Citation: | Jia Y C, Wang S X, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrica-tion and application. Opto-Electron Adv 3, 190042 (2020). doi: 10.29026/oea.2020.190042 |
[1] | Lifante G. Integrated Photonics: Fundamentals (John Wiley & Sons, Hoboken, 2003). |
[2] | Saleh B E A, Teich M C. Fundamentals of Photonics 3rd ed (John Wiley & Sons, Hoboken, 2019). |
[3] | Grivas C. Optically pumped planar waveguide lasers, Part Ⅰ: Fundamentals and fabrication techniques. Prog Quant Electron 35, 159-239 (2011). doi: 10.1016/j.pquantelec.2011.05.002 |
[4] | Grivas C. Optically pumped planar waveguide lasers: Part Ⅱ: Gain media, laser systems, and applications. Prog Quant Electron 45-46, 3-160 (2016). doi: 10.1016/j.pquantelec.2015.12.001 |
[5] | Jia Y C, Chen F. Compact solid-state waveguide lasers operating in the pulsed regime: a review[Invited]. Chin Opt Lett 17, 012302 (2019). doi: 10.3788/COL201917.012302 |
[6] | Nikogosyan D N. Nonlinear Optical Crystals: A Complete Survey (Springer, New York, 2005). |
[7] | Mackenzie J I. Dielectric solid-state planar waveguide lasers: a review. IEEE J Sel Top Quantum Electron 13, 626-637 (2007). doi: 10.1109/JSTQE.2007.897184 |
[8] | Chen F. Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications. Laser Photonics Rev 6, 622-640 (2012). doi: 10.1002/lpor.201100037 |
[9] | Zhang M, Wang C, Cheng R, Shams-Ansari A, Lončar M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536-1537 (2017). doi: 10.1364/OPTICA.4.001536 |
[10] | Wolf R, Jia Y C, Bonaus S, Werner C S, Herr S J et al. Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica 5, 872-875 (2018). doi: 10.1364/OPTICA.5.000872 |
[11] | Osellame R, Cerullo G, Ramponi R. Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer, Berlin Heidelberg, 2012). |
[12] | Chen F, Vázquez de Aldana J R. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photonics Rev 8, 251-275 (2014). doi: 10.1002/lpor.201300025 |
[13] | Sugioka K, Cheng Y. Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications (Springer, London, 2014). |
[14] | Choudhury D, Macdonald J R, Kar A K. Ultrafast laser inscription: perspectives on future integrated applications. Laser Photonics Rev 8, 827-846 (2014). doi: 10.1002/lpor.201300195 |
[15] | Gross S, Withford M J. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications. Nanophotonics 4, 332-352 (2015). doi: 10.1515/nanoph-2015-0020 |
[16] | Davis K M, Miura K, Sugimoto N, Hirao K. Writing waveguides in glass with a femtosecond laser. Opt Lett 21, 1729-1731 (1996). doi: 10.1364/OL.21.001729 |
[17] | Gross S, Dubov M, Withford M J. On the use of the Type Ⅰ and Ⅱ scheme for classifying ultrafast laser direct-write photonics. Opt Express 23, 7767-7770 (2015). doi: 10.1364/OE.23.007767 |
[18] | Ams M, Dekker P, Gross S, Withford M J. Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses. Nanophotonics 6, 743-763 (2017). doi: 10.1515/nanoph-2016-0119 |
[19] | Burghoff J, Nolte S, Tünnermann A. Origins of waveguiding in femtosecond laser-structured LiNbO3. Appl Phys A 89, 127-132 (2007). doi: 10.1007/s00339-007-4152-0 |
[20] | Thomas J, Heinrich M, Zeil P, Hilbert V, Rademaker K et al. Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform. Phys Status Solidi A 208, 276-283 (2011). doi: 10.1002/pssa.201026452 |
