space transformation[J]. Opto-Electron Eng, 2025, 52(2): 240226. doi: 10.12086/oee.2025.240226

Color correction of electrowetting electronic paper based on color space transformation

    Fund Project: National Key R&D Program of China (2021YFB3600603)
More Information
  • Electrowetting electronic paper employs a subtractive color mixing system for color display, which results in a smaller color gamut and potential color distortion. Additionally, it relies on ambient light's diffuse reflection, leading to insufficient brightness. To address these issues, this paper proposes a color space transformation and image adaptive enhancement algorithm for color electrowetting. The algorithm converts the image from the RGB color space to the HSV space, using CLAHE to evenly distribute saturation and improve color performance. The luminance channel is enhanced through guided filtering combined with an improved Retinex algorithm, preserving detail and edge information, and ensuring the electrowetting display maintains realistic visual effects under the same lighting conditions. Experimental results show that the algorithm improves PSNR, SSIM, FSIM, and FSIMc by 19%, 10.8%, 19.19%, and 19.54%, respectively. This algorithm significantly enhances the display performance of electrowetting electronic paper, laying a solid foundation for its commercialization.
  • 加载中
  • [1] 郭媛媛, 蒋洪伟, 袁冬, 等. 电润湿显示材料与器件技术研究进展[J]. 液晶与显示, 2022, 37(8): 925−941. doi: 10.37188/CJLCD.2022-0165

    CrossRef Google Scholar

    Guo Y Y, Jiang H W, Yuan D, et al. Progress in electrowetting display materials and device technology[J]. Chin J Liq Cryst Disp, 2022, 37(8): 925−941. doi: 10.37188/CJLCD.2022-0165

    CrossRef Google Scholar

    [2] 卜倩倩, 王丹, 邱云, 等. 反射显示技术的研究进展[J]. 液晶与显示, 2019, 34(2): 169−176. doi: 10.3788/YJYXS20193402.0169

    CrossRef Google Scholar

    Bu Q Q, Wang D, Qiu Y, et al. Progress of reflective display technology[J]. Chin J Liq Cryst Disp, 2019, 34(2): 169−176. doi: 10.3788/YJYXS20193402.0169

    CrossRef Google Scholar

    [3] 钱明勇, 林珊玲, 曾素云, 等. 电润湿电子纸的实时动态显示驱动系统实现[J]. 光电工程, 2019, 46(6): 180623. doi: 10.12086/oee.2019.180623

    CrossRef Google Scholar

    Qian M Y, Lin S L, Zeng S Y, et al. Real-time dynamic driving system implementation of electrowetting display[J]. Opto-Electron Eng, 2019, 46(6): 180623. doi: 10.12086/oee.2019.180623

    CrossRef Google Scholar

    [4] Chen M Z, Lin S L, Mei T, et al. Research on hydrodynamic characteristics of electronic paper pixels based on electrowetting[J]. Micromachines, 2023, 14(10): 1918. doi: 10.3390/mi14101918

    CrossRef Google Scholar

    [5] 马鑫, 喻春雨, 陈刚, 等. 分区自适应伽马校正的非均匀光照图像增强[J]. 激光与光电子学进展, 2024, 61(14): 1437006. doi: 10.3788/LOP232516

    CrossRef Google Scholar

    Ma X, Yu C Y, Chen G, et al. Adaptive gamma correction of subregion for non-uniform illumination image enhancement[J]. Laser Optoelectron Prog, 2024, 61(14): 1437006. doi: 10.3788/LOP232516

    CrossRef Google Scholar

    [6] 游达章, 陶加涛, 张业鹏, 等. 基于灰度变换及改进Retinex的低照度图像增强[J]. 红外技术, 2023, 45(2): 161−170.

    Google Scholar

    You D Z, Tao J T, Zhang Y P, et al. Low-light image enhancement based on gray scale transformation and improved retinex[J]. Infrared Technol, 2023, 45(2): 161−170.

