Liu ML, Wu HB, Liu XM, Wang YR, Lei M et al. Optical properties and applications of SnS2 SAs with different thickness. Opto-Electron Adv 4, 200029 (2021). doi: 10.29026/oea.2021.200029
Citation: Liu ML, Wu HB, Liu XM, Wang YR, Lei M et al. Optical properties and applications of SnS2 SAs with different thickness. Opto-Electron Adv 4, 200029 (2021) . doi: 10.29026/oea.2021.200029

Original Article Open Access

Optical properties and applications of SnS2 SAs with different thickness

More Information
  • Q-switched lasers have occupied important roles in industrial applications such as laser marking, engraving, welding, and cutting due to their advantages in high pulse energy. Here, SnS2-based Q-switched lasers are implemented. Considering that SnS2 inherits the thickness sensitive optical characteristics of TMD, three kinds of SnS2 with different thickness are characterized in terms of nonlinearity and used to realize the Q-switched pulses under consistent implementation conditions for comparison tests. According to the results, the influence of thickness variation on the nonlinear performance of saturable absorber, such as modulation depth and absorption intensity, and the influence on the corresponding laser are analyzed. In addition, compared with other traditional saturable absorbers, the advantage of SnS2 in realizing ultrashort pulses is also noticed. Our work explores the thickness-dependent nonlinear optical properties of SnS2, and the rules found is of great reference value for the establishment of target lasers.
  • 加载中
  • [1] Ma WZ, Zhao DS, Liu RM, Wang TS, Yuan Q et al. Observation and optimization of 2 μm mode-locked pulses in all-fiber net anomalous dispersion laser cavity. Opto-Electron Adv 3, 200001 (2020). doi: 10.29026/oea.2020.200001

    CrossRef Google Scholar

    [2] Huang HZ, Li JH, Deng J, Ge Y, Liu HG et al. Passively Q-switched Tm/Ho composite laser. Opto-Electron Adv 3, 190031 (2020). doi: 10.29026/oea.2020.190031

    CrossRef Google Scholar

    [3] Liu WJ, Liu ML, Ouyang YY, Hou HR, Lei M et al. CVD-grown MoSe2 with high modulation depth for ultrafast mode-locked erbium-doped fiber laser. Nanotechnology 29, 394002 (2018). doi: 10.1088/1361-6528/aad0b3

    CrossRef Google Scholar

    [4] Zhang XJ, Li WW, Li J, Xu HY, Cai ZP, Luo ZQ. Mid-infrared all-fiber gain-switched pulsed laser at 3 μm. Opto-Electron Adv 3, 190032 (2020). doi: 10.29026/oea.2020.190032

    CrossRef Google Scholar

    [5] Liu WJ, Liu ML, Liu B, Quhe RG, Lei M et al. Nonlinear optical properties of MoS2-WS2 heterostructure in fiber lasers. Opt Express 27, 6689–6699 (2019). doi: 10.1364/OE.27.006689

    CrossRef Google Scholar

    [6] Wu K, Zhang XY, Wang J, Li X, Chen JP. WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers. Opt Express 23, 11453–11461 (2015). doi: 10.1364/OE.23.011453

    CrossRef Google Scholar

    [7] Liu ML, Ouyang YY, Hou HR, Liu WJ. Q-switched fiber laser operating at 1.5 μm based on WTe2. Chin Opt Lett 17, 020006 (2019). doi: 10.3788/COL201917.020006

    CrossRef Google Scholar

    [8] Liu WJ, Liu ML, Han HN, Fang SB, Teng H et al. Nonlinear optical properties of WSe2 and MoSe2 films and their applications in passively Q-switched erbium doped fiber lasers. Photonics Res 6, C15–C21 (2018). doi: 10.1364/PRJ.6.000C15

    CrossRef Google Scholar

    [9] Sun Q, Yu H, Ueno K, Zu S, Matsuo Y et al. Revealing the plasmon coupling in gold nanochains directly from the near field. Opto-Electron Adv 2, 180030 (2019). doi: 10.29026/oea.2019.180030

    CrossRef Google Scholar

    [10] Hakulinen T, Okhotnikov OG. 8 ns fiber laser Q switched by the resonant saturable absorber mirror. Opt Lett 32, 2677–2679 (2007). doi: 10.1364/OL.32.002677

    CrossRef Google Scholar

    [11] Zhang H, Tang DY, Zhao LM, Bao QL, Loh KP. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt Express 17, 17630–17635 (2009). doi: 10.1364/OE.17.017630

    CrossRef Google Scholar

    [12] Bao QL, Zhang H, Wang Y, Ni ZH, Yan YL et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater 19, 3077–3083 (2009). doi: 10.1002/adfm.200901007

