Citation: | Zhao K L, Song L X, Sun D W, et al. Analysis of curvature radius adjustment capability of large aperture ULE segmented mirror[J]. Opto-Electron Eng, 2025, 52(3): 240291. doi: 10.12086/oee.2025.240291 |
[1] | McElwain M W, Feinberg L D, Perrin M D, et al. The James Webb space telescope mission: optical telescope element design, development, and performance[J]. Astron Soc Pac, 2023, 135(1047): 058001. doi: 10.1088/1538-3873/acada0 |
[2] | Postman M, Argabright V, Arnold B, et al. Advanced technology large-aperture space telescope (ATLAST): A technology roadmap for the next decade[EB/OL]. [2021-8-10]. https://arxiv.org/abs/0904.0941. |
[3] | 廖春晖, 于飞, 刘成, 等. 分块变形镜面形解耦控制方法研究[J]. 航天返回与遥感, 2022, 43(1): 69−78. doi: 10.3969/j.issn.1009-8518.2022.01.007 Liao C H, Yu F, Liu C, et al. Research on the decoupling control method of segmented deformable mirror surface shape[J]. Spacecr Recovery Remote Sens, 2022, 43(1): 69−78. doi: 10.3969/j.issn.1009-8518.2022.01.007 |
[4] | 姜文汉. 自适应光学发展综述[J]. 光电工程, 2018, 45(3): 1−15. doi: 10.12086/oee.2018.170489 Jiang W H. Overview of adaptive optics development[J]. Opto-Electron Eng, 2018, 45(3): 1−15. doi: 10.12086/oee.2018.170489 |
[5] | 官春林, 张小军, 邓建明, 等. 中国科学院光电技术研究所的变形反射镜研究进展[J]. 光电工程, 2020, 47(10): 51−62. doi: 10.12086/oee.2020.200337 Guan C L, Zhang X J, Deng J M, et al. Deformable mirror technologies at institute of optics and electronics, Chinese Academy of Sciences[J]. Opto-Electron Eng, 2020, 47(10): 51−62. doi: 10.12086/oee.2020.200337 |
[6] | Chaney D M, Hadaway J B, Lewis J A. Cryogenic radius of curvature matching for the JWST primary mirror segments[J]. Proc SPIE, 2009, 7439: 743916. doi: 10.1117/12.845115 |
[7] | Chonis T S, Gallagher B B, Knight J S, et al. Characterization and calibration of the James Webb space telescope mirror actuators fine stage motion[J]. Proc SPIE, 2018, 10698: 106983S. doi: 10.1117/12.2311815 |
[8] | Redding D. Large segmented apertures in space: active vs. passive[EB/OL]. [2018-4-09]. https://kiss.caltech.edu/special_events/JPL_MPIA/presentations/2_Redding. pdf. |
[9] | Perrin M D, Acton D S, Lajoie C P, et al. Preparing for JWST wavefront sensing and control operations[J]. Proc SPIE, 2016, 9904: 99040F. doi: 10.1117/12.2233104 |
[10] | Hirose M, Kumeta A, Miyamura N, et al. Wavefront correction using MEMS deformable mirror for earth observation satellite with large segmented telescope[J]. Proc SPIE, 2020, 11448: 114487D. doi: 10.1117/12.2563139 |
[11] | Kimura T, Mizutani T, Shirasawa Y, et al. Geostationary earth observation satellite with large segmented telescope[C]//IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 5895–5897. https://doi.org/10.1109/IGARSS.2019.8898683. |
[12] | Fujii Y, Uno T, Ariki S, et al. Experimental study of 3.6-meter segmented-aperture telescope for geostationary earth observation satellite[J]. Proc SPIE, 2021, 11852: 118522G. doi: 10.1117/12.2599379 |
[13] | Su D Q, Cui X Q. Active optics in LAMOST[J]. Chin J Astron Astrophys, 2004, 4(1): 1−9. doi: 10.1088/1009-9271/4/1/1 |
[14] | 陈佳夷, 王聪, 霍腾飞, 等. 激光跟踪仪检测大口径非球面方法研究[J]. 应用光学, 2021, 42(2): 299−303. doi: 10.5768/JAO202142.0203002 Chen J Y, Wang C, Huo T F, et al. Research on detection method of large-aperture aspheric surface by laser tracker[J]. J Appl Opt, 2021, 42(2): 299−303. doi: 10.5768/JAO202142.0203002 |
[15] | 庞哲, 宗肖颖, 杜建祥. 利用激光跟踪仪测量大口径非球面几何参数[J]. 航天返回与遥感, 2020, 41(3): 47−59. doi: 10.3969/j.issn.1009-8518.2020.03.006 Pang Z, Zong X Y, Du J X. A method measuring geometric parameters for large-aperture aspheric surface with the laser tracker[J]. Spacecr Recovery Remote Sens, 2020, 41(3): 47−59. doi: 10.3969/j.issn.1009-8518.2020.03.006 |
[16] | 帅雨林, 牛冬生, 王海, 等. 高精度镜面位置控制的微位移促动器研究[J]. 天文研究与技术, 2023, 20(3): 250−257. doi: 10.14005/j.cnki.issn1672-7673.20230320.003 Shi Y L, Niu D S, Wang H, et al. Research on micro-displacement actuator for high precision mirror position control[J]. Astron Res Technol, 2023, 20(3): 250−257. doi: 10.14005/j.cnki.issn1672-7673.20230320.003 |
[17] | 吴松航, 董吉洪, 徐抒岩, 等. 拼接式望远镜主镜主动支撑技术综述[J]. 激光与光电子学进展, 2021, 58(3): 0300006. doi: 10.3788/LOP202158.0300006 Wu S H, Dong J H, Xu S Y, et al. Overview of active support technology for main mirror of segmented telescopes[J]. Laser Optoelectron Prog, 2021, 58(3): 0300006. doi: 10.3788/LOP202158.0300006 |
[18] | 黄林海, 凡木文, 周睿, 等. 大口径压电倾斜镜模型辨识与控制[J]. 光电工程, 2018, 45(3): 170704. doi: 10.12086/oee.2018.170704 Huang L H, Fan M W, Zhou R, et al. System identification and control for large aperture fast-steering mirror driven by PZT[J]. Opto-Electron Eng, 2018, 45(3): 170704. doi: 10.12086/oee.2018.170704 |
[19] | Cohan L E. Integrated modeling and design of lightweight, active mirrors for launch survival and on-orbit performance[D]. Cambridge: Massachusetts Institute of Technology, 2010. |
[20] | Ealey M A. Integrated actuator meniscus mirror: 20040165289[P]. 2004-08-26. |
With the increasing trend of global space resource development and the intensification of future space warfare, particularly the establishment of the Space Force by the United States in 2018, space is poised to become a new battlefield. Future large-scale space optical facilities for military applications face greater threats of being targeted and destroyed in warfare. There is an urgent need for large optical imaging systems to enhance their resistance to damage and their ability to be reconstructed after being hit. Additionally, traditional space optical facilities have singular and non-adjustable in-orbit detection functions, which can no longer meet the growing diverse needs of users. There is an urgent need to develop a new type of reconfigurable space optical system capable of in-orbit adjustment and detection.
This paper adopts a design concept of adjustable parameters for single modules and variable shapes for multiple modules. Focusing on the problem of in-orbit reconfiguration of large-aperture segmented optical systems, we propose a lightweight design method with a wide range of curvature adjustability. We first analyzed the relationship between the characteristics of piezoelectric ceramic materials and the constitutive equation of thermal strain, deriving that piezoelectric strain can be precisely equivalent to thermal strain. Based on this, we achieved parameterized modeling of the ULE (ultra low expansion glass) segmented mirror with a side distance of 510 mm and an initial radius of curvature of 9000 mm. Simulation results show that 54 interleaved actuators can achieve a change in the radius of curvature of the segmented mirror by 240.07 mm within a control voltage range of ±20 V, exhibiting a highly linear relationship.
To fully verify the analysis results and achieve engineering application transformation, experimental results indicate that when the control voltage varies within the range of -25 V to 20 V, the change in the radius of curvature of the segmented mirror reaches 223.44 mm, with the positive unit voltage corresponding to a larger change in the radius of curvature than the negative. The proposed design method for a large-range curvature-adjustable segmented mirror has been verified through simulation and experiment to achieve a reconfiguration range of more than 100 mm in the radius of curvature. This provides new ideas for the engineering application of large-aperture segmented optics in in-orbit reconfiguration.
Parametric modeling flow chart
Equivalent bilayer effect schematic
Schematic diagram of a simply supported beam with a rotational spring
Segmented mirror model diagrams. (a) Finite element model; (b) Three-dimensional model
Simulation diagrams of curvature radius under different control voltages. (a) At 5 V control voltage, dROC =−33.57 mm; (b) At 10 V control voltage, dROC =−66.46 mm; (c) At 15 V control voltage, dROC =−99.43 mm; (d) At 20 V control voltage, dROC =−132.28 mm; (e) At −5 V control voltage, dROC =27.59 mm; (f) At −10 V control voltage, dROC =54.55 mm; (g) At -15 V control voltage, dROC =82.61 mm; (h) At −20 V control voltage, dROC =109.79 mm
Curvature radius variation curves
Experimental diagram of segmented mirror curvature radius
Measure curvature radius results of the segmented mirror. (a) Measured curves of radius of curvature variation; (b) Curves of radius of curvature variation per unit control voltage