Wang YL, Fan QB, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv 4, 200008 (2021). doi: 10.29026/oea.2021.200008
Citation: Wang YL, Fan QB, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv 4, 200008 (2021). doi: 10.29026/oea.2021.200008

Original Article Open Access

Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture

More Information
  • Achromatic metalens composed of arrays of subwavelength nanostructures with spatially varying geometries is attractive for a number of optical applications. However, the limited degree of freedom in the single layer achromatic metasurface design makes it difficult to simultaneously guarantee the sufficient phase dispersion and high diffraction efficiency, which restricts the achromatic bandwidth and efficiency of metalens. Here we propose and demonstrate a high efficiency achromatic metalens with diffraction-limited focusing capability at the wavelength ranging from 1000 nm to 1700 nm. The metalens comprises two stacked nanopillar metasurfaces, by which the required focusing phase and dispersion compensation can be controlled independently. As a result, in addition to the large achromatic bandwidth, the averaged focusing efficiency of the bilayer metalens is higher than 64% at the near-infrared region. Our design opens up the possibility to obtain the required phase dispersion and efficiency simultaneously, which is of great significance to design broadband metasurface-based optical devices.
  • 加载中
  • [1] Pedrotti FL, Pedrotti LS. Introduction to Optics (Prentice-Hall, Englewood Cliffs, N.J., 1987).

    Google Scholar

    [2] Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [3] Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science 339, 1232009 (2013). doi: 10.1126/science.1232009

    CrossRef Google Scholar

    [4] Lin DM, Fan PY, Hasman E, Brongersma ML. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014). doi: 10.1126/science.1253213

    CrossRef Google Scholar

    [5] Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 10, 937–943 (2015). doi: 10.1038/nnano.2015.186

    CrossRef Google Scholar

    [6] Ding XM, Monticone F, Zhang K, Zhang L, Gao DL et al. Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency. Adv Mater 27, 1195–1200 (2015). doi: 10.1002/adma.201405047

    CrossRef Google Scholar

    [7] Li ZY, Kim MH, Wang C, Han ZH, Shrestha S et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nat Nanotechnol 12, 675–683 (2017). doi: 10.1038/nnano.2017.50

    CrossRef Google Scholar

    [8] Yue FY, Zhang CM, Zang XF, Wen DD, Gerardot BD et al. High-resolution grayscale image hidden in a laser beam. Light Sci Appl 7, 17129 (2018). doi: 10.1038/lsa.2017.129

    CrossRef Google Scholar

    [9] Divitt S, Zhu WQ, Zhang C, Lezec HJ, Agrawal A. Ultrafast optical pulse shaping using dielectric metasurfaces. Science 364, 890–894 (2019). doi: 10.1126/science.aav9632

    CrossRef Google Scholar

    [10] Ma XL, Pu MB, Li X, Guo YH, Luo XG. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation. Opto-Electron Adv 2, 180023 (2019). doi: 10.29026/oea.2019.180023

    CrossRef Google Scholar

    [11] Guo JY, Wang T, Quan BG, Zhao H, Gu CZ et al. Polarization multiplexing for double images display. Opto-Electron Adv 2, 180029 (2019). doi: 10.29026/oea.2019.180029

    CrossRef Google Scholar

    [12] Dou KH, Xie X, Pu MB, Li X, Ma XL et al. Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging. Opto-Electron Adv 3, 190005 (2020). doi: 10.29026/oea.2020.190005

    CrossRef Google Scholar

    [13] Ni XJ, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun 4, 2807 (2013). doi: 10.1038/ncomms3807

    CrossRef Google Scholar

    [14] Zheng GX, Mühlenbernd H, Kenney M, Li GX, Zentgraf T et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10, 308–312 (2015). doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [15] Huang K, Dong ZG, Mei ST, Zhang L, Liu YJ et al. Silicon multi-meta-holograms for the broadband visible light. Laser Photonics Rev 10, 500–509 (2016). doi: 10.1002/lpor.201500314

    CrossRef Google Scholar

    [16] Li X, Chen LW, Li Y, Zhang XH, Pu MB et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [17] Li LL, Cui TJ, Ji W, Liu S, Ding J et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun 8, 197 (2017). doi: 10.1038/s41467-017-00164-9

    CrossRef Google Scholar

    [18] Arbabi E, Kamali SM, Arbabi A, Faraon A. Vectorial holograms with a dielectric metasurface: ultimate polarization pattern generation. ACS Photonics 6, 2712–2718 (2019). doi: 10.1021/acsphotonics.9b00678

    CrossRef Google Scholar

    [19] Feng H, Li QT, Wan WP, Song JH, Gong QH et al. Spin-switched three-dimensional full-color scenes based on a dielectric meta-hologram. ACS Photonics 6, 2910–2916 (2019). doi: 10.1021/acsphotonics.9b01017