    CrossRef Google Scholar

    [13] Sun ZP, Martinez A, Wang F. Optical modulators with 2D layered materials. Nat. Photonics 10, 227–238 (2016). doi: 10.1038/nphoton.2016.15

    CrossRef Google Scholar

    [14] Liu ML, Liu WJ, Wei ZY. MoTe2 saturable absorber with high modulation depth for erbium-doped fiber laser. J Lightwave Technol 37, 3100–3105 (2019). doi: 10.1109/JLT.2019.2910892

    CrossRef Google Scholar

    [15] Guo B, Wang SH, Wu ZX, Wang ZX, Wang DH et al. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt Express 26, 22750–22760 (2018). doi: 10.1364/OE.26.022750

    CrossRef Google Scholar

    [16] Lu SB, Miao LL, Guo ZN, Qi X, Zhao CJ et al. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material. Opt Express 23, 11183–11194 (2015). doi: 10.1364/OE.23.011183

    CrossRef Google Scholar

    [17] Liu WJ, Liu ML, Lin S, Liu JC, Lei M et al. Synthesis of high quality silver nanowires and their applications in ultrafast photonics. Opt Express 27, 16440–16448 (2019). doi: 10.1364/OE.27.016440

    CrossRef Google Scholar

    [18] Yan PG, Chen H, Yin JD, Xu ZH, Li JR et al. Large-area tungsten disulfide for ultrafast photonics. Nanoscale 9, 1871–1877 (2017). doi: 10.1039/C6NR09183K

    CrossRef Google Scholar

    [19] Liu ML, Ouyang YY, Hou HR, Lei M, Liu WJ et al. MoS2 saturable absorber prepared by chemical vapor deposition method for nonlinear control in Q-switching fiber laser. Chin Phys B 27, 084211 (2018). doi: 10.1088/1674-1056/27/8/084211

    CrossRef Google Scholar

    [20] Seo JW, Jang JT, Park SW, Kim C, Park B et al. Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries. Adv Mater 20, 4269–4273 (2008). doi: 10.1002/adma.200703122

    CrossRef Google Scholar

    [21] Feng TC, Zhang D, Li XH, Abdul Q, Shi ZJ et al. SnS2 nanosheets for Er-doped fiber lasers. ACS Appl Nano Mater 3, 674–681 (2020). doi: 10.1021/acsanm.9b02194

    CrossRef Google Scholar

    [22] Niu KD, Sun RY, Chen QY, Man BY, Zhang HN. Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber. Photonics Res 6, 72–76 (2018). doi: 10.1364/PRJ.6.000072

    CrossRef Google Scholar

    [23] Huang Y, Sutter E, Sadowski JT, Cotlet M, Monti OLA et al. Tin disulfide-an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics. ACS Nano 8, 10743–10755 (2014). doi: 10.1021/nn504481r

    CrossRef Google Scholar

    [24] Song HS, Li SL, Gao L, Xu Y, Ueno K et al. High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits. Nanoscale 5, 9666–9670 (2013). doi: 10.1039/c3nr01899g

    CrossRef Google Scholar

    [25] Zhong HX, Yang GZ, Song HW, Liao QY, Cui H et al. Vertically aligned graphene-like SnS2 ultrathin nanosheet arrays: excellent energy storage, catalysis, photoconduction, and field-emitting performances. J Phys Chem C 116, 9319–9326 (2012). doi: 10.1021/jp301024d

    CrossRef Google Scholar

    [26] Li S, Yin Y, Ouyang QY, Chen YJ, Lewis E et al. Dissipative soliton generation in Er-doped fibre laser using SnS2 as a saturable absorber. Appl Phys Express 12, 102008 (2019). doi: 10.7567/1882-0786/ab401b

    CrossRef Google Scholar

    [27] Li S, Yin Y, Ran GC, Ouyang QY, Chen YJ et al. Dual-wavelength mode-locked erbium-doped fiber laser based on tin disulfide thin film as saturable absorber. J Appl Phys 125, 243104 (2019). doi: 10.1063/1.5097332

    CrossRef Google Scholar

    [28] Gao JJ, Zhou Y, Liu YJ, Han XL, Guo QX et al. Noise-like mode-locked Yb-doped fiber laser in a linear cavity based on SnS2 nanosheets as a saturable absorber. Appl Optics 58, 6007–6011 (2019). doi: 10.1364/AO.58.006007

    CrossRef Google Scholar

    [29] Liu WJ, Liu ML, Wang XT, Shen T, Chang GQ et al. Thickness-dependent ultrafast photonics of SnS2 nanolayers for optimizing fiber lasers. ACS Appl Nano Mater 2, 2697–2705 (2019). doi: 10.1021/acsanm.9b00190