    Google Scholar

    [7] 刘予敏, 林珊玲, 林志贤, 等. 不同色温环境光下彩色电润湿电子纸的色彩校正[J]. 液晶与显示, 2024, 39(1): 32−39. doi: 10.37188/CJLCD.2023-0379

    CrossRef Google Scholar

    Liu Y M, Lin S L, Lin Z X, et al. Color correction of color electrowetting display under ambient light with different color temperatures[J]. Chin J Liq Cryst Disp, 2024, 39(1): 32−39. doi: 10.37188/CJLCD.2023-0379

    CrossRef Google Scholar

    [8] Chen M Z, Lin S L, Lin J P, et al. Adaptive enhancement display of chromatic electrowetting based on color conversion[J]. IEEE Access, 2024, 12: 2389−2397. doi: 10.1109/ACCESS.2023.3347892

    CrossRef Google Scholar

    [9] 王浩, 张叶, 沈宏海, 等. 图像增强算法综述[J]. 中国光学, 2017, 10(4): 438−448. doi: 10.3788/CO.20171004.0438

    CrossRef Google Scholar

    Wang H, Zhang Y, Shen H H, et al. Review of image enhancement algorithms[J]. Chin Opt, 2017, 10(4): 438−448. doi: 10.3788/CO.20171004.0438

    CrossRef Google Scholar

    [10] Kim Y T. Contrast enhancement using brightness preserving bi-histogram equalization[J]. IEEE Trans Consumer Electron, 1997, 43(1): 1−8. doi: 10.1109/30.580378

    CrossRef Google Scholar

    [11] Wang Y, Chen Q, Zhang B. Image enhancement based on equal area dualistic sub-image histogram equalization method[J]. IEEE Trans Consumer Electron, 1999, 45(1): 68−75. doi: 10.1109/30.754419

    CrossRef Google Scholar

    [12] Chen S D, Ramli A R. Minimum mean brightness error bi-histogram equalization in contrast enhancement[J]. IEEE Trans Consumer Electron, 2003, 49(4): 1310−1319. doi: 10.1109/TCE.2003.1261234

    CrossRef Google Scholar

    [13] Nikolova M, Steidl G. Fast hue and range preserving histogram specification: theory and new algorithms for color image enhancement[J]. IEEE Trans Image Process, 2014, 23(9): 4087−4100. doi: 10.1109/TIP.2014.2337755

    CrossRef Google Scholar

    [14] Hellwig L, Fairchild M D. Brightness, lightness, colorfulness, and Chroma in CIECAM02 and CAM16[J]. Color Res Appl, 2022, 47(5): 1083−1095. doi: 10.1002/col.22792

    CrossRef Google Scholar

    [15] Kuo S W, Chang Y P, Cheng W Y, et al. Novel development of multi-color electrowetting display[J]. SID Symp Dig Tech Pap, 2009, 40(1): 483−486. doi: 10.1889/1.3256821

    CrossRef Google Scholar

    [16] Kuo S W, Lo K L, Cheng W Y, et al. Single layer multi-color electrowetting display by using ink jet printing technology and fluid motion prediction with simulation[J]. SID Symp Dig Tech Pap, 2010, 41(1): 939−942. doi: 10.1889/1.3500636

    CrossRef Google Scholar

    [17] You H, Steckl A J. Three-color electrowetting display device for electronic paper[J]. Appl Phys Lett, 2010, 97(2): 023514. doi: 10.1063/1.3464963

    CrossRef Google Scholar

    [18] 林珊玲, 李甜甜, 曾素云, 等. 基于人眼视觉的电润湿电子纸显示器亮度非线性校正方法[J]. 光子学报, 2019, 48(8): 0812004. doi: 10.3788/gzxb20194808.0812004

    CrossRef Google Scholar

    Lin S L, Li T T, Zeng S Y, et al. Nonlinear correction method of electrowetting display brightness based on human visual system[J]. Acta Photonica Sin, 2019, 48(8): 0812004. doi: 10.3788/gzxb20194808.0812004

    CrossRef Google Scholar

    [19] 熊铃铃, 林珊玲, 林志贤, 等. 改进电润湿电子纸图像自适应增强算法[J]. 电子技术应用, 2021, 47(11): 76−80. doi: 10.16157/j.issn.0258-7998.201106

    CrossRef Google Scholar

    Xiong L L, Lin S L, Lin Z X, et al. Improved image adaptive enhancement algorithm for electrowetting electronic paper[J]. Appl Electron Tech, 2021, 47(11): 76−80. doi: 10.16157/j.issn.0258-7998.201106

    CrossRef Google Scholar

    [20] 万俊霞, 林珊玲, 梅婷, 等. 基于图像分割和动态直方图均衡的电润湿显示器图像增强算法[J]. 光子学报, 2022, 51(2): 0210005. doi: 10.3788/gzxb20225102.0210005

    CrossRef Google Scholar

    Wan J X, Lin S L, Mei T, et al. Image enhancement algorithm of electrowetting display based on image segmentation and dynamic histogram equalization[J]. Acta Photonica Sin, 2022, 51(2): 0210005. doi: 10.3788/gzxb20225102.0210005

    CrossRef Google Scholar

    [21] 林珊玲, 谢欣欣, 林坚普, 等. 增强彩色电子纸饱和度的误差扩散优化[J]. 光电工程, 2024, 51(1): 230309. doi: 10.12086/oee.2024.230309

    CrossRef Google Scholar

    Lin S L, Xie X X, Lin J P, et al. Error diffusion optimization to enhance the saturation of colored e-paper[J]. Opto-Electron Eng, 2024, 51(1): 230309. doi: 10.12086/oee.2024.230309

    CrossRef Google Scholar

    [22] 林珊玲, 陈燕, 张雪, 等. 结合色彩校正和结构信息的双路低光照图像增强[J]. 光电工程, 2024, 51(9): 240142. doi: 10.12086/oee.2024.240142

    CrossRef Google Scholar

    Lin S L, Chen Y, Zhang X, et al. Dual low-light images combining color correction and structural information enhance[J]. Opto-Electron Eng, 2024, 51(9): 240142. doi: 10.12086/oee.2024.240142

    CrossRef Google Scholar

    [23] Fahnestock J D, Schowengerdt R A. Spatially variant contrast enhancement using local range modification[J]. Opt Eng, 1983, 22(3): 223378. doi: 10.1117/12.7973124

    CrossRef Google Scholar

    [24] Keys R. Cubic convolution interpolation for digital image processing[J]. IEEE Trans Acoust, Speech, Signal Process, 1981, 29(6): 1153−1160. doi: 10.1109/TASSP.1981.1163711

    CrossRef Google Scholar

    [25] 罗浩, 仲佳嘉, 李祥. 基于改进多尺度Retinex的单幅彩色图像增强算法[J]. 吉林大学学报(理学版), 2019, 57(2): 369−374. doi: 10.13413/j.cnki.jdxblxb.2018152

    CrossRef Google Scholar

    Luo H, Zhong J J, Li X. Single color image enhancement algorithm based on improved multi-scale retinex[J]. J Jilin Univ (Sci Ed), 2019, 57(2): 369−374. doi: 10.13413/j.cnki.jdxblxb.2018152

    CrossRef Google Scholar

    [26] He K M, Sun J, Tang X O. Guided image filtering[J]. IEEE Trans Pattern Anal Mach Intell, 2013, 35(6): 1397−1409. doi: 10.1109/TPAMI.2012.213

    CrossRef Google Scholar

    [27] Yang G S, Wang B Y, Chang Z Q, et al. Design, fabrication and measurement of full-color reflective electrowetting displays[J]. Micromachines, 2022, 13(11): 2034. doi: 10.3390/mi13112034

    CrossRef Google Scholar

    [28] 果佳. 基于颜色管理系统的跨媒体颜色复现比较研究[D]. 鞍山: 辽宁科技大学, 2019: 34–44. https://doi.org/10.26923/d.cnki.gasgc.2019.000180.

    Google Scholar

    Guo J. A comparative study of color reproduction cross-media based on color management system[D]. Anshan: Liaoning University of Science and Technology, 2019: 34–44. https://doi.org/10.26923/d.cnki.gasgc.2019.000180.

    Google Scholar

    [29] 许向阳. 与视觉认知过程相关的图像色貌建模的研究[D]. 广州: 华南理工大学, 2016: 79–97.

    Google Scholar

    Xu X Y. A research of image color appearance modeling based on cognition processing of human vision[D]. Guangzhou: South China University of Technology, 2016: 79–97.

    Google Scholar

    [30] 卢沧龙. 基于CIECAM02的跨媒体颜色复现评价研究[D]. 杭州: 浙江大学, 2013: 37–39.

    Google Scholar

    Lu C L. Study of cross-media color reproduction assessment based on CIECAM02[D]. Hangzhou: Zhejiang University, 2013: 37–39.

    Google Scholar

    [31] IEC. Multimedia systems and equipment-colour measurement and management-part 4: equipment using liquid crystal display panels: IEC 61966–4[S]. Geneva: IEC, 2000: 7–8.

    Google Scholar

    [32] 陈哲亮, 林珊玲, 林志贤, 等. 低功耗电润湿显示器视频显示驱动系统设计[J]. 光子学报, 2020, 49(2): 0222002. doi: 10.3788/gzxb20204902.0222002

    CrossRef Google Scholar

    Chen Z L, Lin S L, Lin Z X, et al. Design of video display driving system for low-power electrowetting display[J]. Acta Photonica Sin, 2020, 49(2): 0222002. doi: 10.3788/gzxb20204902.0222002

    CrossRef Google Scholar

  • Electrowetting electronic paper uses a subtractive color-mixing system with three primary inks (cyan, magenta, and yellow), which results in a reduced color gamut and colorimetric distortion. These issues arise from the difference between subtractive color mixing and traditional additive RGB systems. Electrowetting displays also depend on ambient light, but diffuse reflection from the display surface often leads to insufficient brightness. This negatively impacts the display quality and visual clarity, especially in low-light conditions.

    To address these issues, a color space conversion and image self-adaptive enhancement algorithm is proposed for electrowetting color displays. The objective is to improve color accuracy, increase brightness, and maintain image clarity while overcoming the challenges posed by the reflective nature of the display. The algorithm converts RGB images into the HSV color space, enabling more effective manipulation of color and brightness components. CLAHE (contrast limited adaptive histogram equalization) is applied to the saturation channel (S channel), redistributing saturation more evenly and avoiding over-saturation in specific hues, resulting in a more balanced and vivid color presentation. The brightness channel (V channel) is enhanced by using an improved Retinex algorithm combined with a guidance filter. This method improves brightness and contrast while preserving details and edges, addressing the issue of insufficient brightness caused by the reflective display surface. The algorithm ensures that the electrowetting display maintains realistic and stable visual performance under different lighting conditions.

    Experimental results show significant improvements in image quality, with PSNR of 70.5047 dB and SSIM of 0.8378. FSIM and FSIMc, which are used to measure human visual perception, reach 0.8409 and 0.84, respectively. Compared to the FHRPHS algorithm, the proposed method improves PSNR by 19%, SSIM by 10.8%, and FSIM and FSIMc by 19.19% and 19.54%, respectively. These improvements highlight the effectiveness of the approach in enhancing color performance and image clarity, especially in scenarios with limited color gamut, making it suitable for improving electrowetting electronic paper display quality.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(4)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint