Citation: | Mao W J, Lin S L, Lin J P, et al. Color correction of electrowetting electronic paper based on color space transformation[J]. Opto-Electron Eng, 2025, 52(2): 240226. doi: 10.12086/oee.2025.240226 |
[1] | 郭媛媛, 蒋洪伟, 袁冬, 等. 电润湿显示材料与器件技术研究进展[J]. 液晶与显示, 2022, 37(8): 925−941. doi: 10.37188/CJLCD.2022-0165 Guo Y Y, Jiang H W, Yuan D, et al. Progress in electrowetting display materials and device technology[J]. Chin J Liq Cryst Disp, 2022, 37(8): 925−941. doi: 10.37188/CJLCD.2022-0165 |
[2] | 卜倩倩, 王丹, 邱云, 等. 反射显示技术的研究进展[J]. 液晶与显示, 2019, 34(2): 169−176. doi: 10.3788/YJYXS20193402.0169 Bu Q Q, Wang D, Qiu Y, et al. Progress of reflective display technology[J]. Chin J Liq Cryst Disp, 2019, 34(2): 169−176. doi: 10.3788/YJYXS20193402.0169 |
[3] | 钱明勇, 林珊玲, 曾素云, 等. 电润湿电子纸的实时动态显示驱动系统实现[J]. 光电工程, 2019, 46(6): 180623. doi: 10.12086/oee.2019.180623 Qian M Y, Lin S L, Zeng S Y, et al. Real-time dynamic driving system implementation of electrowetting display[J]. Opto-Electron Eng, 2019, 46(6): 180623. doi: 10.12086/oee.2019.180623 |
[4] | Chen M Z, Lin S L, Mei T, et al. Research on hydrodynamic characteristics of electronic paper pixels based on electrowetting[J]. Micromachines, 2023, 14(10): 1918. doi: 10.3390/mi14101918 |
[5] | 马鑫, 喻春雨, 陈刚, 等. 分区自适应伽马校正的非均匀光照图像增强[J]. 激光与光电子学进展, 2024, 61(14): 1437006. doi: 10.3788/LOP232516 Ma X, Yu C Y, Chen G, et al. Adaptive gamma correction of subregion for non-uniform illumination image enhancement[J]. Laser Optoelectron Prog, 2024, 61(14): 1437006. doi: 10.3788/LOP232516 |
[6] | 游达章, 陶加涛, 张业鹏, 等. 基于灰度变换及改进Retinex的低照度图像增强[J]. 红外技术, 2023, 45(2): 161−170. You D Z, Tao J T, Zhang Y P, et al. Low-light image enhancement based on gray scale transformation and improved retinex[J]. Infrared Technol, 2023, 45(2): 161−170. |
[7] | 刘予敏, 林珊玲, 林志贤, 等. 不同色温环境光下彩色电润湿电子纸的色彩校正[J]. 液晶与显示, 2024, 39(1): 32−39. doi: 10.37188/CJLCD.2023-0379 Liu Y M, Lin S L, Lin Z X, et al. Color correction of color electrowetting display under ambient light with different color temperatures[J]. Chin J Liq Cryst Disp, 2024, 39(1): 32−39. doi: 10.37188/CJLCD.2023-0379 |
[8] | Chen M Z, Lin S L, Lin J P, et al. Adaptive enhancement display of chromatic electrowetting based on color conversion[J]. IEEE Access, 2024, 12: 2389−2397. doi: 10.1109/ACCESS.2023.3347892 |
[9] | 王浩, 张叶, 沈宏海, 等. 图像增强算法综述[J]. 中国光学, 2017, 10(4): 438−448. doi: 10.3788/CO.20171004.0438 Wang H, Zhang Y, Shen H H, et al. Review of image enhancement algorithms[J]. Chin Opt, 2017, 10(4): 438−448. doi: 10.3788/CO.20171004.0438 |
[10] | Kim Y T. Contrast enhancement using brightness preserving bi-histogram equalization[J]. IEEE Trans Consumer Electron, 1997, 43(1): 1−8. doi: 10.1109/30.580378 |
[11] | Wang Y, Chen Q, Zhang B. Image enhancement based on equal area dualistic sub-image histogram equalization method[J]. IEEE Trans Consumer Electron, 1999, 45(1): 68−75. doi: 10.1109/30.754419 |
[12] | Chen S D, Ramli A R. Minimum mean brightness error bi-histogram equalization in contrast enhancement[J]. IEEE Trans Consumer Electron, 2003, 49(4): 1310−1319. doi: 10.1109/TCE.2003.1261234 |
[13] | Nikolova M, Steidl G. Fast hue and range preserving histogram specification: theory and new algorithms for color image enhancement[J]. IEEE Trans Image Process, 2014, 23(9): 4087−4100. doi: 10.1109/TIP.2014.2337755 |
[14] | Hellwig L, Fairchild M D. Brightness, lightness, colorfulness, and Chroma in CIECAM02 and CAM16[J]. Color Res Appl, 2022, 47(5): 1083−1095. doi: 10.1002/col.22792 |
[15] | Kuo S W, Chang Y P, Cheng W Y, et al. Novel development of multi-color electrowetting display[J]. SID Symp Dig Tech Pap, 2009, 40(1): 483−486. doi: 10.1889/1.3256821 |
[16] | Kuo S W, Lo K L, Cheng W Y, et al. Single layer multi-color electrowetting display by using ink jet printing technology and fluid motion prediction with simulation[J]. SID Symp Dig Tech Pap, 2010, 41(1): 939−942. doi: 10.1889/1.3500636 |
[17] | You H, Steckl A J. Three-color electrowetting display device for electronic paper[J]. Appl Phys Lett, 2010, 97(2): 023514. doi: 10.1063/1.3464963 |
[18] | 林珊玲, 李甜甜, 曾素云, 等. 基于人眼视觉的电润湿电子纸显示器亮度非线性校正方法[J]. 光子学报, 2019, 48(8): 0812004. doi: 10.3788/gzxb20194808.0812004 Lin S L, Li T T, Zeng S Y, et al. Nonlinear correction method of electrowetting display brightness based on human visual system[J]. Acta Photonica Sin, 2019, 48(8): 0812004. doi: 10.3788/gzxb20194808.0812004 |
[19] | 熊铃铃, 林珊玲, 林志贤, 等. 改进电润湿电子纸图像自适应增强算法[J]. 电子技术应用, 2021, 47(11): 76−80. doi: 10.16157/j.issn.0258-7998.201106 Xiong L L, Lin S L, Lin Z X, et al. Improved image adaptive enhancement algorithm for electrowetting electronic paper[J]. Appl Electron Tech, 2021, 47(11): 76−80. doi: 10.16157/j.issn.0258-7998.201106 |
[20] | 万俊霞, 林珊玲, 梅婷, 等. 基于图像分割和动态直方图均衡的电润湿显示器图像增强算法[J]. 光子学报, 2022, 51(2): 0210005. doi: 10.3788/gzxb20225102.0210005 Wan J X, Lin S L, Mei T, et al. Image enhancement algorithm of electrowetting display based on image segmentation and dynamic histogram equalization[J]. Acta Photonica Sin, 2022, 51(2): 0210005. doi: 10.3788/gzxb20225102.0210005 |
[21] | 林珊玲, 谢欣欣, 林坚普, 等. 增强彩色电子纸饱和度的误差扩散优化[J]. 光电工程, 2024, 51(1): 230309. doi: 10.12086/oee.2024.230309 Lin S L, Xie X X, Lin J P, et al. Error diffusion optimization to enhance the saturation of colored e-paper[J]. Opto-Electron Eng, 2024, 51(1): 230309. doi: 10.12086/oee.2024.230309 |
[22] | 林珊玲, 陈燕, 张雪, 等. 结合色彩校正和结构信息的双路低光照图像增强[J]. 光电工程, 2024, 51(9): 240142. doi: 10.12086/oee.2024.240142 Lin S L, Chen Y, Zhang X, et al. Dual low-light images combining color correction and structural information enhance[J]. Opto-Electron Eng, 2024, 51(9): 240142. doi: 10.12086/oee.2024.240142 |
[23] | Fahnestock J D, Schowengerdt R A. Spatially variant contrast enhancement using local range modification[J]. Opt Eng, 1983, 22(3): 223378. doi: 10.1117/12.7973124 |
[24] | Keys R. Cubic convolution interpolation for digital image processing[J]. IEEE Trans Acoust, Speech, Signal Process, 1981, 29(6): 1153−1160. doi: 10.1109/TASSP.1981.1163711 |
[25] | 罗浩, 仲佳嘉, 李祥. 基于改进多尺度Retinex的单幅彩色图像增强算法[J]. 吉林大学学报(理学版), 2019, 57(2): 369−374. doi: 10.13413/j.cnki.jdxblxb.2018152 Luo H, Zhong J J, Li X. Single color image enhancement algorithm based on improved multi-scale retinex[J]. J Jilin Univ (Sci Ed), 2019, 57(2): 369−374. doi: 10.13413/j.cnki.jdxblxb.2018152 |
[26] | He K M, Sun J, Tang X O. Guided image filtering[J]. IEEE Trans Pattern Anal Mach Intell, 2013, 35(6): 1397−1409. doi: 10.1109/TPAMI.2012.213 |
[27] | Yang G S, Wang B Y, Chang Z Q, et al. Design, fabrication and measurement of full-color reflective electrowetting displays[J]. Micromachines, 2022, 13(11): 2034. doi: 10.3390/mi13112034 |
[28] | 果佳. 基于颜色管理系统的跨媒体颜色复现比较研究[D]. 鞍山: 辽宁科技大学, 2019: 34–44. https://doi.org/10.26923/d.cnki.gasgc.2019.000180. Guo J. A comparative study of color reproduction cross-media based on color management system[D]. Anshan: Liaoning University of Science and Technology, 2019: 34–44. https://doi.org/10.26923/d.cnki.gasgc.2019.000180. |
[29] | 许向阳. 与视觉认知过程相关的图像色貌建模的研究[D]. 广州: 华南理工大学, 2016: 79–97. Xu X Y. A research of image color appearance modeling based on cognition processing of human vision[D]. Guangzhou: South China University of Technology, 2016: 79–97. |
[30] | 卢沧龙. 基于CIECAM02的跨媒体颜色复现评价研究[D]. 杭州: 浙江大学, 2013: 37–39. Lu C L. Study of cross-media color reproduction assessment based on CIECAM02[D]. Hangzhou: Zhejiang University, 2013: 37–39. |