[21] | Macdonald J R, Thomson R R, Beecher S J, Psaila N D, Bookey H T et al. Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe. Opt Lett 35, 4036-4038 (2010). doi: 10.1364/OL.35.004036 |
[22] | Rodenas A, Kar A K. High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing. Opt Express 19, 17820-17833 (2011). doi: 10.1364/OE.19.017820 |
[23] | He R Y, Hernández-Palmero I, Romero C, Vázquez de Aldana J R, Chen F. Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing. Opt Express 22, 31293-31298 (2014). doi: 10.1364/OE.22.031293 |
[24] | Ródenas A, Torchia G A, Lifante G, Cantelar E, Lamela J et al. Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations. Appl Phys B 95, 85-96 (2009). doi: 10.1007/s00340-008-3353-3 |
[25] | Ródenas A, Maestro L M, Ramírez M O, Torchia G A, Roso L et al. Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides. J Appl Phys 106, 013110 (2009). doi: 10.1063/1.3168432 |
[26] | Nguyen H D, Ródenas A, Vázquez de Aldana J R, Martínez J, Chen F et al. Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides. Opt Express 24, 7777-7791 (2016). doi: 10.1364/OE.24.007777 |
[27] | Okhrimchuk A G, Shestakov A V, Khrushchev I, Mitchell J. Depressed cladding, buried waveguide laser formed in a YAG: Nd3+ crystal by femtosecond laser writing. Opt Lett 30, 2248-2250 (2005). doi: 10.1364/OL.30.002248 |
[28] | Liu H L, Jia Y C, Vázquez de Aldana J R, Jaque D, Chen F. Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance. Opt Express 20, 18620-18629 (2012). doi: 10.1364/OE.20.018620 |
[29] | Jia Y C, Chen F, Vázquez de Aldana J R. Efficient continuous-wave laser operation at 1064 nm in Nd: YVO4 cladding waveguides produced by femtosecond laser inscription. Opt Express 20, 16801-16806 (2012). doi: 10.1364/OE.20.016801 |
[30] | Jia Y C, He R Y, Vázquez de Aldana J R, Liu H L, Chen F. Femtosecond laser direct writing of few-mode depressed-cladding waveguide lasers. Opt Express 27, 30941-30951 (2019). doi: 10.1364/OE.27.030941 |
[31] | Chen F, Vázquez de Aldana J R. Laser-written 3D crystalline photonic devices. SPIE Newsroom (2015). |
[32] | Gui L, Xu B X, Chong T C. Microstructure in lithium niobate by use of focused femtosecond laser pulses. IEEE Photonics Technol Lett 16, 1337-1339 (2004). doi: 10.1109/LPT.2004.826112 |
[33] | Lv J M, Cheng Y C, Yuan W H, Hao X T, Chen F. Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal. Opt Mater Express 5, 1274-1280 (2015). doi: 10.1364/OME.5.001274 |
[34] | Li L Q, Nie W J, Li Z Q, Romero C, Rodriguez-Beltrán R I et al. Laser-writing of ring-shaped waveguides in BGO crystal for telecommunication band. Opt Express 25, 24236-24241 (2017). doi: 10.1364/OE.25.024236 |
[35] | Osellame R, Lobino M, Chiodo N, Marangoni M, Cerullo G et al. Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient. Appl Phys Lett 90, 241107 (2007). doi: 10.1063/1.2748328 |
[36] | Zhang B, Xiong B C, Li Z Q, Li L Q, Lv J M et al. Mode tailoring of laser written waveguides in LiNbO3 crystals by multi-scan of femtosecond laser pulses. Opt Mater 86, 571-575 (2018). doi: 10.1016/j.optmat.2018.11.001 |
[37] | Burghoff J, Grebing C, Nolte S, Tünnermann A. Waveguides in lithium niobate fabricated by focused ultrashort laser pulses. Appl Surf Sci 253, 7899-7902 (2007). doi: 10.1016/j.apsusc.2007.02.148 |
[38] | Calmano T, Paschke A G, Müller S, Kränkel C, Huber G. Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription. Opt Express 21, 25501-25508 (2013). doi: 10.1364/OE.21.025501 |
[39] | Calmano T, Kränkel C, Huber G. Laser oscillation in Yb:YAG waveguide beam-splitters with variable splitting ratio. Opt Lett 40, 1753-1756 (2015). doi: 10.1364/OL.40.001753 |
[40] | Courvoisier A, Booth M J, Salter P S. Inscription of 3D waveguides in diamond using an ultrafast laser. Appl Phys Lett 109, 031109 (2016). doi: 10.1063/1.4959267 |
[41] | Presti D A, Guarepi V, Videla F, Torchia G A. Design and implementation of an integrated optical coupler by femtosecond laser written-waveguides in LiNbO3. Opt Laser Eng 126, 105860 (2020). doi: 10.1016/j.optlaseng.2019.105860 |
[42] | Heinrich M, Szameit A, Dreisow F, Döring S, Thomas J et al. Evanescent coupling in arrays of type Ⅱ femtosecond laser-written waveguides in bulk x-cut lithium niobate. Appl Phys Lett 93, 101111 (2008). doi: 10.1063/1.2981801 |
[43] | Liu H L, Yao Y C, Wu P F, Jia Y C. Femtosecond laser direct writing of evanescently-coupled planar waveguide laser arrays. Opt Mater Express 9, 4447-4455 (2019). doi: 10.1364/OME.9.004447 |
[44] | Ajates J G, Romero C, Castillo G R, Chen F, Vázquez de Aldana J R. Y-junctions based on circular depressed-cladding waveguides fabricated with femtosecond pulses in Nd:YAG crystal: A route to integrate complex photonic circuits in crystals. Opt Mater 72, 220-225 (2017). doi: 10.1016/j.optmat.2017.06.014 |
[45] | Castillo G R, Labrador-Páez L, Chen F, Camacho-López S, Vázquez de Aldana J R. Depressed-cladding 3-D waveguide arrays fabricated with femtosecond laser pulses. J Lightwave Technol 35, 2520-2525 (2017). doi: 10.1109/JLT.2017.2696163 |
[46] | Ajates J G, Vázquez de Aldana J R, Chen F, Ródenas A. Three-dimensional beam-splitting transitions and numerical modelling of direct-laser-written near-infrared LiNbO3 cladding waveguides. Opt Mater Express 8, 1890-1901 (2018). doi: 10.1364/OME.8.001890 |
[47] | Li S L, Ye Y K, Shen C Y, Wang H L. Femtosecond laser inscribed cladding waveguide structures in LiNbO3 crystal for beam splitters. Opt Eng 57, 117103 (2018). |
[48] | Ren Y Y, Zhang L M, Xing H G, Romero C, Vázquez de Aldana J R et al. Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti:Sapphire crystal. Opt Laser Technol 103, 82-88 (2018). doi: 10.1016/j.optlastec.2018.01.021 |
[49] | Jia Y C, Cheng C, Vázquez de Aldana J R, Castillo G R, del Rosal Rabes B et al. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes. Sci Rep 4, 5988 (2014). |
[50] | Jia Y C, Cheng C, Vázquez de Aldana J R, Chen F. Three-dimensional waveguide splitters inscribed in Nd:YAG by femtosecond laser writing: realization and laser emission. J Lightwave Technol 34, 1328-1332 (2016). doi: 10.1109/JLT.2015.2503349 |
[51] | Lv J M, Cheng Y Z, Vázquez de Aldana J R, Hao X T, Chen F. Femtosecond laser writing of optical-lattice-like cladding structures for three-dimensional waveguide beam splitters in LiNbO3 crystal. J Lightwave Technol 34, 3587-3591 (2016). doi: 10.1109/JLT.2016.2573841 |
[52] | Nie W J, He R Y, Cheng C, Rocha U, Vázquez de Aldana J R et al. Optical lattice-like cladding waveguides by direct laser writing: fabrication, luminescence, and lasing. Opt Lett 41, 2169-2172 (2016). |
[53] | Kifle E, Mateos X, Vázquez de Aldana J R, Ródenas A, Loiko P et al. Femtosecond-laser-written Tm:KLu(WO4)2 waveguide lasers. Opt Lett 42, 1169-1172 (2017). doi: 10.1364/OL.42.001169 |