    CrossRef Google Scholar

    [20] Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016). doi: 10.1126/science.aaf6644

    CrossRef Google Scholar

    [21] Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraji-Dana MS et al. Mems-tunable dielectric metasurface lens. Nat Commun 9, 812 (2018). doi: 10.1038/s41467-018-03155-6

    CrossRef Google Scholar

    [22] Yang ZY, Wang ZK, Wang YX, Feng X, Zhao M et al. Generalized hartmann-shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat Commun 9, 4607 (2018). doi: 10.1038/s41467-018-07056-6

    CrossRef Google Scholar

    [23] Pors A, Nielsen MG, Bozhevolnyi SI. Plasmonic metagratings for simultaneous determination of stokes parameters. Optica 2, 716–723 (2015). doi: 10.1364/OPTICA.2.000716

    CrossRef Google Scholar

    [24] Chen WT, Török P, Foreman MR, Liao CY, Tsai WY et al. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology 27, 224002 (2016). doi: 10.1088/0957-4484/27/22/224002

    CrossRef Google Scholar

    [25] Aieta F, Kats MA, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015). doi: 10.1126/science.aaa2494

    CrossRef Google Scholar

    [26] Wang B, Dong FL, Li QT, Yang D, Sun CW et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Lett 16, 5235–5240 (2016). doi: 10.1021/acs.nanolett.6b02326

    CrossRef Google Scholar

    [27] Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraon A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3, 628–633 (2016). doi: 10.1364/OPTICA.3.000628

    CrossRef Google Scholar

    [28] Khorasaninejad M, Shi Z, Zhu AY, Chen WT, Sanjeev V et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett 17, 1819–1824 (2017). doi: 10.1021/acs.nanolett.6b05137

    CrossRef Google Scholar

    [29] Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraon A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4, 625–632 (2017). doi: 10.1364/OPTICA.4.000625

    CrossRef Google Scholar

    [30] Avayu O, Almeida E, Prior P, Ellenbogen T. Composite functional metasurfaces for multispectral achromatic optics. Nat Commun 8, 14992 (2017). doi: 10.1038/ncomms14992

    CrossRef Google Scholar

    [31] Zhou Y, Kravchenko II, Wang H, Nolen JR, Gu G et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics. Nano Lett 18, 7529–7537 (2018). doi: 10.1021/acs.nanolett.8b03017

    CrossRef Google Scholar

    [32] Wang SM, Wu PC, Su V, Lai YC, Chu CH et al. Broadband achromatic optical metasurface devices. Nat Commun 8, 187 (2017). doi: 10.1038/s41467-017-00166-7

    CrossRef Google Scholar

    [33] Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi ZJ et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol 13, 220–226 (2018). doi: 10.1038/s41565-017-0034-6

    CrossRef Google Scholar

    [34] Wang SM, Wu PC, Su VC, Lai YC, Chen MK et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4

    CrossRef Google Scholar

    [35] Shrestha S, Overvig AC, Lu M, Stein A, Yu NF. Broadband achromatic dielectric metalenses. Light Sci Appl 7, 85 (2018). doi: 10.1038/s41377-018-0078-x

    CrossRef Google Scholar

    [36] Chen WT, Zhu AY, Sisler J, Huang YW, Yousef KMA et al. Broadband achromatic metasurface-refractive optics. Nano Lett 18, 7801–7808 (2018). doi: 10.1021/acs.nanolett.8b03567

    CrossRef Google Scholar

    [37] Hsiao HH, Chen YH, Lin RJ, Wu PC, Wang SM et al. Integrated resonant unit of metasurfaces for broadband efficiency and phase manipulation. Adv Optical Mater 6, 1800031 (2018). doi: 10.1002/adom.201800031

    CrossRef Google Scholar

    [38] Fan ZB, Qiu HY, Zhang HL, Pang XN, Zhou LD et al. A broadband achromatic metalens array for integral imaging in the visible. Light Sci Appl 8, 67 (2019). doi: 10.1038/s41377-019-0178-2

    CrossRef Google Scholar

    [39] Chen WT, Zhu AY, Sisler J, Bharwani Z, Capasso F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat Commun 10, 355 (2019). doi: 10.1038/s41467-019-08305-y

    CrossRef Google Scholar

    [40] Chung H, Miller OD. High-NA achromatic metalenses by inverse design. arXiv preprint arXiv: 1905.09213 (2019).

    Google Scholar

    [41] Banerji S, Meem M, Majumder A, Dvonch C, Sensale-Rodriguez B et al. Single flat lens enabling imaging in the short-wave infra-red (SWIR) band. OSA Contin 2, 2968–2974 (2019). doi: 10.1364/OSAC.2.002968

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint