Ye Y Y, Liu Z, Chen T P. Toward transparent projection display: recent progress in frequency-selective scattering of RGB light based on metallic nanoparticle’s localized surface plasmon resonance. Opto-Electron Adv 2, 190020 (2019). doi: 10.29026/oea.2019.190020
Citation: Ye Y Y, Liu Z, Chen T P. Toward transparent projection display: recent progress in frequency-selective scattering of RGB light based on metallic nanoparticle’s localized surface plasmon resonance. Opto-Electron Adv 2, 190020 (2019). doi: 10.29026/oea.2019.190020

Review Open Access

Toward transparent projection display: recent progress in frequency-selective scattering of RGB light based on metallic nanoparticle's localized surface plasmon resonance

More Information
  • A transparent display simultaneously enables visualization of the images displayed on it as well as the view behind it, and therefore can be applied to, for instance, augmented reality (AR), virtual reality (VR), and head up display (HUD). Many solutions have been proposed for this purpose. Recently, the idea of frequency-selective scattering of red, green and blue light while transmitting visible light of other colours to achieve transparent projection display has been proposed, by taking advantage of metallic nanoparticle's localized surface plasmon resonance (LSPR). In this article, a review of the recent progress of frequency-selective scattering of red, green and blue light that are based on metallic nanoparticle's LSPR is presented. A discussion of method for choosing appropriate metal(s) is first given, followed by the definition of a figure of merit used to quantify the performance of a designed nanoparticle structure. Selective scattering of various nanostructures, including sphere-shaped nanoparticles, ellipsoidal nanoparticles, super-sphere core-shell nanoparticles, metallic nanocubes, and metallic nanoparticles combined with gain materials, are discussed in detail. Each nanostructure has its own advantages and disadvantages, but the combination of the metallic nanoparticle with gain materials is a more promising way since it has the potential to generate ultra-sharp scattering peaks (i.e., high frequency-selectivity).
  • 加载中
  • [1] Jang C, Lee C K, Jeong J, Li G, Lee S et al. Recent progress in see-through three-dimensional displays using holographic optical elements. Appl Opt 55, A71-A85 (2016). doi: 10.1364/AO.55.000A71

    CrossRef Google Scholar

    [2] Sun T, Pettitt G, Ho N T, Eckles K, Clifton B et al. Full color high contrast front projection on black emissive display. Proc SPIE 8254, (2012). doi: 10.1117/12.906619

    CrossRef Google Scholar

    [3] Chen S F, Deng L L, Xie J, Peng L, Xie L H et al. Recent developments in top-emitting organic light-emitting diodes. Adv Mater 22, 5227-5239 (2010). doi: 10.1002/adma.201001167

    CrossRef Google Scholar

    [4] Hsu C W, Zhen B, Qiu W J, Shapira O, DeLacy B G et al. Transparent displays enabled by resonant nanoparticle scattering. Nat Commun 5, 3152 (2014). doi: 10.1038/ncomms4152

    CrossRef Google Scholar

    [5] Saito K, Tatsuma T. A transparent projection screen based on plasmonic Ag nanocubes. Nanoscale 7, 20365-20368 (2015). doi: 10.1039/C5NR06766A

    CrossRef Google Scholar

    [6] Monti A, Toscano A, Bilotti F. Analysis of the scattering and absorption properties of ellipsoidal nanoparticle arrays for the design of full-color transparent screens. J Appl Phys 121, 243106 (2017). doi: 10.1063/1.4990422

    CrossRef Google Scholar

    [7] Ye Y Y, Chen T P, Zhen J Y, Xu C, Zhang J et al. Resonant scattering of green light enabled by Ag@TiO2 and its application in a green light projection screen. Nanoscale 10, 2438-2446 (2018). doi: 10.1039/C7NR07383F

    CrossRef Google Scholar

    [8] Kreibig U, Vollmer M. Optical Properties of Metal Clusters (Springer, Berlin, Heidelberg, 2013).

    Google Scholar

    [9] Kelly K L, Coronado E, Zhao L L, Schatz G C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107, 668-677 (2003). doi: 10.1002/chin.200316243

    CrossRef Google Scholar

    [10] Ye Y Y, Liu R Y, Song Z G, Liu Z, Chen T P. Sharp selective scattering of red, green, and blue light achieved via gain material's loss compensation. Opt Express 27, 9189-9204 (2019). doi: 10.1364/OE.27.009189

    CrossRef Google Scholar

    [11] Kreibig U. Small silver particles in photosensitive glass: their nucleation and growth. Appl Phys 10, 255-264 (1976). doi: 10.1007/BF00897225

    CrossRef Google Scholar

    [12] Quinten M. Optical Properties of Nanoparticle Systems: Mie and Beyond (John Wiley & Sons, Weinheim, 2011).

    Google Scholar

    [13] Yang W. Improved recursive algorithm for light scattering by a multilayered sphere. Appl Opt 42, 1710-1720 (2003). doi: 10.1364/AO.42.001710

    CrossRef Google Scholar

    [14] Sullivan D M. Electromagnetic Simulation Using the FDTD Method 2nd ed (John Wiley & Sons, New Jersey, 2013).

    Google Scholar

    [15] Draine B T, Flatau PJ. Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11, 1491-1499 (1994). doi: 10.1364/JOSAA.11.001491

    CrossRef Google Scholar

    [16] Bohren C F, Clothiaux E E. Fundamentals of Atmospheric Radiation: An Introduction with 400 Problems (John Wiley & Sons, Weinheim, 2006).

    Google Scholar

    [17] Kucherenko S, Sytsko Y. Application of deterministic low-discrepancy sequences in global optimization. Comput Optim Appl 30, 297-318 (2005). doi: 10.1007/s10589-005-4615-1

    CrossRef Google Scholar

    [18] Johnson S G. The NLopt nonlinear-optimization package. Available from: https://nlopt.readthedocs.io/en/latest/, [cited 23rd March 2019, 2019]

    Google Scholar

    [19] Palik E D. Handbook of Optical Constants of Solids, 3. (Academic Press, San Diego, 1998).

    Google Scholar

    [20] Ye Y Y, Chen T P, Liu Z, Yuan X. Effect of surface scattering of electrons on ratios of optical absorption and scattering to extinction of gold nanoshell. Nano Res Lett 13, 299 (2018). doi: 10.1186/s11671-018-2670-7

    CrossRef Google Scholar

    [21] Kreibig U, Fragstein C V. The limitation of electron mean free path in small silver particles. Z Phys 224, 307-323 (1969). doi: 10.1007/BF01393059

    CrossRef Google Scholar

    [22] Tang S C, Tang Y F, Zhu S P, Lu H M, Meng X K. Synthesis and characterization of silica-silver core-shell composite particles with uniform thin silver layers. J Solid State Chem 180, 2871-2876 (2007). doi: 10.1016/j.jssc.2007.08.022

    CrossRef Google Scholar

    [23] DeVore J R. Refractive indices of rutile and sphalerite. J Opt Soc Am 41, 416-419 (1951). doi: 10.1364/JOSA.41.000416

    CrossRef Google Scholar

    [24] Seh Z W, Liu S H, Low M, Zhang S Y, Liu Z L et al. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv Mater 24, 2310-2314 (2012). doi: 10.1002/adma.201104241

    CrossRef Google Scholar

    [25] Mergel D, Buschendorf D, Eggert S, Grammes R, Samset B. Density and refractive index of TiO2 films prepared by reactive evaporation. Thin Solid Films 371, 218-224 (2000). doi: 10.1016/S0040-6090(00)01015-4

    CrossRef Google Scholar

    [26] Blaber M G, Arnold M D, Ford M J. Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver. J Phys Chem C 113, 3041-3045 (2009). doi: 10.1021/jp810808h

    CrossRef Google Scholar

    [27] Berciaud S, Cognet L, Tamarat P, Lounis B. Observation of intrinsic size effects in the optical response of individual gold nanoparticles. Nano Lett 5, 515-518 (2005). doi: 10.1021/nl050062t

    CrossRef Google Scholar

    [28] Scaffardi L B, Tocho J O. Size dependence of refractive index of gold nanoparticles. Nanotechnology 17, 1309-1315 (2006). doi: 10.1088/0957-4484/17/5/024

    CrossRef Google Scholar

    [29] Park J, Lu W. Orientation of core-shell nanoparticles in an electric field. Appl Phys Lett 91, 053113 (2007). doi: 10.1063/1.2767191

    CrossRef Google Scholar

    [30] Saeidi C, van der Weide D. Nanoparticle array based optical frequency selective surfaces: theory and design. Opt Express 21, 16170-16180 (2013). doi: 10.1364/OE.21.016170

    CrossRef Google Scholar

    [31] Monti A, Alù A, Toscano A, Bilotti F. Optical invisibility through metasurfaces made of plasmonic nanoparticles. J Appl Phys 117, 123103 (2015). doi: 10.1063/1.4916257

    CrossRef Google Scholar

    [32] Fruhnert M, Monti A, Fernandez-Corbaton I, Alù A, Toscano A et al. Tunable scattering cancellation cloak with plasmonic ellipsoids in the visible. Phys Rev B 93, 245127 (2016). doi: 10.1103/PhysRevB.93.245127

    CrossRef Google Scholar

    [33] Monti A, Toscano A, Bilotti F. Exploiting the surface dispersion of nanoparticles to design optical-resistive sheets and Salisbury absorbers. Opt Lett 41, 3383-3386 (2016). doi: 10.1364/OL.41.003383

    CrossRef Google Scholar

    [34] Ramaccia D, Toscano A, Bilotti F. Scattering and absorption from super-spherical nanoparticles: analysis and design for transparent displays [Invited]. J Opt Soc Am B 34, D62-D67 (2017). doi: 10.1364/JOSAB.34.000D62

    CrossRef Google Scholar

    [35] LAMÉ SURFACE. Available from: https://www.mathcurve.com/surfaces.gb/lame/lame.shtml, [cited 25 April 2019]

    Google Scholar

    [36] Miyazawa T, Aratake M, Onaka S. Superspherical-shape approximation to describe the morphology of small crystalline particles having near-polyhedral shapes with round edges. J Math Chem 50, 249-260 (2012). doi: 10.1007/s10910-011-9909-1

    CrossRef Google Scholar

    [37] Saito K, Tatsuma T. Asymmetric three-way plasmonic color routers. Adv Opt Mater 3, 883-887 (2015). doi: 10.1002/adom.201500111

    CrossRef Google Scholar

    [38] Ye Y Y, Chen T P. Selective scattering of blue and red light based on silver and gold nanocubes. ECS J Solid State Sci Technol 8, R51-R57 (2019). doi: 10.1149/2.0131903jss

    CrossRef Google Scholar

    [39] Sherry L J, Chang S H, Schatz G C, Van Duyne R P, Wiley B J et al. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5, 2034-2038 (2005). doi: 10.1021/nl0515753

    CrossRef Google Scholar

    [40] Davis T J, Gómez D E, Vernon K C. Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles. Nano Lett 10, 2618-2625 (2010). doi: 10.1021/nl101335z

    CrossRef Google Scholar

    [41] Fang Z Y, Zhu X. Plasmonics in nanostructures. Adv Mater 25, 3840-3856 (2013). doi: 10.1002/adma.201301203

    CrossRef Google Scholar

    [42] Jellison G E Jr, Boatner L A, Budai J D, Jeong B S, Norton D P. Spectroscopic ellipsometry of thin film and bulk anatase (TiO2). J Appl Phys 93, 9537-9541 (2003). doi: 10.1063/1.1573737

    CrossRef Google Scholar

    [43] Avrutsky I. Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain. Phys Rev B 70, 155416 (2004). doi: 10.1103/PhysRevB.70.155416

    CrossRef Google Scholar

    [44] Noginov M A, Zhu G, Bahoura M, Adegoke J, Small C E et al. Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. Opt Lett 31, 3022-3024 (2006). doi: 10.1364/OL.31.003022

    CrossRef Google Scholar

    [45] Digonnet M J F. Rare-Earth-Doped Fiber Lasers and Amplifiers 2nd ed (CRC Press, New York, 2001).

    Google Scholar

    [46] Lawandy N M. Localized surface plasmon singularities in amplifying media. Appl Phys Lett 85, 5040 (2004). doi: 10.1063/1.1825058

    CrossRef Google Scholar

    [47] Hide F, Schwartz B J, Díaz-García M A, Heeger A J. Conjugated polymers as solid-state laser materials. Synth Met 91, 35-40 (1997). doi: 10.1016/S0379-6779(97)03971-4

    CrossRef Google Scholar

    [48] Gordon J A, Ziolkowski R W. The design and simulated performance of a coated nano-particle laser. Opt Express 15, 2622-2653 (2007). doi: 10.1364/OE.15.002622

    CrossRef Google Scholar

    [49] Li X F, Yu S F. Design of low-threshold compact Au-nanoparticle lasers. Opt Lett 35, 2535-2537 (2010). doi: 10.1364/OL.35.002535

    CrossRef Google Scholar

    [50] Campbell S D, Ziolkowski R W. Impact of strong localization of the incident power density on the nano-amplifier characteristics of active coated nano-particles. Opt Commun 285, 3341-3352 (2012). doi: 10.1016/j.optcom.2011.11.006

    CrossRef Google Scholar

    [51] Zhang H P, Zhou J, Zou W B, He M. Surface plasmon amplification characteristics of an active three-layer nanoshell-based spaser. J Appl Phys 112, 074309 (2012). doi: 10.1063/1.4757416

    CrossRef Google Scholar

    [52] Wu D J, Cheng Y, Wu X W, Liu X J. An active metallic nanomatryushka with two similar super-resonances. J Appl Phys 116, 013502 (2014). doi: 10.1063/1.4886696

    CrossRef Google Scholar

    [53] Li B W, Zu S, Zhou J D, Jiang Q, Du B W et al. Single-nanoparticle plasmonic electro-optic modulator based on MoS2 monolayers. ACS Nano 11, 9720-9727 (2017). doi: 10.1021/acsnano.7b05479

    CrossRef Google Scholar

  • Supplementary information for Toward transparent projection display: recent progress in frequency-selective scattering of RGB light based on metallic nanoparticle's localized surface plasmon resonance
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(24)

Tables(3)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint