Yang Z Q, Li W X, Sun X, et al. Research progress on on-chip integrated optical isolators[J]. Opto-Electron Eng, 2025, 52(2): 240285. doi: 10.12086/oee.2025.240285
Citation: Yang Z Q, Li W X, Sun X, et al. Research progress on on-chip integrated optical isolators[J]. Opto-Electron Eng, 2025, 52(2): 240285. doi: 10.12086/oee.2025.240285

Research progress on on-chip integrated optical isolators

    Fund Project: National Key Research and Development Program of China (2021YFB3900701), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (501XYGG2024117011)
More Information
  • As the information age progresses rapidly, the demand for silicon photonic integrated circuits in optical communication, quantum precision measurement, artificial intelligence optical computing, and microwave photonics continues to grow. As an essential component of silicon photonic integrated circuits, optical isolators effectively prevent the backpropagation of optical signals, ensuring system stability and reliability. They are widely used in key technologies such as optical fiber communication, quantum communication, and laser systems. This paper reviews the research progress on on-chip integrated optical isolators, focusing on different implementation methods based on magneto-optic, acousto-optic, electro-optic, and nonlinear optical effects, discussing the advantages and challenges associated with each type. Finally, the paper explores future development directions and potential applications.
  • 加载中
  • [1] Pérez D, Gasulla I, Crudgington L, et al. Multipurpose silicon photonics signal processor core[J]. Nat Commun, 2017, 8(1): 636. doi: 10.1038/s41467-017-00714-1

    CrossRef Google Scholar

    [2] 恽斌峰, 胡国华, 史上清, 等. 微波光子集成芯片研究进展(特邀)[J]. 光学学报, 2024, 44(15): 1513029. doi: 10.3788/AOS240983

    CrossRef Google Scholar

    Yun B F, Hu G H, Shi S Q, et al. Research progress in integrated microwave photonic chips (Invited)[J]. Acta Opt Sin, 2024, 44(15): 1513029. doi: 10.3788/AOS240983

    CrossRef Google Scholar

    [3] Bogaerts W, Pérez D, Capmany J, et al. Programmable photonic circuits[J]. Nature, 2020, 586(7828): 207−216. doi: 10.1038/s41586-020-2764-0

    CrossRef Google Scholar

    [4] Chi Y L, Yu Y, Gong Q H, et al. High-dimensional quantum information processing on programmable integrated photonic chips[J]. Sci China Information Sci, 2023, 66(8): 180501. doi: 10.1007/s11432-022-3602-0

    CrossRef Google Scholar

    [5] Jalas D, Petrov A, Eich M, et al. What is—and what is not—an optical isolator[J]. Nat Photonics, 2013, 7(8): 579−582. doi: 10.1038/nphoton.2013.185

    CrossRef Google Scholar

    [6] 张子健, 严巍, 秦俊, 等. 集成非互易光学器件(特邀)[J]. 光学学报, 2024, 44(15): 1513020. doi: 10.3788/AOS241073

    CrossRef Google Scholar

    Zhang Z J, Yan W, Qin J, et al. Integrated nonreciprocal photonic devices (Invited)[J]. Acta Opt Sin, 2024, 44(15): 1513020. doi: 10.3788/AOS241073

    CrossRef Google Scholar

    [7] Shoji Y, Mizumoto T. Magneto-optical non-reciprocal devices in silicon photonics[J]. Sci Technol Adv Mater, 2014, 15(1): 014602. doi: 10.1088/1468-6996/15/1/014602

    CrossRef Google Scholar

    [8] Bi L, Hu J J, Jiang P, et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators[J]. Nat Photonics, 2011, 5(12): 758−762. doi: 10.1038/nphoton.2011.270

    CrossRef Google Scholar

    [9] Yang J S, Roh J W, Ok S H, et al. An integrated optical waveguide isolator based on multimode interference by wafer direct bonding[J]. IEEE Trans Magn, 2005, 41(10): 3520−3522. doi: 10.1109/TMAG.2005.854960

    CrossRef Google Scholar

    [10] Sohn D B, Örsel O E, Bahl G. Electrically driven optical isolation through phonon-mediated photonic Autler–Townes splitting[J]. Nat Photonics, 2021, 15(11): 822−827. doi: 10.1038/s41566-021-00884-x

    CrossRef Google Scholar

    [11] Kittlaus E A, Jones W M, Rakich P T, et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics[J]. Nat Photonics, 2021, 15(1): 43−52. doi: 10.1038/s41566-020-00711-9