[54] | Ren Y Y, Zhang L M, Lv J M, Zhao Y F, Romero C et al. Optical-lattice-like waveguide structures in Ti:Sapphire by femtosecond laser inscription for beam splitting. Opt Mater Express 7, 1942-1949 (2017). doi: 10.1364/OME.7.001942 |
[55] | Nie W J, Romero C, Lu Q M, Vázquez de Aldana J R, Chen F. Implementation of nearly single-mode second harmonic generation by using a femtosecond laser written waveguiding structure in KTiOPO4 nonlinear crystal. Opt Mater 84, 531-535 (2018). doi: 10.1016/j.optmat.2018.07.057 |
[56] | Morales-Vidal M, Sola Í J, Castillo G R, Vázquez de Aldana J R, Alonso B. Ultrashort pulse propagation through depressed-cladding channel waveguides in YAG crystal: Spatio-temporal characterization. Opt Laser Technol 123, 105898 (2020). doi: 10.1016/j.optlastec.2019.105898 |
[57] | Zhang Q, Li M, Xu J, Lin Z J, Yu H F et al. Reconfigurable directional coupler in lithium niobate crystal fabricated by three-dimensional femtosecond laser focal field engineering. Photonics Res 7, 503-507 (2019). doi: 10.1364/PRJ.7.000503 |
[58] | Liao Y, Xu J, Cheng Y, Zhou Z H, He F et al. Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser. Opt Lett 33, 2281-2283 (2008). doi: 10.1364/OL.33.002281 |
[59] | Chen C, Akhmadaliev S, Romero C, Vázquez de Aldana J R, Zhou S Q et al. Ridge waveguides and Y-branch beam splitters in KTiOAsO4 crystal by 15 Mev oxygen ion implantation and femtosecond laser ablation. J Lightwave Technol 35, 225-229 (2017). doi: 10.1109/JLT.2016.2636998 |
[60] | Li L Q, Nie W J, Li Z Q, Lu Q M, Romero C et al. All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications. Sci Rep 7, 7034 (2017). doi: 10.1038/s41598-017-07587-w |
[61] | Ródenas A, Gu M, Corrielli G, Paiè P, John S et al. Three-dimensional femtosecond laser nanolithography of crystals. Nat Photonics 13, 105-109 (2019). doi: 10.1038/s41566-018-0327-9 |
[62] | Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101-104 (2018). doi: 10.1038/s41586-018-0551-y |
[63] | Burghoff J, Hartung H, Nolte S, Tünnermann A. Structural properties of femtosecond laser-induced modifications in LiNbO3. Appl Phys A 86, 165-170 (2007). |
[64] | Ringleb S, Rademaker K, Nolte S, Tünnermann A. Monolithically integrated optical frequency converter and amplitude modulator in LiNbO3 fabricated by femtosecond laser pulses. Appl Phys B 102, 59-63 (2011). doi: 10.1007/s00340-010-4275-4 |
[65] | Presti D A, Guarepi V, Videla F, Fasciszewski A, Torchia G A. Intensity modulator fabricated in LiNbO3 by femtosecond laser writing. Opt Laser Eng 111, 222-226 (2018). doi: 10.1016/j.optlaseng.2018.08.015 |
[66] | Liu H L, Cheng C, Romero C, Vázquez de Aldana J R, Chen F. Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides. Opt Express 23, 9730-9735 (2015). doi: 10.1364/OE.23.009730 |
[67] | Liu H L, Vázquez de Aldana J R, Hong M H, Chen F. Femtosecond laser inscribed Y-branch waveguide in Nd:YAG crystal: fabrication and continuous-wave lasing. IEEE J Sel Top Quantum Electron 22, 227-230 (2016). doi: 10.1109/JSTQE.2015.2439191 |
[68] | Caird J A, Payne S A, Staber P R, Ramponi A J, Chase L L et al. Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser. IEEE J Quantum Electron 24, 1077-1099 (1988). doi: 10.1109/3.231 |
[69] | Nie W J, Jia Y C, Vázquez de Aldana J R, Chen F. Efficient second harmonic generation in 3D nonlinear optical-lattice-like cladding waveguide splitters by femtosecond laser inscription. Sci Rep 6, 22310 (2016). doi: 10.1038/srep22310 |
[70] | Wu R B, Zhang J H, Yao N, Fang W, Qiao L L et al. Lithium niobate micro-disk resonators of quality factors above 107. Opt Lett 43, 4116-4119 (2018). doi: 10.1364/OL.43.004116 |
[71] | Lin J T, Yao N, Hao Z Z, Zhang J H, Mao W B et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys Rev Lett 122, 173903 (2019). doi: 10.1103/PhysRevLett.122.173903 |
[72] | Boes A, Corcoran B, Chang L, Bowers J, Mitchell A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev 12, 1700256 (2018). doi: 10.1002/lpor.201700256 |
[73] | Seri A, Corrielli G, Lago-Rivera D, Lenhard A, de Riedmatten H et al. Laser-written integrated platform for quantum storage of heralded single photons. Optica 5, 934-941 (2018). doi: 10.1364/OPTICA.5.000934 |
[74] | Ren Y Y, Brown G, Ródenas A, Beecher S, Chen F et al. Mid-infrared waveguide lasers in rare-earth-doped YAG. Opt Lett 37, 3339-3341 (2012). doi: 10.1364/OL.37.003339 |
[75] | Douglass G, Arriola A, Heras I, Martin G, Le Coarer E et al. Novel concept for visible and near infrared spectro-interferometry: laser-written layered arrayed waveguide gratings. Opt Express 26, 18470-18479 (2018). doi: 10.1364/OE.26.018470 |
[76] | Norris B, Bland-Hawthorn J. Astrophotonics: The rise of integrated photonics in astronomy. Opt Photonics News 30, 26-33 (2019). |
Schematic illustration of a typical experimental setup for FsLDW operation.
Schematic illustrations FsLDW of (a) single-line waveguides based on smooth Type-Ⅰ modification, (b) stress-induced double-line waveguides based on two parallel Type-Ⅱ laser tracks, and (c) depressed-cladding waveguides.
Schematic illustration of nonlinear waveguide channels based on FsLDW single-/multi-line geometries.
(a) Schematic illustration of Y-branch waveguide channels based on FsLDW double-line geometry39. (b) The microscopic photograph of the splitting region in a FsLDW Yb:YAG waveguide splitter39. (c) The cross-sectional microscopic photograph of a FsLDW Nd:YAG waveguide array43. (d) Reconstructed refractive index profile of the fabricated waveguide array43. Scale bars denote 30 µm. Figure reproduced with permission from: (a, b) ref.39 and (c, d) ref.43, Optical Society of America.
(a) Schematic illustration of curved waveguide channels based on FsLDW depressed-cladding geometries34. (b) Schematic illustration of three-element 3D photonic-lattice-like cladding photonic structures for beam splitting and ring-shaped beam transformation31. Figure reproduced with permission from: (a) ref.34, SPIE; (b) ref.31, Optical Society of America.
Schematic illustration of a MZI EO modulator with Y-branch waveguide channels based on FsLDW double-line geometries58.
(a) Lasing performance of FsLDW curved Yb:YAG double-line waveguides with different curvature radii R38. (b–e) Output modal profiles of FsLDW beam splitters and ring-shaped beam transformers49, 50. Figure reproduced with permission from: (a) ref.38, Optical Society of America; (b, e) ref.49, Springer Nature; (c, d) ref.50, IEEE.
Modal profiles of SHG (1064→532 nm) and 1×4 beam splitting from photonic-lattice-like KTP cladding waveguides69.