[31] | IEC. Multimedia systems and equipment-colour measurement and management-part 4: equipment using liquid crystal display panels: IEC 61966–4[S]. Geneva: IEC, 2000: 7–8. |
[32] | 陈哲亮, 林珊玲, 林志贤, 等. 低功耗电润湿显示器视频显示驱动系统设计[J]. 光子学报, 2020, 49(2): 0222002. doi: 10.3788/gzxb20204902.0222002 Chen Z L, Lin S L, Lin Z X, et al. Design of video display driving system for low-power electrowetting display[J]. Acta Photonica Sin, 2020, 49(2): 0222002. doi: 10.3788/gzxb20204902.0222002 |
Electrowetting electronic paper uses a subtractive color-mixing system with three primary inks (cyan, magenta, and yellow), which results in a reduced color gamut and colorimetric distortion. These issues arise from the difference between subtractive color mixing and traditional additive RGB systems. Electrowetting displays also depend on ambient light, but diffuse reflection from the display surface often leads to insufficient brightness. This negatively impacts the display quality and visual clarity, especially in low-light conditions.
To address these issues, a color space conversion and image self-adaptive enhancement algorithm is proposed for electrowetting color displays. The objective is to improve color accuracy, increase brightness, and maintain image clarity while overcoming the challenges posed by the reflective nature of the display. The algorithm converts RGB images into the HSV color space, enabling more effective manipulation of color and brightness components. CLAHE (contrast limited adaptive histogram equalization) is applied to the saturation channel (S channel), redistributing saturation more evenly and avoiding over-saturation in specific hues, resulting in a more balanced and vivid color presentation. The brightness channel (V channel) is enhanced by using an improved Retinex algorithm combined with a guidance filter. This method improves brightness and contrast while preserving details and edges, addressing the issue of insufficient brightness caused by the reflective display surface. The algorithm ensures that the electrowetting display maintains realistic and stable visual performance under different lighting conditions.
Experimental results show significant improvements in image quality, with PSNR of 70.5047 dB and SSIM of 0.8378. FSIM and FSIMc, which are used to measure human visual perception, reach 0.8409 and 0.84, respectively. Compared to the FHRPHS algorithm, the proposed method improves PSNR by 19%, SSIM by 10.8%, and FSIM and FSIMc by 19.19% and 19.54%, respectively. These improvements highlight the effectiveness of the approach in enhancing color performance and image clarity, especially in scenarios with limited color gamut, making it suitable for improving electrowetting electronic paper display quality.
Overall flow chart
S-channel processing flow
Reflection principle of Retinex algorithm on electrowetting display
V-channel processing flow
Color chart shooting environment diagram and actual environment
Compares the image effects before and after processing by different algorithms. (a) Original RGB image; (b) MEMBHE algorithm; (c) MMBEBHE algorithm; (d) FHRPHS algorithm; (e) Ours
Comparison of image effects before and after different ablation experiments. (a) RGB original image; (b) Directly mapped CMY image; (c) V-channel processed image only; (d) S-channel processed image only; (e) Ours
Experimental environment
Comparison of the display effect on the color electrowetting display. (a) Original image; (b) Image processed by the proposed algorithm; (c) Local magnification of the original image; (d) Local magnification of the processed image