    CrossRef Google Scholar

    [30] Niu KD, Chen QY, Sun RY, Man BY, Zhang HN. Passively Q-switched erbium-doped fiber laser based on SnS2 saturable absorber. Opt Mater Express 7, 3934–3943 (2017). doi: 10.1364/OME.7.003934

    CrossRef Google Scholar

    [31] Seo W, Shin S, Ham G, Lee J, Lee S et al. Thickness-dependent structure and properties of SnS2 thin films prepared by atomic layer deposition. Jpn J Appl Phys 56, 031201 (2017). doi: 10.7567/JJAP.56.031201

    CrossRef Google Scholar

    [32] Kushnir K, Morissette E, Giri B, Doiron CW, Grimm RL et al. Carrier dynamics in SnS2 single crystals and vertical nanostructures: role of edges. In Proceedings of the 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz, 2018) (IEEE, 2018);http://doi.org/10.1109/IRMMW-THz.2018.8509909.

    Google Scholar

    [33] Hönninger C, Paschotta R, Morier-Genoud F, Moser M, Keller U. Q-switching stability limits of continuous-wave passive mode locking. J Opt Soc Am B 16, 46–56 (1999). doi: 10.1364/JOSAB.16.000046

    CrossRef Google Scholar

    [34] Wang JZ, Luo ZQ, Zhou M, Ye CC, Fu HY et al. Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker. IEEE Photonics J 4, 1295–1305 (2012). doi: 10.1109/JPHOT.2012.2208736

    CrossRef Google Scholar

    [35] Chen Y, Jiang GB, Chen SQ, Guo ZN, Yu XF et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation. Opt Express 23, 12823–12833 (2015). doi: 10.1364/OE.23.012823

    CrossRef Google Scholar

    [36] Chen BH, Zhang XY, Wu K, Wang H, Wang J et al. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Opt Express 23, 26723–26737 (2015). doi: 10.1364/OE.23.026723

    CrossRef Google Scholar

    [37] Huang YZ, Luo ZQ, Li YY, Zhong M, Xu B et al. Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber. Opt Express 22, 25258–25266 (2014). doi: 10.1364/OE.22.025258

    CrossRef Google Scholar

    [38] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6, 15–50 (1996). doi: 10.1016/0927-0256(96)00008-0

    CrossRef Google Scholar

    [39] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54, 11169–11186 (1996). doi: 10.1103/PhysRevB.54.11169

    CrossRef Google Scholar

    [40] Blöchl PE. Projector augmented-wave method. Phys Rev B 50, 17953–17979 (1994). doi: 10.1103/PhysRevB.50.17953

    CrossRef Google Scholar

    [41] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59, 1758–1775 (1999).

    Google Scholar

    [42] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 77, 3865–3868 (1996). doi: 10.1103/PhysRevLett.77.3865

    CrossRef Google Scholar

    [43] Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132, 154104 (2010). doi: 10.1063/1.3382344

    CrossRef Google Scholar

    [44] Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B 13, 5188–5192 (1976). doi: 10.1103/PhysRevB.13.5188

    CrossRef Google Scholar

    [45] Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118, 8207–8215 (2003). doi: 10.1063/1.1564060

    CrossRef Google Scholar

    [46] Heyd J, Scuseria GE, Ernzerhof M. Erratum. Hybrid functionals based on a screened Coulomb potential [J. Chem. Phys. 118, 8207 (2003)]. J Chem Phys 124, 219906 (2006).

    Google Scholar

    [47] Bardeen J, Shockley W. Deformation potentials and mobilities in non-polar crystals. Phys Rev 80, 72–80 (1950). doi: 10.1103/PhysRev.80.72

    CrossRef Google Scholar

    [48] Bruzzone S, Fiori G. Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride. Appl Phys Lett 99, 222108 (2011). doi: 10.1063/1.3665183

    CrossRef Google Scholar

    [49] Qiao JS, Kong XH, Hu ZX, Yang F, Ji W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun 5, 4475 (2014). doi: 10.1038/ncomms5475

    CrossRef Google Scholar

    [50] Kang P, Michaud-Rioux V, Kong XH, Yu GH, Guo H. Calculated carrier mobility of h-BN/γ-InSe/h-BN van der Waals heterostructures. 2D Mater 4, 045014 (2017). doi: 10.1088/2053-1583/aa8763

    CrossRef Google Scholar

    [51] Shao ZG, Ye XS, Yang L, Wang CL. First-principles calculation of intrinsic carrier mobility of silicene. J Appl Phys 114, 093712 (2013). doi: 10.1063/1.4820526

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint