Citation: | Yang Z Q, Li W X, Sun X, et al. Research progress on on-chip integrated optical isolators[J]. Opto-Electron Eng, 2025, 52(2): 240285. doi: 10.12086/oee.2025.240285 |
[1] | Pérez D, Gasulla I, Crudgington L, et al. Multipurpose silicon photonics signal processor core[J]. Nat Commun, 2017, 8(1): 636. doi: 10.1038/s41467-017-00714-1 |
[2] | 恽斌峰, 胡国华, 史上清, 等. 微波光子集成芯片研究进展(特邀)[J]. 光学学报, 2024, 44(15): 1513029. doi: 10.3788/AOS240983 Yun B F, Hu G H, Shi S Q, et al. Research progress in integrated microwave photonic chips (Invited)[J]. Acta Opt Sin, 2024, 44(15): 1513029. doi: 10.3788/AOS240983 |
[3] | Bogaerts W, Pérez D, Capmany J, et al. Programmable photonic circuits[J]. Nature, 2020, 586(7828): 207−216. doi: 10.1038/s41586-020-2764-0 |
[4] | Chi Y L, Yu Y, Gong Q H, et al. High-dimensional quantum information processing on programmable integrated photonic chips[J]. Sci China Information Sci, 2023, 66(8): 180501. doi: 10.1007/s11432-022-3602-0 |
[5] | Jalas D, Petrov A, Eich M, et al. What is—and what is not—an optical isolator[J]. Nat Photonics, 2013, 7(8): 579−582. doi: 10.1038/nphoton.2013.185 |
[6] | 张子健, 严巍, 秦俊, 等. 集成非互易光学器件(特邀)[J]. 光学学报, 2024, 44(15): 1513020. doi: 10.3788/AOS241073 Zhang Z J, Yan W, Qin J, et al. Integrated nonreciprocal photonic devices (Invited)[J]. Acta Opt Sin, 2024, 44(15): 1513020. doi: 10.3788/AOS241073 |
[7] | Shoji Y, Mizumoto T. Magneto-optical non-reciprocal devices in silicon photonics[J]. Sci Technol Adv Mater, 2014, 15(1): 014602. doi: 10.1088/1468-6996/15/1/014602 |
[8] | Bi L, Hu J J, Jiang P, et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators[J]. Nat Photonics, 2011, 5(12): 758−762. doi: 10.1038/nphoton.2011.270 |
[9] | Yang J S, Roh J W, Ok S H, et al. An integrated optical waveguide isolator based on multimode interference by wafer direct bonding[J]. IEEE Trans Magn, 2005, 41(10): 3520−3522. doi: 10.1109/TMAG.2005.854960 |
[10] | Sohn D B, Örsel O E, Bahl G. Electrically driven optical isolation through phonon-mediated photonic Autler–Townes splitting[J]. Nat Photonics, 2021, 15(11): 822−827. doi: 10.1038/s41566-021-00884-x |
[11] | Kittlaus E A, Jones W M, Rakich P T, et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics[J]. Nat Photonics, 2021, 15(1): 43−52. doi: 10.1038/s41566-020-00711-9 |
[12] | Tian H, Liu J Q, Siddharth A, et al. Magnetic-free silicon nitride integrated optical isolator[J]. Nat Photonics, 2021, 15(11): 828−836. doi: 10.1038/s41566-021-00882-z |
[13] | Dong P. Travelling-wave Mach-Zehnder modulators functioning as optical isolators[J]. Opt Express, 2015, 23(8): 10498−10505. doi: 10.1364/OE.23.010498 |
[14] | Yu M J, Cheng R, Reimer C, et al. Integrated electro-optic isolator on thin-film lithium niobate[J]. Nat Photonics, 2023, 17(8): 666−671. doi: 10.1038/s41566-023-01227-8 |
[15] | Shah M, Briggs I, Chen P K, et al. Visible-telecom tunable dual-band optical isolator based on dynamic modulation in thin-film lithium niobate[J]. Opt Lett, 2023, 48(8): 1978−1981. doi: 10.1364/OL.482635 |
[16] | Saha K, Okawachi Y, Kuzucu O, et al. Chip-scale broadband optical isolation via Bragg scattering four-wave mixing[C]//CLEO: 2013, 2013: 1–2. https://doi.org/10.1364/CLEO_QELS.2013.QF1D.2. |
[17] | Del Bino L, Silver J M, Zhao X, et al. Isolators and circulators based on Kerr nonreciprocity in microresonators[C]//2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, 2017: 1. https://doi.org/10.1109/CLEOE-EQEC.2017.8086519. |
[18] | White A D, Ahn G H, van Gasse K, et al. Integrated passive nonlinear optical isolators[J]. Nat Photonics, 2023, 17(2): 143−149. doi: 10.1038/s41566-022-01110-y |
[19] | Herrmann J F, Ansari V, Wang J H, et al. Mirror symmetric on-chip frequency circulation of light[J]. Nat Photonics, 2022, 16(8): 603−608. doi: 10.1038/s41566-022-01026-7 |
[20] | Abdelsalam K, Li T F, Khurgin J B, et al. Linear isolators using wavelength conversion[J]. Optica, 2020, 7(3): 209−213. doi: 10.1364/OPTICA.385639 |
[21] | Chen W T, Liu L, Zhao J, et al. On-chip broadband, compact TM mode Mach–Zehnder optical isolator based on InP-on-insulator platforms[J]. Nanomaterials, 2024, 14(8): 709. doi: 10.3390/nano14080709 |
[22] | Potton R J. Reciprocity in optics[J]. Rep Prog Phys, 2004, 67(5): 717−754. doi: 10.1088/0034-4885/67/5/R03 |
[23] | Adam J D, Davis L E, Dionne G F, et al. Ferrite devices and materials[J]. IEEE Trans Microwave Theory Tech, 2002, 50(3): 721−737. doi: 10.1109/22.989957 |
[24] | Dötsch H, Bahlmann N, Zhuromskyy O, et al. Applications of magneto-optical waveguides in integrated optics: review[J]. J Opt Soc Am B, 2005, 22(1): 240−253. doi: 10.1364/JOSAB.22.000240 |
[25] | Karki D, Stenger V, Pollick A, et al. Broadband bias-magnet-free on-chip optical isolators with integrated thin film polarizers[J]. J Lightwave Technol, 2020, 38(4): 827−833. doi: 10.1109/JLT.2019.2949377 |
[26] | Yan W, Yang Y C, Yang W H, et al. On-chip nonreciprocal photonic devices based on hybrid integration of magneto-optical garnet thin films on silicon[J]. IEEE J Sel Top Quantum Electron, 2022, 28(3): 6100515. doi: 10.1109/JSTQE.2021.3133445 |
[27] | Liang X, Xie J L, Deng L J, et al. First principles calculation on the magnetic, optical properties and oxygen vacancy effect of Ce xY3− xFe5O12[J]. Appl Phys Lett, 2015, 106(5): 052401. doi: 10.1063/1.4907413 |
[28] | Zaki A M, Blythe H J, Heald S M, et al. Growth of high quality yttrium iron garnet films using standard pulsed laser deposition technique[J]. J Magn Magn Mater, 2018, 453: 254−257. doi: 10.1016/j.jmmm.2017.11.054 |
[29] | Gomi M, Furuyama H, Abe M. Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering[J]. J Appl Phys, 1991, 70(11): 7065−7067. doi: 10.1063/1.349786 |
[30] | Mizumoto T, Naito Y. Nonreciprocal propagation characteristics of YIG thin film[J]. IEEE Trans Microwave Theory Tech, 1982, 30(6): 922−925. doi: 10.1109/TMTT.1982.1131173 |
[31] | Shoji Y, Fujie A, Mizumoto T. Silicon waveguide optical isolator operating for TE mode input light[J]. IEEE J Sel Top Quantum Electron, 2016, 22(6): 4403307. doi: 10.1109/JSTQE.2016.2574678 |
[32] | Zhang Y, Du Q Y, Wang C T, et al. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics[J]. Optica, 2019, 6(4): 473−478. doi: 10.1364/OPTICA.6.000473 |
[33] | Huang D N, Pintus P, Zhang C, et al. Electrically driven and thermally tunable integrated optical isolators for silicon photonics[J]. IEEE J Sel Top Quantum Electron, 2016, 22(6): 4403408. doi: 10.1109/JSTQE.2016.2588778 |
[34] | Du Q Y, Wang C T, Zhang Y F, et al. Monolithic on-chip magneto-optical isolator with 3 dB insertion loss and 40 dB isolation ratio[J]. ACS Photonics, 2018, 5(12): 5010−5016. doi: 10.1021/acsphotonics.8b01257 |
[35] | Shui K Y, Nie L X, Zhang Y, et al. Design of a compact waveguide optical isolator based on multimode interferometers using magneto-optical oxide thin films grown on silicon-on-insulator substrates[J]. Opt Express, 2016, 24(12): 12856−12867. doi: 10.1364/OE.24.012856 |
[36] | Yamaguchi R, Shoji Y, Mizumoto T. Low-loss waveguide optical isolator with tapered mode converter and magneto-optical phase shifter for TE mode input[J]. Opt Express, 2018, 26(16): 21271−21278. doi: 10.1364/OE.26.021271 |
[37] | Auracher F, Witte H H. A new design for an integrated optical isolator[J]. Opt Commun, 1975, 13(4): 435−438. doi: 10.1016/0030-4018(75)90140-6 |
[38] | Ghosh S, Keyvavinia S, Van Roy W, et al. Ce: YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding[J]. Opt Express, 2012, 20(2): 1839−1848. doi: 10.1364/OE.20.001839 |
[39] | Ghosh S, Keyvaninia S, Shirato Y, et al. Optical isolator for TE polarized light realized by adhesive bonding of Ce: YIG on silicon-on-insulator waveguide circuits[J]. IEEE Photonics J, 2013, 5(3): 6601108. doi: 10.1109/JPHOT.2013.2264275 |
[40] | Yan W, Yang Y C, Liu S Y, et al. Waveguide-integrated high-performance magneto-optical isolators and circulators on silicon nitride platforms[J]. Optica, 2020, 7(11): 1555−1562. doi: 10.1364/OPTICA.408458 |
[41] | Tien M C, Mizumoto T, Pintus P, et al. Silicon ring isolators with bonded nonreciprocal magneto-optic garnets[J]. Opt Express, 2011, 19(12): 11740−11745. doi: 10.1364/OE.19.011740 |
[42] | Huang D N, Pintus P, Bowers J E. Towards heterogeneous integration of optical isolators and circulators with lasers on silicon [Invited][J]. Opt Mater Express, 2018, 8(9): 2471−2483. doi: 10.1364/OME.8.002471 |
[43] | Pintus P, Huang D N, Zhang C, et al. Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics[J]. J Lightwave Technol, 2017, 35(8): 1429−1437. doi: 10.1109/JLT.2016.2644626 |
[44] | Zhuromskyy O, Lohmeyer M, Bahlmann N, et al. Analysis of nonreciprocal light propagation in multimode imaging devices[J]. Opt Quantum Electron, 2000, 32(6): 885−897. doi: 10.1023/A:1007078814985 |
[45] | Furuya K, Nemoto T, Kato K, et al. Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer[J]. J Lightwave Technol, 2016, 34(8): 1699−1705. doi: 10.1109/JLT.2015.2505538 |
[46] | Yokoi H, Mizumoto T, Shinjo N, et al. Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift[J]. Appl Opt, 2000, 39(33): 6158−6164. doi: 10.1364/AO.39.006158 |
[47] | Yokoi H, Shoji Y, Shin E, et al. Interferometric optical isolator employing a nonreciprocal phase shift operated in a unidirectional magnetic field[J]. Appl Opt, 2004, 43(24): 4745−4752. doi: 10.1364/AO.43.004745 |
[48] | Shoji Y, Mizumoto T, Yokoi H, et al. Magneto-optical isolator with silicon waveguides fabricated by direct bonding[J]. Appl Phys Lett, 2008, 92(7): 071117. doi: 10.1063/1.2884855 |
[49] | Ishida E, Miura K, Shoji Y, et al. Amorphous-Si waveguide on a garnet magneto-optical isolator with a TE mode nonreciprocal phase shift[J]. Opt Express, 2017, 25(1): 452−462. doi: 10.1364/OE.25.000452 |
[50] | Huang D N, Pintus P, Shoji Y, et al. Integrated broadband Ce: YIG/Si Mach–Zehnder optical isolators with over 100 nm tuning range[J]. Opt Lett, 2017, 42(23): 4901−4904. doi: 10.1364/OL.42.004901 |
[51] | Huang D N, Pintus P, Zhang C, et al. Dynamically reconfigurable integrated optical circulators[J]. Optica, 2017, 4(1): 23−30. doi: 10.1364/OPTICA.4.000023 |
[52] | Liu S Y, Shoji Y, Mizumoto T. Mode-evolution-based TE mode magneto-optical isolator using asymmetric adiabatic tapered waveguides[J]. Opt Express, 2021, 29(15): 22838−22846. doi: 10.1364/OE.427914 |
[53] | Liu L, Chen W T, Zhao J, et al. Two structural designs of broadband, low-loss, and compact TM magneto-optical isolator based on GaAs-on-insulator[J]. Nanomaterials, 2024, 14(5): 400. doi: 10.3390/nano14050400 |
[54] | Tadesse S A, Li M. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies[J]. Nat Commun, 2014, 5(1): 5402. doi: 10.1038/ncomms6402 |
[55] | Liu J Q, Tian H, Lucas E, et al. Monolithic piezoelectric control of soliton microcombs[J]. Nature, 2020, 583(7816): 385−390. doi: 10.1038/s41586-020-2465-8 |
[56] | Tadesse S A, Li H, Liu Q Y, et al. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band[J]. Appl Phys Lett, 2015, 107(20): 201113. doi: 10.1063/1.4935981 |
[57] | Luo Z F, Zhang A X, Huang W X, et al. Aluminum nitride thin film based reconfigurable integrated photonic devices[J]. IEEE J Sel Top Quantum Electron, 2023, 29(3): 9300119. doi: 10.1109/JSTQE.2023.3245290 |
[58] | Shao L B, Yu M J, Maity S, et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators[J]. Optica, 2019, 6(12): 1498−1505. doi: 10.1364/OPTICA.6.001498 |
[59] | Sohn D B, Kim S, Bahl G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits[J]. Nat Photonics, 2018, 12(2): 91−97. doi: 10.1038/s41566-017-0075-2 |
[60] | Kuhn L, Heidrich P F, Lean E G. Optical guided wave mode conversion by an acoustic surface wave[J]. Appl Phys Lett, 1971, 19(10): 428−430. doi: 10.1063/1.1653758 |
[61] | Sohn D B, Bahl G. Direction reconfigurable nonreciprocal acousto-optic modulator on chip[J]. APL Photonics, 2019, 4(12): 126103. doi: 10.1063/1.5123497 |
[62] | Tian H, Liu J Q, Dong B, et al. Hybrid integrated photonics using bulk acoustic resonators[J]. Nat Commun, 2020, 11(1): 3073. doi: 10.1038/s41467-020-16812-6 |
[63] | Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101−104. doi: 10.1038/s41586-018-0551-y |
[64] | Bhandare S, Ibrahim S K, Sandel D, et al. Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material[J]. IEEE J Sel Top Quantum Electron, 2005, 11(2): 417−421. doi: 10.1109/JSTQE.2005.845620 |
[65] | Dong P, Gui C C. Observation of nonreciprocal transmission in binary phase-shift keying modulation using traveling-wave Mach–Zehnder modulators[J]. Opt Lett, 2016, 41(12): 2723−2726. doi: 10.1364/OL.41.002723 |
[66] | Dostart N, Gevorgyan H, Onural D, et al. Optical isolation using microring modulators[J]. Opt Lett, 2021, 46(3): 460−463. doi: 10.1364/OL.408614 |
[67] | Del Bino L, Silver J M, Stebbings S L, et al. Symmetry breaking of counter-propagating light in a nonlinear resonator[J]. Sci Rep, 2017, 7(1): 43142. doi: 10.1038/srep43142 |
[68] | 程亚. 薄膜铌酸锂光电器件与超大规模光子集成(特邀)[J]. 中国激光, 2024, 51(1): 0119001. doi: 10.3788/CJL231256 Cheng Y. Thin film lithium niobate electro-optic devices and ultralarge-scale photonic integration (Invited)[J]. Chin J Lasers, 2024, 51(1): 0119001. doi: 10.3788/CJL231256 |
The rapid development of information technology has fueled increasing demand for high-performance, low-cost photonic integrated circuits (PICs) in applications like optical communication, microwave photonics, quantum information processing, optical sensing, and artificial intelligence-driven optical computing. In these systems, non-reciprocal photonic devices, particularly optical isolators, are crucial components. Optical isolators allow light to pass in only one direction, blocking back-reflected light that can interfere with optical sources or even damage lasers. In optical communication systems, they help release multi-path interference and enhance system design flexibility by preventing crosstalk between devices. As the need for highly integrated PICs systems grows, the development of efficient, compact, and scalable on-chip optical isolators has become a key research focus. Several implementation methods for on-chip integrated optical isolators have been proposed, based on magneto-optical (MO), acousto-optical (AO), electro-optical (EO), and nonlinear optical effects. Each approach presents unique advantages and faces specific challenges. Magneto-optical isolators achieve non-reciprocal transmission through the Faraday effect. These devices typically consist of a magneto-optical material, such as Ce: YIG and Bi: YIG, combined with Mach-Zehnder interferometer (MZI), micro-ring (MR) or multimode interference (MMI) structures. While MO isolators offer high isolation ratio and robustness, their integration is limited by material mismatches with semiconductors and high insertion loss due to material absorption. AO isolators rely on the interaction between phonon and photon in a waveguide. These isolators are efficient and compatible with low-loss materials like AlN and LiNbO3 but have limited bandwidth due to their narrow optical resonance. Electro-optical isolators control light propagation through the Pockels effect. In an EO isolator, an external electric field modifies the refractive index of the waveguide material, such as LiNbO3, to induce phase changes in the transmitted light. EO isolators are promising due to their fast response times and wide isolation bandwidth but face high power consumption and thermal issues, limiting large-scale integration. Nonlinear optical isolators break reciprocity through effects like Kerr nonlinearity or Four-Wave Mixing, offering broadband operation. However, they require high power levels to achieve strong isolation, making them unsuitable for low-power applications. Additionally, they are complex due to the need for extra pump sources and filters. Future advancements in on-chip optical isolators will focus on optimizing performance while maintaining compactness, scalability, and compatibility with semiconductor processes. Hybrid solutions combining different non-reciprocal effects, improved acoustic wave generation, reduced driving voltages, and the development of new materials with higher nonlinear coefficients will drive the next generation of high-performance isolators.
On-chip integrated optical isolators based on different effects[12,15,18,21]
Single-mode waveguide two-port isolator and its scattering matrix
Diagram of traditional bulk magneto-optical isolator device
Wafer-level indirect bonding for the preparation of MO-MZI isolator[38-39]. (a) Schematic top view of the optical isolator composed of a MZI covered with Ce: YIG; (b) Cross-sectional view; (c) Transmission spectra for forward and backward transmission; (d) Schematic of the structure after the addition of PR; (e) Transmission spectra under an applied magnetic field
Wafer-level direct bonding for the fabrication of MO-MZI isolator [7,31]. (a) Schematic diagram of an SOI waveguide optical isolator based on MZI; (b) Microscope image of the fabricated MZI silicon waveguide optical isolator; (c) Transmission spectra for forward and backward transmission; (d) Schematic diagram of the optical isolator integrated with a TE-TM mode converter; (e) Microscope image of the integrated optical isolator on the Si platform; (f) Transmittance between port 1 and port 2 of the integrated optical isolator
MO-MZI isolator fabricated by deposition technology [32,40]. Optical microscope and scanning electron microscope (SEM) images of (a) TM and (b) TE isolators, respectively, with a scale bar of 100 μm; Transmission spectra of (c) TM and (d) TE mode isolators, respectively; (e) SEM image of the cross-section of the fabricated Si3N4/MO waveguide; (f) Simulation of the Ey field distribution of the fundamental TM mode in the Si3N4/MO waveguide; Transmission spectra of (g) TM and (h) TE mode isolators, respectively
MO-MR isolator[8,33]. (a) Working principle of MO-MR optical isolation; (b) Schematic diagram of the non-reciprocal optical resonator structure; (c) Transmission spectra for the TM mode; (d) Perspective view of the isolator device; (e) Microscope image of the on-chip isolator device; (f) Transmission spectra for the TM mode
MO-MR isolator[34,40]. (a) Schematic diagram of a non-reciprocal optical resonator; (b) Top-view optical micrograph of an MO-MR isolator; (c) Transmission spectrum of the isolator; (d) Optical microscope image of a TM-mode optical isolator based on Si3N4 waveguide resonators; (e) Transmission spectrum of the isolator
MO-MMI isolator[35-36]. (a) Schematic diagram of SOI/MMI magneto-optical isolator structure; (b) Transmission spectra of the isolator;(c) Schematic diagram of MO-MMI isolator based on TE mode; (d) Top-view optical micrograph of MO-MMI isolator; (e) Transmission spectra of the isolator
Acousto-optic isolator[59]. (a) Representation of phase matching conditions in frequency-momentum space; (b) Schematic diagram of the phonon-photon interaction region; (c) Forward and backward transmission spectra under perfect phase matching conditions
Acousto-optic isolator[10-12,61]. (a) Schematic diagram of the CFIDT; (b) Cross-section view of the acousto-optic interaction region;(c) Variation graph of isolation and insertion loss with frequency detuning; (d) Schematic diagram of the isolator device; (e) Cross-sectional view of the isolator device; (f) Transmission spectra of the isolator
Electro-optic isolator[13]. (a) Working principle diagram of the MZM-based isolator; (b) Square-wave voltage signal; (c) Forward and backward transmission when modulating the MZM with the voltage shown in Fig. (b); (d) Forward and backward transmission under the driving frequency of 2.75 GHz
Electro-optic isolator[14]. (a) Schematic of the isolator; (b) The illustration of the isolator in frequency domain; (c) Transmission spectra of the isolator
Electro-optic isolator[15]. (a) Schematic of the electro-optic isolator; (b) Transmission spectra of the isolator in forward and backward directions; (c) Calculated isolation ratio for specified parameters at different wavelengths
Nonlinear optical isolator [16,20]. (a) Schematic diagram of light isolation through Bragg scattering for forward-propagating light; (b) Case of backward propagation light; (c) Schematic diagram of the optical isolator. SPF: short-pass filter, LPF: long-pass filter; (d) Transmission spectra of the isolator, with the upper plot for forward-propagating light and the lower plot for backward-propagating light
Nonlinear optical isolator [17-18,65]. (a) Schematic of spontaneous symmetry breaking in a microcavity; (b) Device diagram of a nonreciprocal isolator based on Kerr effect-induced fused silica microring; (c) Graph of the isolator's characteristics as a function of input power; (d) Microscope image of a Si3N4 isolator, scale bar: 100 μm; (e) Measured insertion loss and isolation peak under different coupling rates κ1 and κ2