Citation: | Liang L M, Kang T, Wang C B, et al. Colorectal polyp segmentation via Transformer-based adaptive feature selection[J]. Opto-Electron Eng, 2025, 52(3): 240279. doi: 10.12086/oee.2025.240279 |
[1] | 谢斌, 刘阳倩, 李俞霖. 结合极化自注意力和Transformer的结直肠息肉分割方法[J]. 光电工程, 2024, 51(10): 240179. doi: 10.12086/oee.2024.240179 Xie B, Liu Y Q, Li Y L. Colorectal polyp segmentation method combining polarized self-attention and Transformer[J]. Opto-Electron Eng, 2024, 51(10): 240179. doi: 10.12086/oee.2024.240179 |
[2] | Lin L, Lv G Z, Wang B, et al. Polyp-LVT: polyp segmentation with lightweight vision transformers[J]. Knowledge-Based Syst, 2024, 300: 112181. doi: 10.1016/j.knosys.2024.112181 |
[3] | 张艳, 马春明, 刘树东, 等. 基于多尺度特征增强的高效Transformer语义分割网络[J]. 光电工程, 2024, 51(12): 240237. doi: 10.12086/oee.2024.240237 Zhang Y, Ma C M, Liu S D, et al. Multi-scale feature enhanced Transformer network for efficient semantic segmentation[J]. Opto-Electron Eng, 2024, 51(12): 240237. doi: 10.12086/oee.2024.240237 |
[4] | Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234–241. https://doi.org/10.1007/978-3-319-24574-4_28. |
[5] | Diakogiannis F I, Waldner F, Caccetta P, et al. ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data[J]. ISPRS J Photogramm Remote Sens, 2020, 162: 94−114. doi: 10.1016/j.isprsjprs.2020.01.013 |
[6] | Yin Z J, Liang K M, Ma Z Y, et al. Duplex contextual relation network for polyp segmentation[C]//Proceedings of 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022: 1–5. https://doi.org/10.1109/ISBI52829.2022.9761402. |
[7] | Lou A G, Guan S Y, Ko H, et al. CaraNet: context axial reverse attention network for segmentation of small medical objects[J]. Proc SPIE, 2022, 12032: 120320D. doi: 10.1117/12.2611802 |
[8] | Huang C H, Wu H Y, Lin Y L. HarDNet-MSEG: a simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 FPS[Z]. arXiv: 2101.07172, 2021. https://doi.org/10.48550/arXiv.2101.07172. |
[9] | Shi W T, Xu J, Gao P. SSformer: a lightweight transformer for semantic segmentation[C]//Proceedings of 2022 IEEE 24th International Workshop on Multimedia Signal Processing (MMSP), 2022: 1–5. https://doi.org/10.1109/MMSP55362.2022.9949177. |
[10] | Wu C, Long C, Li S J, et al. MSRAformer: multiscale spatial reverse attention network for polyp segmentation[J]. Comput Biol Med, 2022, 151: 106274. doi: 10.1016/j.compbiomed.2022.106274 |
[11] | Wang W H, Xie E Z, Li X, et al. PVT v2: improved baselines with pyramid vision transformer[J]. Comput Visual Media, 2022, 8(3): 415−424. doi: 10.1007/s41095-022-0274-8 |
[12] | Ouyang D L, He S, Zhang G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023: 1–5. https://doi.org/10.1109/ICASSP49357.2023.10096516. |
[13] | Zheng M J, Sun L, Dong J X, et al. SMFANet: a lightweight self-modulation feature aggregation network for efficient image super-resolution[C]//Proceedings of the 18th European Conference on Computer Vision, 2024: 359–375. https://doi.org/10.1007/978-3-031-72973-7_21. |
[14] | Huo X Z, Sun G, Tian S W, et al. HiFuse: hierarchical multi-scale feature fusion network for medical image classification[J]. Biomed Signal Process Control, 2024, 87: 105534. doi: 10.1016/j.bspc.2023.105534 |
[15] | Chen X K, Lin K Y, Wang J B, et al. Bi-directional cross-modality feature propagation with separation-and-aggregation gate for RGB-D semantic segmentation[C]//Proceedings of the 16th European Conference on Computer Vision, 2020: 561–577. https://doi.org/10.1007/978-3-030-58621-8_33. |
[16] | Zhang Q L, Yang Y B. SA-Net: shuffle attention for deep convolutional neural networks[C]//Proceedings of ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021: 2235–2239. https://doi.org/10.1109/ICASSP39728.2021.9414568. |
[17] | Bernal J, Sánchez F J, Fernández-Esparrach G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians[J]. Comput Med Imaging Graphics, 2015, 43: 99−111. doi: 10.1016/j.compmedimag.2015.02.007 |
[18] | Jha D, Smedsrud P H, Riegler M A, et al. Kvasir-SEG: a segmented polyp dataset[C]//Proceedings of the 26th International Conference on MultiMedia Modeling, 2020: 451–462. https://doi.org/10.1007/978-3-030-37734-2_37. |
[19] | Tajbakhsh N, Gurudu S R, Liang J M. Automated polyp detection in colonoscopy videos using shape and context information[J]. IEEE Trans Med Imaging, 2016, 35(2): 630−644. doi: 10.1109/TMI.2015.2487997 |
[20] | Silva J, Histace A, Romain O, et al. Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer[J]. Int J Comput Assisted Radiol Surg, 2014, 9(2): 283−293. doi: 10.1007/s11548-013-0926-3 |
[21] | Dong B, Wang W H, Fan D P, et al. Polyp-PVT: polyp segmentation with pyramid vision transformers[Z]. arXiv: 2108.06932, 2024. https://doi.org/10.48550/arXiv.2108.06932. |
[22] | 李大湘, 李登辉, 刘颖, 等. 渐进式CNN-Transformer语义补偿息肉分割网络[J]. 光学 精密工程, 2024, 32(16): 2523−2536. doi: 10.37188/OPE.20243216.2523 Li D X, Li D H, Liu Y, et al. Progressive CNN-transformer semantic compensation network for polyp segmentation[J]. Opt Precis Eng, 2024, 32(16): 2523−2536. doi: 10.37188/OPE.20243216.2523 |
Colorectal cancer ranks among the most common and life-threatening diseases worldwide, with colorectal polyps identified as the primary precursors. Accurate detection and segmentation of polyps are essential for preventing cancer progression and improving patient outcomes. However, existing segmentation methods face persistent challenges, including regional mis-segmentation, low localization accuracy, and difficulties in capturing the complex features of polyps. To overcome these limitations, this study presents a novel colorectal polyp segmentation algorithm that integrates Transformer-based adaptive feature selection to improve segmentation accuracy and robustness.
The proposed approach utilizes a Transformer encoder to extract multi-level feature representations, capturing information from fine-grained details to high-level semantics. This enables a comprehensive understanding of the morphology of polyps and their surrounding tissues. To further improve feature representation, a dual-focus attention module is introduced, which integrates multi-scale information, spatial attention, and local detail features. This module enhances lesion localization accuracy and reduces errors arising from the complex structures of polyps.
To address regional mis-segmentation, a hierarchical feature fusion module is developed. By employing a hierarchical aggregation strategy, this module strengthens the integration of local and global features, allowing the model to better capture intricate regional characteristics. Additionally, a dynamic feature selection module is incorporated to optimize multi-resolution feature representations. Through adaptive selection and weighting mechanisms, this module eliminates redundant information and focuses on critical regions, improving segmentation precision.
In conclusion, this study demonstrates the effectiveness of integrating Transformer-based adaptive feature selection, dual-focus attention, hierarchical feature fusion, and dynamic feature optimization. The proposed algorithm provides a comprehensive and innovative solution to the challenges of colorectal polyp segmentation, offering significant potential for clinical applications in early cancer diagnosis and treatment.
A Transformer-based adaptive feature selection algorithm for colorectal polyp segmentation
Dual-focus attention module
Hierarchical feature fusion module
Dynamic feature selection module
Trend chart of Dice coefficient changes
Visualization of segmentation results of different networks on CVC-ClinicDB and Kvasir datasets
Visualization of sgmentation results of different networks on CVC-ColonDB and ETIS datasets