Citation: |
|
[1] | Ma WZ, Zhao DS, Liu RM, Wang TS, Yuan Q et al. Observation and optimization of 2 μm mode-locked pulses in all-fiber net anomalous dispersion laser cavity. Opto-Electron Adv 3, 200001 (2020). doi: 10.29026/oea.2020.200001 |
[2] | Huang HZ, Li JH, Deng J, Ge Y, Liu HG et al. Passively Q-switched Tm/Ho composite laser. Opto-Electron Adv 3, 190031 (2020). doi: 10.29026/oea.2020.190031 |
[3] | Liu WJ, Liu ML, Ouyang YY, Hou HR, Lei M et al. CVD-grown MoSe2 with high modulation depth for ultrafast mode-locked erbium-doped fiber laser. Nanotechnology 29, 394002 (2018). doi: 10.1088/1361-6528/aad0b3 |
[4] | Zhang XJ, Li WW, Li J, Xu HY, Cai ZP, Luo ZQ. Mid-infrared all-fiber gain-switched pulsed laser at 3 μm. Opto-Electron Adv 3, 190032 (2020). doi: 10.29026/oea.2020.190032 |
[5] | Liu WJ, Liu ML, Liu B, Quhe RG, Lei M et al. Nonlinear optical properties of MoS2-WS2 heterostructure in fiber lasers. Opt Express 27, 6689–6699 (2019). doi: 10.1364/OE.27.006689 |
[6] | Wu K, Zhang XY, Wang J, Li X, Chen JP. WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers. Opt Express 23, 11453–11461 (2015). doi: 10.1364/OE.23.011453 |
[7] | Liu ML, Ouyang YY, Hou HR, Liu WJ. Q-switched fiber laser operating at 1.5 μm based on WTe2. Chin Opt Lett 17, 020006 (2019). doi: 10.3788/COL201917.020006 |
[8] | Liu WJ, Liu ML, Han HN, Fang SB, Teng H et al. Nonlinear optical properties of WSe2 and MoSe2 films and their applications in passively Q-switched erbium doped fiber lasers. Photonics Res 6, C15–C21 (2018). doi: 10.1364/PRJ.6.000C15 |
[9] | Sun Q, Yu H, Ueno K, Zu S, Matsuo Y et al. Revealing the plasmon coupling in gold nanochains directly from the near field. Opto-Electron Adv 2, 180030 (2019). doi: 10.29026/oea.2019.180030 |
[10] | Hakulinen T, Okhotnikov OG. 8 ns fiber laser Q switched by the resonant saturable absorber mirror. Opt Lett 32, 2677–2679 (2007). doi: 10.1364/OL.32.002677 |
[11] | Zhang H, Tang DY, Zhao LM, Bao QL, Loh KP. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt Express 17, 17630–17635 (2009). doi: 10.1364/OE.17.017630 |
[12] | Bao QL, Zhang H, Wang Y, Ni ZH, Yan YL et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater 19, 3077–3083 (2009). doi: 10.1002/adfm.200901007 |
[13] | Sun ZP, Martinez A, Wang F. Optical modulators with 2D layered materials. Nat. Photonics 10, 227–238 (2016). doi: 10.1038/nphoton.2016.15 |
[14] | Liu ML, Liu WJ, Wei ZY. MoTe2 saturable absorber with high modulation depth for erbium-doped fiber laser. J Lightwave Technol 37, 3100–3105 (2019). doi: 10.1109/JLT.2019.2910892 |
[15] | Guo B, Wang SH, Wu ZX, Wang ZX, Wang DH et al. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt Express 26, 22750–22760 (2018). doi: 10.1364/OE.26.022750 |
[16] | Lu SB, Miao LL, Guo ZN, Qi X, Zhao CJ et al. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material. Opt Express 23, 11183–11194 (2015). doi: 10.1364/OE.23.011183 |
[17] | Liu WJ, Liu ML, Lin S, Liu JC, Lei M et al. Synthesis of high quality silver nanowires and their applications in ultrafast photonics. Opt Express 27, 16440–16448 (2019). doi: 10.1364/OE.27.016440 |
[18] | Yan PG, Chen H, Yin JD, Xu ZH, Li JR et al. Large-area tungsten disulfide for ultrafast photonics. Nanoscale 9, 1871–1877 (2017). doi: 10.1039/C6NR09183K |
[19] | Liu ML, Ouyang YY, Hou HR, Lei M, Liu WJ et al. MoS2 saturable absorber prepared by chemical vapor deposition method for nonlinear control in Q-switching fiber laser. Chin Phys B 27, 084211 (2018). doi: 10.1088/1674-1056/27/8/084211 |
[20] | Seo JW, Jang JT, Park SW, Kim C, Park B et al. Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries. Adv Mater 20, 4269–4273 (2008). doi: 10.1002/adma.200703122 |
[21] | Feng TC, Zhang D, Li XH, Abdul Q, Shi ZJ et al. SnS2 nanosheets for Er-doped fiber lasers. ACS Appl Nano Mater 3, 674–681 (2020). doi: 10.1021/acsanm.9b02194 |
[22] | Niu KD, Sun RY, Chen QY, Man BY, Zhang HN. Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber. Photonics Res 6, 72–76 (2018). doi: 10.1364/PRJ.6.000072 |
[23] | Huang Y, Sutter E, Sadowski JT, Cotlet M, Monti OLA et al. Tin disulfide-an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics. ACS Nano 8, 10743–10755 (2014). doi: 10.1021/nn504481r |
[24] | Song HS, Li SL, Gao L, Xu Y, Ueno K et al. High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits. Nanoscale 5, 9666–9670 (2013). doi: 10.1039/c3nr01899g |
[25] | Zhong HX, Yang GZ, Song HW, Liao QY, Cui H et al. Vertically aligned graphene-like SnS2 ultrathin nanosheet arrays: excellent energy storage, catalysis, photoconduction, and field-emitting performances. J Phys Chem C 116, 9319–9326 (2012). doi: 10.1021/jp301024d |
[26] | Li S, Yin Y, Ouyang QY, Chen YJ, Lewis E et al. Dissipative soliton generation in Er-doped fibre laser using SnS2 as a saturable absorber. Appl Phys Express 12, 102008 (2019). doi: 10.7567/1882-0786/ab401b |
[27] | Li S, Yin Y, Ran GC, Ouyang QY, Chen YJ et al. Dual-wavelength mode-locked erbium-doped fiber laser based on tin disulfide thin film as saturable absorber. J Appl Phys 125, 243104 (2019). doi: 10.1063/1.5097332 |
[28] | Gao JJ, Zhou Y, Liu YJ, Han XL, Guo QX et al. Noise-like mode-locked Yb-doped fiber laser in a linear cavity based on SnS2 nanosheets as a saturable absorber. Appl Optics 58, 6007–6011 (2019). doi: 10.1364/AO.58.006007 |
[29] | Liu WJ, Liu ML, Wang XT, Shen T, Chang GQ et al. Thickness-dependent ultrafast photonics of SnS2 nanolayers for optimizing fiber lasers. ACS Appl Nano Mater 2, 2697–2705 (2019). doi: 10.1021/acsanm.9b00190 |
[30] | Niu KD, Chen QY, Sun RY, Man BY, Zhang HN. Passively Q-switched erbium-doped fiber laser based on SnS2 saturable absorber. Opt Mater Express 7, 3934–3943 (2017). doi: 10.1364/OME.7.003934 |
[31] | Seo W, Shin S, Ham G, Lee J, Lee S et al. Thickness-dependent structure and properties of SnS2 thin films prepared by atomic layer deposition. Jpn J Appl Phys 56, 031201 (2017). doi: 10.7567/JJAP.56.031201 |
[32] | Kushnir K, Morissette E, Giri B, Doiron CW, Grimm RL et al. Carrier dynamics in SnS2 single crystals and vertical nanostructures: role of edges. In Proceedings of the 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz, 2018) (IEEE, 2018);http://doi.org/10.1109/IRMMW-THz.2018.8509909. |
[33] | Hönninger C, Paschotta R, Morier-Genoud F, Moser M, Keller U. Q-switching stability limits of continuous-wave passive mode locking. J Opt Soc Am B 16, 46–56 (1999). doi: 10.1364/JOSAB.16.000046 |
[34] | Wang JZ, Luo ZQ, Zhou M, Ye CC, Fu HY et al. Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker. IEEE Photonics J 4, 1295–1305 (2012). doi: 10.1109/JPHOT.2012.2208736 |
[35] | Chen Y, Jiang GB, Chen SQ, Guo ZN, Yu XF et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation. Opt Express 23, 12823–12833 (2015). doi: 10.1364/OE.23.012823 |
[36] | Chen BH, Zhang XY, Wu K, Wang H, Wang J et al. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Opt Express 23, 26723–26737 (2015). doi: 10.1364/OE.23.026723 |
[37] | Huang YZ, Luo ZQ, Li YY, Zhong M, Xu B et al. Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber. Opt Express 22, 25258–25266 (2014). doi: 10.1364/OE.22.025258 |
[38] | Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6, 15–50 (1996). doi: 10.1016/0927-0256(96)00008-0 |
[39] | Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54, 11169–11186 (1996). doi: 10.1103/PhysRevB.54.11169 |
[40] | Blöchl PE. Projector augmented-wave method. Phys Rev B 50, 17953–17979 (1994). doi: 10.1103/PhysRevB.50.17953 |
[41] | Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59, 1758–1775 (1999). |
[42] | Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 77, 3865–3868 (1996). doi: 10.1103/PhysRevLett.77.3865 |
[43] | Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132, 154104 (2010). doi: 10.1063/1.3382344 |
[44] | Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B 13, 5188–5192 (1976). doi: 10.1103/PhysRevB.13.5188 |
[45] | Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118, 8207–8215 (2003). doi: 10.1063/1.1564060 |
[46] | Heyd J, Scuseria GE, Ernzerhof M. Erratum. Hybrid functionals based on a screened Coulomb potential [J. Chem. Phys. 118, 8207 (2003)]. J Chem Phys 124, 219906 (2006). |
[47] | Bardeen J, Shockley W. Deformation potentials and mobilities in non-polar crystals. Phys Rev 80, 72–80 (1950). doi: 10.1103/PhysRev.80.72 |
[48] | Bruzzone S, Fiori G. Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride. Appl Phys Lett 99, 222108 (2011). doi: 10.1063/1.3665183 |
[49] | Qiao JS, Kong XH, Hu ZX, Yang F, Ji W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun 5, 4475 (2014). doi: 10.1038/ncomms5475 |
[50] | Kang P, Michaud-Rioux V, Kong XH, Yu GH, Guo H. Calculated carrier mobility of h-BN/γ-InSe/h-BN van der Waals heterostructures. 2D Mater 4, 045014 (2017). doi: 10.1088/2053-1583/aa8763 |
[51] | Shao ZG, Ye XS, Yang L, Wang CL. First-principles calculation of intrinsic carrier mobility of silicene. J Appl Phys 114, 093712 (2013). doi: 10.1063/1.4820526 |
Characterization of materials. The AFM image, thickness and nonlinear absorption of (a, d, g)107 nm-SnS2 SA, (b, e, h)7.7 nm-SnS2 SA, (c, f, i)4 nm-SnS2 SA.
The simplified representation of QSFL based on SnS2.
The function of the QSFL based on 107 nm-SnS2 SA. (a) The τ of a single pulse. (b) RF spectrum (illustration: RF spectrum within a bandwidth of 2 MHz). (c) Emission spectrum. (d) The monitoring of Pout within 8 hours. (e) Variation of τ and Frep as functions of Ppump. (f) Variation of Pout and Ep as functions of Ppump.
The performance of the QSFL based on 7.7 nm-SnS2 SA. (a) The τ of a single pulse. (b) The monitoring of Pout within 8 hours. (c) Variation of τ and Frep as functions of Ppump. (d) Variation of Pout and Ep as functions of Ppump.
The performance of the QSFL based on 4 nm-SnS2 SA. (a) The τ of a single pulse. (b) The monitoring of Pout within 8 hours. (c) Variation of τ and Frep as functions of Ppump. (d) Variation of Pout and Ep as functions of Ppump.
The DFT calculated deformation potential limited electron mobility along kx direction of SnS2 vs the number of SnS2 layers.