    CrossRef Google Scholar

    [12] Tian H, Liu J Q, Siddharth A, et al. Magnetic-free silicon nitride integrated optical isolator[J]. Nat Photonics, 2021, 15(11): 828−836. doi: 10.1038/s41566-021-00882-z

    CrossRef Google Scholar

    [13] Dong P. Travelling-wave Mach-Zehnder modulators functioning as optical isolators[J]. Opt Express, 2015, 23(8): 10498−10505. doi: 10.1364/OE.23.010498

    CrossRef Google Scholar

    [14] Yu M J, Cheng R, Reimer C, et al. Integrated electro-optic isolator on thin-film lithium niobate[J]. Nat Photonics, 2023, 17(8): 666−671. doi: 10.1038/s41566-023-01227-8

    CrossRef Google Scholar

    [15] Shah M, Briggs I, Chen P K, et al. Visible-telecom tunable dual-band optical isolator based on dynamic modulation in thin-film lithium niobate[J]. Opt Lett, 2023, 48(8): 1978−1981. doi: 10.1364/OL.482635

    CrossRef Google Scholar

    [16] Saha K, Okawachi Y, Kuzucu O, et al. Chip-scale broadband optical isolation via Bragg scattering four-wave mixing[C]//CLEO: 2013, 2013: 1–2. https://doi.org/10.1364/CLEO_QELS.2013.QF1D.2.

    Google Scholar

    [17] Del Bino L, Silver J M, Zhao X, et al. Isolators and circulators based on Kerr nonreciprocity in microresonators[C]//2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, 2017: 1. https://doi.org/10.1109/CLEOE-EQEC.2017.8086519.

    Google Scholar

    [18] White A D, Ahn G H, van Gasse K, et al. Integrated passive nonlinear optical isolators[J]. Nat Photonics, 2023, 17(2): 143−149. doi: 10.1038/s41566-022-01110-y

    CrossRef Google Scholar

    [19] Herrmann J F, Ansari V, Wang J H, et al. Mirror symmetric on-chip frequency circulation of light[J]. Nat Photonics, 2022, 16(8): 603−608. doi: 10.1038/s41566-022-01026-7

    CrossRef Google Scholar

    [20] Abdelsalam K, Li T F, Khurgin J B, et al. Linear isolators using wavelength conversion[J]. Optica, 2020, 7(3): 209−213. doi: 10.1364/OPTICA.385639

    CrossRef Google Scholar

    [21] Chen W T, Liu L, Zhao J, et al. On-chip broadband, compact TM mode Mach–Zehnder optical isolator based on InP-on-insulator platforms[J]. Nanomaterials, 2024, 14(8): 709. doi: 10.3390/nano14080709

    CrossRef Google Scholar

    [22] Potton R J. Reciprocity in optics[J]. Rep Prog Phys, 2004, 67(5): 717−754. doi: 10.1088/0034-4885/67/5/R03

    CrossRef Google Scholar

    [23] Adam J D, Davis L E, Dionne G F, et al. Ferrite devices and materials[J]. IEEE Trans Microwave Theory Tech, 2002, 50(3): 721−737. doi: 10.1109/22.989957

    CrossRef Google Scholar

    [24] Dötsch H, Bahlmann N, Zhuromskyy O, et al. Applications of magneto-optical waveguides in integrated optics: review[J]. J Opt Soc Am B, 2005, 22(1): 240−253. doi: 10.1364/JOSAB.22.000240

    CrossRef Google Scholar

    [25] Karki D, Stenger V, Pollick A, et al. Broadband bias-magnet-free on-chip optical isolators with integrated thin film polarizers[J]. J Lightwave Technol, 2020, 38(4): 827−833. doi: 10.1109/JLT.2019.2949377

    CrossRef Google Scholar

    [26] Yan W, Yang Y C, Yang W H, et al. On-chip nonreciprocal photonic devices based on hybrid integration of magneto-optical garnet thin films on silicon[J]. IEEE J Sel Top Quantum Electron, 2022, 28(3): 6100515. doi: 10.1109/JSTQE.2021.3133445

    CrossRef Google Scholar

    [27] Liang X, Xie J L, Deng L J, et al. First principles calculation on the magnetic, optical properties and oxygen vacancy effect of Ce xY3− xFe5O12[J]. Appl Phys Lett, 2015, 106(5): 052401. doi: 10.1063/1.4907413

    CrossRef Google Scholar

    [28] Zaki A M, Blythe H J, Heald S M, et al. Growth of high quality yttrium iron garnet films using standard pulsed laser deposition technique[J]. J Magn Magn Mater, 2018, 453: 254−257. doi: 10.1016/j.jmmm.2017.11.054

    CrossRef Google Scholar

    [29] Gomi M, Furuyama H, Abe M. Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering[J]. J Appl Phys, 1991, 70(11): 7065−7067. doi: 10.1063/1.349786

    CrossRef Google Scholar

    [30] Mizumoto T, Naito Y. Nonreciprocal propagation characteristics of YIG thin film[J]. IEEE Trans Microwave Theory Tech, 1982, 30(6): 922−925. doi: 10.1109/TMTT.1982.1131173

    CrossRef Google Scholar

    [31] Shoji Y, Fujie A, Mizumoto T. Silicon waveguide optical isolator operating for TE mode input light[J]. IEEE J Sel Top Quantum Electron, 2016, 22(6): 4403307. doi: 10.1109/JSTQE.2016.2574678

    CrossRef Google Scholar

    [32] Zhang Y, Du Q Y, Wang C T, et al. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics[J]. Optica, 2019, 6(4): 473−478. doi: 10.1364/OPTICA.6.000473

    CrossRef Google Scholar

    [33] Huang D N, Pintus P, Zhang C, et al. Electrically driven and thermally tunable integrated optical isolators for silicon photonics[J]. IEEE J Sel Top Quantum Electron, 2016, 22(6): 4403408. doi: 10.1109/JSTQE.2016.2588778

    CrossRef Google Scholar

    [34] Du Q Y, Wang C T, Zhang Y F, et al. Monolithic on-chip magneto-optical isolator with 3 dB insertion loss and 40 dB isolation ratio[J]. ACS Photonics, 2018, 5(12): 5010−5016. doi: 10.1021/acsphotonics.8b01257

    CrossRef Google Scholar

    [35] Shui K Y, Nie L X, Zhang Y, et al. Design of a compact waveguide optical isolator based on multimode interferometers using magneto-optical oxide thin films grown on silicon-on-insulator substrates[J]. Opt Express, 2016, 24(12): 12856−12867. doi: 10.1364/OE.24.012856

    CrossRef Google Scholar

    [36] Yamaguchi R, Shoji Y, Mizumoto T. Low-loss waveguide optical isolator with tapered mode converter and magneto-optical phase shifter for TE mode input[J]. Opt Express, 2018, 26(16): 21271−21278. doi: 10.1364/OE.26.021271

    CrossRef Google Scholar

    [37] Auracher F, Witte H H. A new design for an integrated optical isolator[J]. Opt Commun, 1975, 13(4): 435−438. doi: 10.1016/0030-4018(75)90140-6

    CrossRef Google Scholar

    [38] Ghosh S, Keyvavinia S, Van Roy W, et al. Ce: YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding[J]. Opt Express, 2012, 20(2): 1839−1848. doi: 10.1364/OE.20.001839

    CrossRef Google Scholar

    [39] Ghosh S, Keyvaninia S, Shirato Y, et al. Optical isolator for TE polarized light realized by adhesive bonding of Ce: YIG on silicon-on-insulator waveguide circuits[J]. IEEE Photonics J, 2013, 5(3): 6601108. doi: 10.1109/JPHOT.2013.2264275

    CrossRef Google Scholar

    [40] Yan W, Yang Y C, Liu S Y, et al. Waveguide-integrated high-performance magneto-optical isolators and circulators on silicon nitride platforms[J]. Optica, 2020, 7(11): 1555−1562. doi: 10.1364/OPTICA.408458

    CrossRef Google Scholar

    [41] Tien M C, Mizumoto T, Pintus P, et al. Silicon ring isolators with bonded nonreciprocal magneto-optic garnets[J]. Opt Express, 2011, 19(12): 11740−11745. doi: 10.1364/OE.19.011740

    CrossRef Google Scholar

    [42] Huang D N, Pintus P, Bowers J E. Towards heterogeneous integration of optical isolators and circulators with lasers on silicon [Invited][J]. Opt Mater Express, 2018, 8(9): 2471−2483. doi: 10.1364/OME.8.002471

    CrossRef Google Scholar

    [43] Pintus P, Huang D N, Zhang C, et al. Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics[J]. J Lightwave Technol, 2017, 35(8): 1429−1437. doi: 10.1109/JLT.2016.2644626

    CrossRef Google Scholar

    [44] Zhuromskyy O, Lohmeyer M, Bahlmann N, et al. Analysis of nonreciprocal light propagation in multimode imaging devices[J]. Opt Quantum Electron, 2000, 32(6): 885−897. doi: 10.1023/A:1007078814985

    CrossRef Google Scholar

    [45] Furuya K, Nemoto T, Kato K, et al. Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer[J]. J Lightwave Technol, 2016, 34(8): 1699−1705. doi: 10.1109/JLT.2015.2505538

    CrossRef Google Scholar

    [46] Yokoi H, Mizumoto T, Shinjo N, et al. Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift[J]. Appl Opt, 2000, 39(33): 6158−6164. doi: 10.1364/AO.39.006158

    CrossRef Google Scholar

    [47] Yokoi H, Shoji Y, Shin E, et al. Interferometric optical isolator employing a nonreciprocal phase shift operated in a unidirectional magnetic field[J]. Appl Opt, 2004, 43(24): 4745−4752. doi: 10.1364/AO.43.004745

    CrossRef Google Scholar

    [48] Shoji Y, Mizumoto T, Yokoi H, et al. Magneto-optical isolator with silicon waveguides fabricated by direct bonding[J]. Appl Phys Lett, 2008, 92(7): 071117. doi: 10.1063/1.2884855

    CrossRef Google Scholar

    [49] Ishida E, Miura K, Shoji Y, et al. Amorphous-Si waveguide on a garnet magneto-optical isolator with a TE mode nonreciprocal phase shift[J]. Opt Express, 2017, 25(1): 452−462. doi: 10.1364/OE.25.000452

    CrossRef Google Scholar

    [50] Huang D N, Pintus P, Shoji Y, et al. Integrated broadband Ce: YIG/Si Mach–Zehnder optical isolators with over 100 nm tuning range[J]. Opt Lett, 2017, 42(23): 4901−4904. doi: 10.1364/OL.42.004901

    CrossRef Google Scholar

    [51] Huang D N, Pintus P, Zhang C, et al. Dynamically reconfigurable integrated optical circulators[J]. Optica, 2017, 4(1): 23−30. doi: 10.1364/OPTICA.4.000023

    CrossRef Google Scholar

    [52] Liu S Y, Shoji Y, Mizumoto T. Mode-evolution-based TE mode magneto-optical isolator using asymmetric adiabatic tapered waveguides[J]. Opt Express, 2021, 29(15): 22838−22846. doi: 10.1364/OE.427914

    CrossRef Google Scholar

    [53] Liu L, Chen W T, Zhao J, et al. Two structural designs of broadband, low-loss, and compact TM magneto-optical isolator based on GaAs-on-insulator[J]. Nanomaterials, 2024, 14(5): 400. doi: 10.3390/nano14050400

    CrossRef Google Scholar

    [54] Tadesse S A, Li M. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies[J]. Nat Commun, 2014, 5(1): 5402. doi: 10.1038/ncomms6402

    CrossRef Google Scholar

    [55] Liu J Q, Tian H, Lucas E, et al. Monolithic piezoelectric control of soliton microcombs[J]. Nature, 2020, 583(7816): 385−390. doi: 10.1038/s41586-020-2465-8

    CrossRef Google Scholar

    [56] Tadesse S A, Li H, Liu Q Y, et al. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band[J]. Appl Phys Lett, 2015, 107(20): 201113. doi: 10.1063/1.4935981

    CrossRef Google Scholar

    [57] Luo Z F, Zhang A X, Huang W X, et al. Aluminum nitride thin film based reconfigurable integrated photonic devices[J]. IEEE J Sel Top Quantum Electron, 2023, 29(3): 9300119. doi: 10.1109/JSTQE.2023.3245290

    CrossRef Google Scholar

    [58] Shao L B, Yu M J, Maity S, et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators[J]. Optica, 2019, 6(12): 1498−1505. doi: 10.1364/OPTICA.6.001498

    CrossRef Google Scholar

    [59] Sohn D B, Kim S, Bahl G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits[J]. Nat Photonics, 2018, 12(2): 91−97. doi: 10.1038/s41566-017-0075-2

    CrossRef Google Scholar

    [60] Kuhn L, Heidrich P F, Lean E G. Optical guided wave mode conversion by an acoustic surface wave[J]. Appl Phys Lett, 1971, 19(10): 428−430. doi: 10.1063/1.1653758

    CrossRef Google Scholar

    [61] Sohn D B, Bahl G. Direction reconfigurable nonreciprocal acousto-optic modulator on chip[J]. APL Photonics, 2019, 4(12): 126103. doi: 10.1063/1.5123497

    CrossRef Google Scholar

    [62] Tian H, Liu J Q, Dong B, et al. Hybrid integrated photonics using bulk acoustic resonators[J]. Nat Commun, 2020, 11(1): 3073. doi: 10.1038/s41467-020-16812-6

    CrossRef Google Scholar

    [63] Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101−104. doi: 10.1038/s41586-018-0551-y

    CrossRef Google Scholar

    [64] Bhandare S, Ibrahim S K, Sandel D, et al. Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material[J]. IEEE J Sel Top Quantum Electron, 2005, 11(2): 417−421. doi: 10.1109/JSTQE.2005.845620

    CrossRef Google Scholar

    [65] Dong P, Gui C C. Observation of nonreciprocal transmission in binary phase-shift keying modulation using traveling-wave Mach–Zehnder modulators[J]. Opt Lett, 2016, 41(12): 2723−2726. doi: 10.1364/OL.41.002723

    CrossRef Google Scholar

    [66] Dostart N, Gevorgyan H, Onural D, et al. Optical isolation using microring modulators[J]. Opt Lett, 2021, 46(3): 460−463. doi: 10.1364/OL.408614

    CrossRef Google Scholar

    [67] Del Bino L, Silver J M, Stebbings S L, et al. Symmetry breaking of counter-propagating light in a nonlinear resonator[J]. Sci Rep, 2017, 7(1): 43142. doi: 10.1038/srep43142

    CrossRef Google Scholar

    [68] 程亚. 薄膜铌酸锂光电器件与超大规模光子集成(特邀)[J]. 中国激光, 2024, 51(1): 0119001. doi: 10.3788/CJL231256

    CrossRef Google Scholar

    Cheng Y. Thin film lithium niobate electro-optic devices and ultralarge-scale photonic integration (Invited)[J]. Chin J Lasers, 2024, 51(1): 0119001. doi: 10.3788/CJL231256

    CrossRef Google Scholar

  • The rapid development of information technology has fueled increasing demand for high-performance, low-cost photonic integrated circuits (PICs) in applications like optical communication, microwave photonics, quantum information processing, optical sensing, and artificial intelligence-driven optical computing. In these systems, non-reciprocal photonic devices, particularly optical isolators, are crucial components. Optical isolators allow light to pass in only one direction, blocking back-reflected light that can interfere with optical sources or even damage lasers. In optical communication systems, they help release multi-path interference and enhance system design flexibility by preventing crosstalk between devices. As the need for highly integrated PICs systems grows, the development of efficient, compact, and scalable on-chip optical isolators has become a key research focus. Several implementation methods for on-chip integrated optical isolators have been proposed, based on magneto-optical (MO), acousto-optical (AO), electro-optical (EO), and nonlinear optical effects. Each approach presents unique advantages and faces specific challenges. Magneto-optical isolators achieve non-reciprocal transmission through the Faraday effect. These devices typically consist of a magneto-optical material, such as Ce: YIG and Bi: YIG, combined with Mach-Zehnder interferometer (MZI), micro-ring (MR) or multimode interference (MMI) structures. While MO isolators offer high isolation ratio and robustness, their integration is limited by material mismatches with semiconductors and high insertion loss due to material absorption. AO isolators rely on the interaction between phonon and photon in a waveguide. These isolators are efficient and compatible with low-loss materials like AlN and LiNbO3 but have limited bandwidth due to their narrow optical resonance. Electro-optical isolators control light propagation through the Pockels effect. In an EO isolator, an external electric field modifies the refractive index of the waveguide material, such as LiNbO3, to induce phase changes in the transmitted light. EO isolators are promising due to their fast response times and wide isolation bandwidth but face high power consumption and thermal issues, limiting large-scale integration. Nonlinear optical isolators break reciprocity through effects like Kerr nonlinearity or Four-Wave Mixing, offering broadband operation. However, they require high power levels to achieve strong isolation, making them unsuitable for low-power applications. Additionally, they are complex due to the need for extra pump sources and filters. Future advancements in on-chip optical isolators will focus on optimizing performance while maintaining compactness, scalability, and compatibility with semiconductor processes. Hybrid solutions combining different non-reciprocal effects, improved acoustic wave generation, reduced driving voltages, and the development of new materials with higher nonlinear coefficients will drive the next generation of high-performance isolators.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(17)

Tables(4)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint