Zhang D S, Sugioka K. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids. Opto-Electron Adv 2, 190002 (2019). doi: 10.29026/oea.2019.190002
Citation: Zhang D S, Sugioka K. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids. Opto-Electron Adv 2, 190002 (2019). doi: 10.29026/oea.2019.190002

Original Article Open Access

Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids

More Information
  • High spatial frequency laser induced periodic surface structures (HSFLs) on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2, seldom on microstructures or microgrooves at relatively higher fluences above 1 J/cm2. This work aims to enrich the variety of HSFLs-containing hierarchical microstructures, by femtosecond laser (pulse duration: 457 fs, wavelength: 1045 nm, and repetition rate: 100 kHz) in liquids (water and acetone) at laser fluence of 1.7 J/cm2. The period of Si-HSFLs in the range of 110-200 nm is independent of the scanning speeds (0.1, 0.5, 1 and 2 mm/s), line intervals (5, 15 and 20 μm) of scanning lines and scanning directions (perpendicular or parallel to light polarization direction). It is interestingly found that besides normal HSFLs whose orientations are perpendicular to the direction of light polarization, both clockwise or anticlockwise randomly tilted HSFLs with a maximal deviation angle of 50° as compared to those of normal HSFLSs are found on the microstructures with height gradients. Raman spectra and SEM characterization jointly clarify that surface melting and nanocapillary waves play important roles in the formation of Si-HSFLs. The fact that no HSFLs are produced by laser ablation in air indicates that moderate melting facilitated with ultrafast liquid cooling is beneficial for the formation of HSFLs by LALs. On the basis of our findings and previous reports, a synergistic formation mechanism for HSFLs at high fluence was proposed and discussed, including thermal melting with the concomitance of ultrafast cooling in liquids, transformation of the molten layers into ripples and nanotips by surface plasmon polaritons (SPP) and second-harmonic generation (SHG), and modulation of Si-HSFLs direction by both nanocapillary waves and the localized electric field coming from the excited large Si particles.
  • 加载中
  • [1] Bonse J, H hm S, Kirner S V, Rosenfeld A, Krüger J. Laser-induced periodic surface structures—a scientific evergreen. IEEE J Sel Top Quantum Electron 23, 9000615 (2017).

    Google Scholar

    [2] Sugioka K. Progress in ultrafast laser processing and future prospects. Nanophotonics 6, 393-413 (2017).

    Google Scholar

    [3] Sugioka K, Cheng Y. Ultrafast lasers—reliable tools for advanced materials processing. Light: Sci Appl 3, e149 (2014). doi: 10.1038/lsa.2014.30

    CrossRef Google Scholar

    [4] Zeng H B, Du X W, Singh S C, Kulinich S A, Yang S K et al. Nanomaterials via laser ablation/irradiation in liquid: A review. Adv Funct Mater 22, 1333-1353 (2012). doi: 10.1002/adfm.v22.7

    CrossRef Google Scholar

    [5] Zhang D S, G kce B. Perspective of laser-prototyping nanoparticle-polymer composites. Appl Surf Sci 392, 991-1003 (2017). doi: 10.1016/j.apsusc.2016.09.150

    CrossRef Google Scholar

    [6] Zhang D S, G kce B, Barcikowski S. Laser synthesis and processing of colloids: Fundamentals and applications. Chem Rev 117, 3990-4103 (2017). doi: 10.1021/acs.chemrev.6b00468

    CrossRef Google Scholar

    [7] Zhang D S, Liu J, Li P F, Tian Z F, Liang C H. Recent advances in surfactant-free, surface-charged, and defect-rich catalysts developed by laser ablation and processing in liquids. ChemNanoMat 3, 512-533 (2017). doi: 10.1002/cnma.v3.8

    CrossRef Google Scholar

    [8] Amendola V, Meneghetti M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys Chem Chem Phys 15, 3027-3046 (2013). doi: 10.1039/C2CP42895D

    CrossRef Google Scholar

    [9] Yang G W. Laser ablation in liquids: Applications in the synthesis of nanocrystals. Prog Mater Sci 52, 648-698 (2007). doi: 10.1016/j.pmatsci.2006.10.016

    CrossRef Google Scholar

    [10] Zhang D S, Zhang C, Liu J, Chen Q, Zhu X G et al. Carbon-encapsulated metal/metal carbide/metal oxide core-shell nanostructures generated by laser ablation of metals in organic solvents. ACS Appl Nano Mater 2, 28-39 (2019). doi: 10.1021/acsanm.8b01541

    CrossRef Google Scholar

    [11] Zhang D S, Choi W, Yazawa K, Numata K, Tateishi A et al. Two birds with one stone: Spontaneous size separation and growth inhibition of femtosecond laser-generated surfactant-free metallic nanoparticles via ex situ su-8 functionalization. ACS Omega 3, 10953-10966 (2018). doi: 10.1021/acsomega.8b01250

    CrossRef Google Scholar

    [12] Zhang D S, Liu J, Liang C H. Perspective on how laser-ablated particles grow in liquids. Sci China Phys, Mech Astron 60, 074201 (2017). doi: 10.1007/s11433-017-9035-8

    CrossRef Google Scholar

    [13] Zhang D S, Choi W, Jakobi J, Kalus M R, Barcikowski S et al. Spontaneous shape alteration and size separation of surfactant-free silver particles synthesized by laser ablation in acetone during long-period storage. Nanomaterials 8, 529 (2018). doi: 10.3390/nano8070529

    CrossRef Google Scholar

    [14] Zhang D S, Chen F, Yang Q, Yong J L, Bian H et al. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser. ACS Appl Mater Interfaces 4, 4905-4912 (2012). doi: 10.1021/am3012388

    CrossRef Google Scholar

    [15] Zhang D S, Chen F, Fang G P, Yang Q, Xie D G et al. Wetting characteristics on hierarchical structures patterned by a femtosecond laser. J Micromech Microeng 20, 075029 (2010). doi: 10.1088/0960-1317/20/7/075029

    CrossRef Google Scholar

    [16] Zhang D S, Chen F, Yang Q, Si J H, Hou X. Mutual wetting transition between isotropic and anisotropic on directional structures fabricated by femotosecond laser. Soft Matter 7, 8337-8342 (2011). doi: 10.1039/c1sm05649b

    CrossRef Google Scholar

    [17] Yong J L, Chen F, Yang Q, Jiang Z D, Hou X. A review of femtosecond-laser-induced underwater superoleophobic surfaces. Adv Mater Interfaces 5, 1701370 (2018). doi: 10.1002/admi.v5.7

    CrossRef Google Scholar

    [18] Intartaglia R, Barchanski A, Bagga K, Genovese A, Das G et al. Bioconjugated silicon quantum dots from one-step green synthesis. Nanoscale 4, 1271-1274 (2012). doi: 10.1039/c2nr11763k

    CrossRef Google Scholar

    [19] Simitzi C, Efstathopoulos P, Kourgiantaki A, Ranella A, Charalampopoulos I et al. Laser fabricated discontinuous anisotropic microconical substrates as a new model scaffold to control the directionality of neuronal network outgrowth. Biomaterials 67, 115-128 (2015). doi: 10.1016/j.biomaterials.2015.07.008

    CrossRef Google Scholar

    [20] Yiannakou C, Simitzi C, Manousaki A, Fotakis C, Ranella A et al. Cell patterning via laser micro/nano structured silicon surfaces. Biofabrication 9, 025024 (2017). doi: 10.1088/1758-5090/aa71c6

    CrossRef Google Scholar

    [21] Wang Z Y, Zhou R, Wen F, Zhang R K, Ren L et al. Reliable laser fabrication: The quest for responsive biomaterials surface. J Mater Chem B 6, 3612-3631 (2018). doi: 10.1039/C7TB02545A

    CrossRef Google Scholar

    [22] Luo X, Zhang H J, Pan W, Gong J H, Khalid B et al. SiOx nanodandelion by laser ablation for anode of lithium-ion battery. Small 11, 6009-6012 (2015). doi: 10.1002/smll.201502539

    CrossRef Google Scholar

    [23] Xu K C, Zhang C T, Zhou R, Ji R, Hong M H. Hybrid micro/nano-structure formation by angular laser texturing of si surface for surface enhanced raman scattering. Opt Express 24, 10352-10358 (2016). doi: 10.1364/OE.24.010352

    CrossRef Google Scholar

    [24] Yang J, Li J B, Du Z R, Gong Q H, Teng J H et al. Laser hybrid micro/nano-structuring of si surfaces in air and its applications for sers detection. Sci Rep 4, 6657 (2014).

    Google Scholar

    [25] Sartori A F, Orlando S, Bellucci A, Trucchi D M, Abrahami S et al. Laser-induced periodic surface structures (LIPSS) on heavily boron-doped diamond for electrode applications. ACS Appl Mater Interfaces 10, 43236-43251 (2018). doi: 10.1021/acsami.8b15951

    CrossRef Google Scholar

    [26] Duan G B, Hu X L, Song X Y, Qiu Z W, Gong H B et al. Morphology evolution of zno submicroparticles induced by laser irradiation and their enhanced tribology properties by compositing with Al2O3 nanoparticles. Adv Eng Mater 17, 341-348 (2015). doi: 10.1002/adem.201400385

    CrossRef Google Scholar

    [27] Luo T, Wang P, Qiu Z W, Yang S H, Zeng H B et al. Smooth and solid WS2 submicrospheres grown by a new laser fragmentation and reshaping process with enhanced tribological properties. Chem Commun 52, 10147-10150 (2016). doi: 10.1039/C6CC04212K

    CrossRef Google Scholar

    [28] Luo T, Chen X C, Li P S, Wang P, Li C C et al. Laser irradiation-induced laminated graphene/MoS2 composites with synergistically improved tribological properties. Nanotechnology 29, 265704 (2018). doi: 10.1088/1361-6528/aabcf5

    CrossRef Google Scholar

    [29] Bonse J, Kirner S, Griepentrog M, Spaltmann D, Krüger J. Femtosecond laser texturing of surfaces for tribological applications. Materials 11, 801 (2018). doi: 10.3390/ma11050801

    CrossRef Google Scholar

    [30] Serien D, Sugioka K. Fabrication of three-dimensional proteinaceous micro- and nano-structures by femtosecond laser cross-linking. Opto-Electron Adv 1, 180008 (2018).

    Google Scholar

    [31] Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro- and nanofabrication. Appl Phys Rev 1, 041303 (2014). doi: 10.1063/1.4904320

    CrossRef Google Scholar

    [32] Birnbaum M. Semiconductor surface damage produced by ruby lasers. J Appl Phys 36, 3688-3689 (1965). doi: 10.1063/1.1703071

    CrossRef Google Scholar

    [33] Le Harzic R, D rr D, Sauer D, Stracke F, Zimmermann H. Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation. Appl Phys Lett 98, 211905 (2011). doi: 10.1063/1.3593493

    CrossRef Google Scholar

    [34] Huang M, Zhao F L, Cheng Y, Xu N S, Xu Z Z. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser. ACS Nano 3, 4062-4070 (2009). doi: 10.1021/nn900654v

    CrossRef Google Scholar

    [35] Tan B, Venkatakrishnan K. A femtosecond laser-induced periodical surface structure on crystalline silicon. J Micromech Microeng 16, 1080-1085 (2006). doi: 10.1088/0960-1317/16/5/029

    CrossRef Google Scholar

    [36] Costache F, Kouteva-Arguirova S, Reif J. Sub-damage-threshold femtosecond laser ablation from crystalline Si: Surface nanostructures and phase transformation. Appl Phys A 79, 1429-1432 (2004). doi: 10.1007/s00339-004-2803-y

    CrossRef Google Scholar

    [37] Tsibidis G D, Barberoglou M, Loukakos P A, Stratakis E, Fotakis C. Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions. Phys Rev B 86, 115316 (2012). doi: 10.1103/PhysRevB.86.115316

    CrossRef Google Scholar

    [38] Wang C, Huo H B, Johnson M, Shen M Y, Mazur E. The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations.Nanotechnology 21, 075304 (2010). doi: 10.1088/0957-4484/21/7/075304

    CrossRef Google Scholar

    [39] Le Harzic R, Schuck H, Sauer D, Anhut T, Riemann I, K nig K. Sub-100 nm nanostructuring of silicon by ultrashort laser pulses. Opt Express 13, 6651-6656 (2005). doi: 10.1364/OPEX.13.006651

    CrossRef Google Scholar

    [40] Derrien T J Y, Koter R, Krüger J, H hm S, Rosenfeld A et al. Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water. J Appl Phys 116, 074902 (2014). doi: 10.1063/1.4887808

    CrossRef Google Scholar

    [41] Daminelli G, Krüger J, Kautek W. Femtosecond laser interaction with silicon under water confinement. Thin Solid Films 467, 334-341 (2004). doi: 10.1016/j.tsf.2004.04.043

    CrossRef Google Scholar

    [42] Le Harzic R, D rr D, Sauer D, Neumeier M, Epple M et al. Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate. Opt Lett 36, 229-231 (2011). doi: 10.1364/OL.36.000229

    CrossRef Google Scholar

    [43] Shen M Y, Carey J E, Crouch C H, Kandyla M, Stone H A et al. High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water. Nano Lett 8, 2087-2091 (2008). doi: 10.1021/nl080291q

    CrossRef Google Scholar

    [44] Kautek W, Rudolph P, Daminelli G, Krüger J. Physico-chemical aspects of femtosecond-pulse-laser-induced surface nanostructures. Appl Phys A 81, 65-70 (2005).

    Google Scholar

    [45] Jeschke H O, Garcia M E, Lenzner M, Bonse J, Krüger J et al. Laser ablation thresholds of silicon for different pulse durations: Theory and experiment. Appl Surf Sci 197-198, 839-844 (2002). doi: 10.1016/S0169-4332(02)00458-0

    CrossRef Google Scholar

    [46] Miyaji G, Miyazaki K, Zhang K F, Yoshifuji T, Fujita J. Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water. Opt Express 20, 14848-14856 (2012). doi: 10.1364/OE.20.014848

    CrossRef Google Scholar

    [47] Miyazaki K, Miyaji G. Periodic nanostructure formation on silicon irradiated with multiple low-fluence femtosecond laser pulses in water. Phys Procedia 39, 674-682 (2012). doi: 10.1016/j.phpro.2012.10.088

    CrossRef Google Scholar

    [48] Crawford T H R, Borowiec A, Haugen H K. Femtosecond laser micromachining of grooves in silicon with 800 nm pulses. Appl Phys A 80, 1717-1724 (2005). doi: 10.1007/s00339-004-2941-2

    CrossRef Google Scholar

    [49] Lee S, Yang D F, Nikumb S. Femtosecond laser micromilling of Si wafers. Appl Surf Sci 254, 2996-3005 (2008). doi: 10.1016/j.apsusc.2007.10.063

    CrossRef Google Scholar

    [50] Hamad S, Podagatlapalli G K, Vendamani V S, Nageswara Rao S V S, Pathak A P et al. Femtosecond ablation of silicon in acetone: Tunable photoluminescence from generated nanoparticles and fabrication of surface nanostructures. J Phys Chem C 118, 7139-7151 (2014).

    Google Scholar

    [51] Meng G, Jiang L, Li X, Xu Y D, Shi X S et al. Dual-scale nanoripple/nanoparticle-covered microspikes on silicon by femtosecond double pulse train irradiation in water. Appl Surf Sci 410, 22-28 (2017). doi: 10.1016/j.apsusc.2017.03.079

    CrossRef Google Scholar

    [52] Ganeev R A, Lei D Y, Hutchison C, Witting T, Frank F et al. Extended homogeneous nanoripple formation during interaction of high-intensity few-cycle pulses with a moving silicon wafer. Appl Phys A 112, 457-462 (2013).

    Google Scholar

    [53] Ma Y C, Si J H, Sun X H, Chen T, Hou X. Progressive evolution of silicon surface microstructures via femtosecond laser irradiation in ambient air. Appl Surf Sci 313, 905-910 (2014). doi: 10.1016/j.apsusc.2014.06.105

    CrossRef Google Scholar

    [54] Barcikowski S, Menéndez-Manjón A, Chichkov B, Brikas M, Račiukaitis G. Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow. Appl Phys Lett 91, 083113 (2007). doi: 10.1063/1.2773937

    CrossRef Google Scholar

    [55] Zhang D S, Gökce B, Sommer S, Streubel R, Barcikowski S. Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol. Appl Surf Sci 367, 222-230 (2016). doi: 10.1016/j.apsusc.2016.01.071

    CrossRef Google Scholar

    [56] Iqbal Z, Vepřek S, Webb A P, Capezzuto P. Raman scattering from small particle size polycrystalline silicon. Solid State Commun 37, 993-996 (1981). doi: 10.1016/0038-1098(81)91202-3

    CrossRef Google Scholar

    [57] Svrcek V, Mariotti D, Cvelbar U, Filipič G, Lozac'h M et al. Environmentally friendly processing technology for engineering silicon nanocrystals in water with laser pulses. J Phys Chem C 120, 18822-18830 (2016). doi: 10.1021/acs.jpcc.6b04405

    CrossRef Google Scholar

    [58] Meier C, Lüttjohann S, Kravets V G, Nienhaus H, Lorke A et al. Raman properties of silicon nanoparticles. Physica E: Low-dimens Syst Nanostruct 32, 155-158 (2006). doi: 10.1016/j.physe.2005.12.030

    CrossRef Google Scholar

    [59] Streubel R, Barcikowski S, G kce B. Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids. Opt Lett 41, 1486-1489 (2016). doi: 10.1364/OL.41.001486

    CrossRef Google Scholar

    [60] Yoo J H, Jeong S H, Mao X L, Greif R, Russo R E. Evidence for phase-explosion and generation of large particles during high power nanosecond laser ablation of silicon. Appl Phys Lett 76, 783-785 (2000). doi: 10.1063/1.125894

    CrossRef Google Scholar

    [61] Zhang D S, Choi W, Oshima Y, Wiedwald U, Cho S H et al. Magnetic Fe@FeOx, Fe@C and α-Fe2O3 single-crystal nanoblends synthesized by femtosecond laser ablation of fe in acetone. Nanomaterials 8, 631 (2018). doi: 10.3390/nano8080631

    CrossRef Google Scholar

    [62] Sedao X, Shugaev M V, Wu C P, Douillard T, Esnouf C et al. Growth twinning and generation of high-frequency surface nanostructures in ultrafast laser-induced transient melting and resolidification. ACS Nano 10, 6995-7007 (2016). doi: 10.1021/acsnano.6b02970

    CrossRef Google Scholar

    [63] Zhang D S, Lau M, Lu S W, Barcikowski S, G kce B. Germanium sub-microspheres synthesized by picosecond pulsed laser melting in liquids: Educt size effects. Sci Rep 7, 40355 (2017). doi: 10.1038/srep40355

    CrossRef Google Scholar

    [64] Shih C Y, Streubel R, Heberle J, Letzel A, Shugaev M V et al. Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: The origin of the bimodal size distribution. Nanoscale 10, 6900-6910 (2018). doi: 10.1039/C7NR08614H

    CrossRef Google Scholar

    [65] Abou-Saleh A, Karim E T, Maurice C, Reynaud S, Pigeon F et al. Spallation-induced roughness promoting high spatial frequency nanostructure formation on Cr. Appl Phys A 124, 308 (2018). doi: 10.1007/s00339-018-1716-0

    CrossRef Google Scholar

    [66] Miyaji G, Miyazaki K. Role of multiple shots of femtosecond laser pulses in periodic surface nanoablation. Appl Phys Lett 103, 071910 (2013). doi: 10.1063/1.4818818

    CrossRef Google Scholar

    [67] Cheng H C, Li P, Liu S, Chen P, Han L et al. Vortex-controlled morphology conversion of microstructures on silicon induced by femtosecond vector vortex beams. Appl Phys Lett 111, 141901 (2017). doi: 10.1063/1.4994926

    CrossRef Google Scholar

    [68] Fraggelakis F, Stratakis E, Loukakos P A. Control of periodic surface structures on silicon by combined temporal and polarization shaping of femtosecond laser pulses. Appl Surf Sci 444, 154-160 (2018). doi: 10.1016/j.apsusc.2018.02.258

    CrossRef Google Scholar

    [69] Zhang D S, Ma Z, Spasova M, Yelsukova A E, Lu S W et al. Formation mechanism of laser-synthesized iron-manganese alloy nanoparticles, manganese oxide nanosheets and nanofibers. Part Part Syst Char 34, 1600225 (2017). doi: 10.1002/ppsc.v34.3

    CrossRef Google Scholar

    [70] Shugaev M V, Gnilitskyi I, Bulgakova N M, Zhigilei L V. Mechanism of single-pulse ablative generation of laser-induced periodic surface structures. Phys Rev B 96, 205429 (2017). doi: 10.1103/PhysRevB.96.205429

    CrossRef Google Scholar

    [71] He X L, Datta A, Nam W, Traverso L M, Xu X F. Sub-diffraction limited writing based on laser induced periodic surface structures (LIPSS). Sci Rep 6, 35035 (2016). doi: 10.1038/srep35035

    CrossRef Google Scholar

    [72] Li H, Shi Z, Wang X W, Sui L Z, Li S Y et al. Influence of dopants on supercontinuum generation during the femtosecond laser filamentation in water. Chem Phys Lett 681, 86-89 (2017). doi: 10.1016/j.cplett.2017.05.029

    CrossRef Google Scholar

    [73] Potemkin F V, Mareev E I, Smetanina E O. Influence of wave-front curvature on supercontinuum energy during filamentation of femtosecond laser pulses in water. Phys Rev A 97, 033801 (2018). doi: 10.1103/PhysRevA.97.033801

    CrossRef Google Scholar

    [74] Besner S, Kabashin A V, Winnik F M, Meunier M. Synthesis of size-tunable polymer-protected gold nanoparticles by femtosecond laser-based ablation and seed growth. J Phys Chem C 113, 9526-9531 (2009). doi: 10.1021/jp809275v

    CrossRef Google Scholar

    [75] Kaviany M. Principles of Heat Transfer (John Wiley & Sons, 2002).

    Google Scholar

    [76] Derrien T J Y, Krüger J, Bonse J. Properties of surface plasmon polaritons on lossy materials: Lifetimes, periods and excitation conditions. J Opt 18, 115007 (2016). doi: 10.1088/2040-8978/18/11/115007

    CrossRef Google Scholar

    [77] Ziemkiewicz D, Słowik K, Zielińska-Raczyńska S. Ultraslow long-living plasmons with electromagnetically induced transparency. Opt Lett 43, 490-493 (2018). doi: 10.1364/OL.43.000490

    CrossRef Google Scholar

    [78] Shen M Y, Crouch C H, Carey J E, Younkin R, Mazur E et al. Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask. Appl Phys Lett 82, 1715-1717 (2003). doi: 10.1063/1.1561162

    CrossRef Google Scholar

    [79] Medvedev N, Li Z, Ziaja B. Thermal and nonthermal melting of silicon under femtosecond x-ray irradiation. Phys Rev B 91, 054113 (2015). doi: 10.1103/PhysRevB.91.054113

    CrossRef Google Scholar

    [80] Tull B R, Carey J E, Mazur E, McDonald J P, Yalisove S M. Silicon surface morphologies after femtosecond laser irradiation. MRS Bull 31, 626-633 (2006). doi: 10.1557/mrs2006.160

    CrossRef Google Scholar

    [81] Xue H Y, Deng G L, Feng G Y, Chen L, Li J Q et al. Role of nanoparticles generation in the formation of femtosecond laser-induced periodic surface structures on silicon. Opt Lett 42, 3315-3318 (2017). doi: 10.1364/OL.42.003315

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint