Deng QR, Chen JF, Long L, Chen BQ, Yu HK et al. Silicon cuboid nanoantenna with simultaneous large Purcell factor for electric dipole, magnetic dipole and electric quadrupole emission. Opto-Electron Adv 5, 210024 (2022). doi: 10.29026/oea.2022.210024
Citation: Deng QR, Chen JF, Long L, Chen BQ, Yu HK et al. Silicon cuboid nanoantenna with simultaneous large Purcell factor for electric dipole, magnetic dipole and electric quadrupole emission. Opto-Electron Adv 5, 210024 (2022). doi: 10.29026/oea.2022.210024

Original Article Open Access

Silicon cuboid nanoantenna with simultaneous large Purcell factor for electric dipole, magnetic dipole and electric quadrupole emission

More Information
  • The Purcell effect is commonly used to increase the spontaneous emission rate by modifying the local environment of a light emitter. Here, we propose a silicon dielectric cuboid nanoantenna for simultaneously enhancing electric dipole (ED), magnetic dipole (MD) and electric quadrupole (EQ) emission. We study the scattering cross section, polarization charge distribution, and electromagnetic field distribution for electromagnetic plane wave illuminating the silicon dielectric cuboid nanoantenna, from which we have identified simultaneous existence of ED, MD and EQ resonance modes in this nanoantenna. We have calculated the Purcell factor of ED, MD and EQ emitters with different moment orientations as a function of radiation wavelength by placing these point radiation source within the nanoantenna, respectively. We find that the resonances wavelengths of the Purcell factor spectrum are matching with the resonance modes in the nanoantenna. Moreover, the maximum Purcell factor of these ED, MD and EQ emitters is 18, 150 and 118 respectively, occurring at the resonance wavelength of 475, 750, and 562 nm, respectively, all within the visible range. The polarization charge distribution features allow us to clarify the excitation and radiation of these resonance modes as the physical origin of large Purcell factor simultaneously occurring in this silicon cuboid nanoantenna. Our theoretical results might help to deeply explore and design the dielectric nanoantenna as an ideal candidate to enhance ED, MD and EQ emission simultaneously with very small loss in the visible range, which is superior than the more popular scheme of plasmonic nanoantenna.
  • 加载中
  • [1] Kinkhabwala A, Yu ZF, Fan SH, Avlasevich Y, Müllen K et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photonics 3, 654–657 (2009). doi: 10.1038/nphoton.2009.187

    CrossRef Google Scholar

    [2] Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1114 (2009). doi: 10.1038/nature08318

    CrossRef Google Scholar

    [3] Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009). doi: 10.1038/nature08364

    CrossRef Google Scholar

    [4] Shambat G, Ellis B, Majumdar A, Petykiewicz J, Mayer MA et al. Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode. Nat Commun 2, 539 (2011). doi: 10.1038/ncomms1543

    CrossRef Google Scholar

    [5] Rogobete L, Kaminski F, Agio M, Sandoghdar V. Design of plasmonic nanoantennae for enhancing spontaneous emission. Opt Lett 32, 1623–1625 (2007). doi: 10.1364/OL.32.001623

    CrossRef Google Scholar

    [6] Noginov MA, Li H, Barnakov YA, Dryden D, Nataraj G et al. Controlling spontaneous emission with metamaterials. Opt Lett 35, 1863–1865 (2010). doi: 10.1364/OL.35.001863

    CrossRef Google Scholar

    [7] Lodahl P, Van Driel AF, Nikolaev IS, Irman A, Overgaag K et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004). doi: 10.1038/nature02772

    CrossRef Google Scholar

    [8] Liu J, Shi MQ, Chen Z, Wang SM, Wang ZL et al. Quantum photonics based on metasurfaces. Opto-Electron Adv 4, 200092 (2021). doi: 10.29026/oea.2021.200092

    CrossRef Google Scholar

    [9] Vahala KJ. Optical microcavities. Nature 424, 839–846 (2003). doi: 10.1038/nature01939

    CrossRef Google Scholar

    [10] Novotny L, Van Hulst N. Antennas for light. Nat Photonics 5, 83–90 (2011). doi: 10.1038/nphoton.2010.237

    CrossRef Google Scholar

    [11] Schuller JA, Barnard ES, Cai WS, Jun YC, White JS et al. Plasmonics for extreme light concentration and manipulation. Nat Mater 9, 193–204 (2010). doi: 10.1038/nmat2630

    CrossRef Google Scholar

    [12] Bharadwaj P, Deutsch B, Novotny L. Optical antennas. Adv Opt Photonics 1, 438–483 (2009). doi: 10.1364/AOP.1.000438

    CrossRef Google Scholar

    [13] Englund D, Fattal D, Waks E, Solomon G, Zhang BY et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys Rev Lett 95, 013904 (2005). doi: 10.1103/PhysRevLett.95.013904

    CrossRef Google Scholar

    [14] Poddubny A, Iorsh I, Belov P, Kivshar Y. Hyperbolic metamaterials. Nat Photonics 7, 948–957 (2013). doi: 10.1038/nphoton.2013.243

    CrossRef Google Scholar

    [15] Beliaev LY, Takayama O, Melentiev PN, Lavrinenko AV. Photoluminescence control by hyperbolic metamaterials and metasurfaces: a review. Opto-Electron Adv 4, 210031 (2021). doi: 10.29026/oea.2021.210031

    CrossRef Google Scholar

    [16] Arcari M, Sollner I, Javadi A, Hansen SL, Mahmoodian S et al. Lodahl. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys Rev Lett 113, 093603 (2014). doi: 10.1103/PhysRevLett.113.093603

    CrossRef Google Scholar

    [17] Lodahl P, Mahmoodian S, Stobbe S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev Mod Phys 87, 347–400 (2015). doi: 10.1103/RevModPhys.87.347

    CrossRef Google Scholar

    [18] Rao VSCM, Hughes S. Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient “on chip” single photon gun. Phys Rev Lett 99, 193901 (2007). doi: 10.1103/PhysRevLett.99.193901

    CrossRef Google Scholar

    [19] Michaelis J, Hettich C, Mlynek J, Sandoghdar V. Optical microscopy using a single-molecule light source. Nature 405, 325–328 (2000). doi: 10.1038/35012545

    CrossRef Google Scholar

    [20] Ropp C, Cummins Z, Nah S, Fourkas JT, Shapiro B et al. Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot. Nat Commun 4, 1447 (2013). doi: 10.1038/ncomms2477

    CrossRef Google Scholar

    [21] Frimmer M, Chen YT, Koenderink AF. Scanning emitter lifetime imaging microscopy for spontaneous emission control. Phys Rev Lett 107, 123602 (2011). doi: 10.1103/PhysRevLett.107.123602

    CrossRef Google Scholar

    [22] Venkatesh S, Badiya PK, Ramamurthy SS. Purcell factor based understanding of enhancements in surface plasmon-coupled emission with DNA architectures. Phys Chem Chem Phys 18, 681–684 (2016). doi: 10.1039/C5CP05410A

    CrossRef Google Scholar

    [23] Lakowicz JR, Ray K, Chowdhury M, Szmacinski H, Fu Y et al. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst 133, 1308–1346 (2008). doi: 10.1039/b802918k

    CrossRef Google Scholar

    [24] Popa BI, Cummer SA. Compact dielectric particles as a building block for low-loss magnetic metamaterials. Phys Rev Lett 100, 207401 (2008). doi: 10.1103/PhysRevLett.100.207401

    CrossRef Google Scholar

    [25] Kuznetsov AI, Miroshnichenko AE, Fu YH, Zhang JB, Luk'yanchuk B. Magnetic light. Sci Rep 2, 492 (2012). doi: 10.1038/srep00492

    CrossRef Google Scholar

    [26] Evlyukhin AB, Novikov SM, Zywietz U, Eriksen RL, Reinhardt C et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett 12, 3749–3755 (2012). doi: 10.1021/nl301594s

    CrossRef Google Scholar

    [27] García-Etxarri A, Gómez-Medina R, Froufe-Pérez LS, López C, Chantada L et al. Strong magnetic response of submicron Silicon particles in the infrared. Opt Express 19, 4815–4826 (2011). doi: 10.1364/OE.19.004815

    CrossRef Google Scholar

    [28] Kruk S, Kivshar Y. Functional meta-optics and nanophotonics governed by mie resonances. ACS Photonics 4, 2638–2649 (2017). doi: 10.1021/acsphotonics.7b01038

    CrossRef Google Scholar

    [29] Evlyukhin AB, Reinhardt C, Chichkov BN. Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation. Phys Rev B 84, 235429 (2011). doi: 10.1103/PhysRevB.84.235429

    CrossRef Google Scholar

    [30] Rocco D, Lamprianidis A, Miroshnichenko AE, De Angelis C. Giant electric and magnetic Purcell factor in dielectric oligomers. J Opt Soc Am B 37, 2738–2744 (2020). doi: 10.1364/JOSAB.399665

    CrossRef Google Scholar

    [31] Kühn S, Håkanson U, Rogobete L, Sandoghdar V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett 97, 017402 (2006). doi: 10.1103/PhysRevLett.97.017402

    CrossRef Google Scholar

    [32] Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96, 113002 (2006). doi: 10.1103/PhysRevLett.96.113002

    CrossRef Google Scholar

    [33] Esteban R, Teperik TV, Greffet JJ. Optical patch antennas for single photon emission using surface plasmon resonances. Phys Rev Lett 104, 026802 (2010). doi: 10.1103/PhysRevLett.104.026802

    CrossRef Google Scholar

    [34] Hein SM, Giessen H. Tailoring magnetic dipole emission with plasmonic split-ring resonators. Phys Rev Lett 111, 026803 (2013). doi: 10.1103/PhysRevLett.111.026803

    CrossRef Google Scholar

    [35] Mivelle M, Grosjean T, Burr GW, Fischer UC, Garcia-Parajo MF. Strong modification of magnetic dipole emission through diabolo nanoantennas. ACS Photonics 2, 1071–1076 (2015). doi: 10.1021/acsphotonics.5b00128

    CrossRef Google Scholar

    [36] Li JQ, Verellen N, Van Dorpe P. Enhancing magnetic dipole emission by a nano-doughnut-shaped silicon disk. ACS Photonics 4, 1893–1898 (2017). doi: 10.1021/acsphotonics.7b00509

    CrossRef Google Scholar

    [37] Feng TH, Xu Y, Liang ZX, Zhang W. All-dielectric hollow nanodisk for tailoring magnetic dipole emission. Opt Lett 41, 5011–5014 (2016). doi: 10.1364/OL.41.005011

    CrossRef Google Scholar

    [38] Feng T, Zhang W, Liang ZX, Xu Y, Miroshnichenko AE. Isotropic magnetic purcell effect. ACS Photonics 5, 678–683 (2018). doi: 10.1021/acsphotonics.7b01016

    CrossRef Google Scholar

    [39] Feng TH, Zhou Y, Liu DH, Li J. Controlling magnetic dipole transition with magnetic plasmonic structures. Opt Lett 36, 2369–2371 (2011). doi: 10.1364/OL.36.002369

    CrossRef Google Scholar

    [40] Hu WL, Yi NB, Sun S, Cui L, Song QH et al. Enhancement of magnetic dipole emission at yellow light in optical metamaterials. Opt Commun 350, 202–206 (2015). doi: 10.1016/j.optcom.2015.03.077

    CrossRef Google Scholar

    [41] Albella P, Poyli MA, Schmidt MK, Maier SA, Moreno F et al. Low-Loss Electric and Magnetic Field-Enhanced Spectroscopy with Subwavelength Silicon Dimers. J Phys Chem C 117, 13573–13584 (2013). doi: 10.1021/jp4027018

    CrossRef Google Scholar

    [42] Mi H, Wang L, Zhang YP, Zhao GT, Jiang RB. Control of the emission from electric and magnetic dipoles by gold nanocup antennas. Opt Express 27, 14221–14230 (2019). doi: 10.1364/OE.27.014221

    CrossRef Google Scholar

    [43] Rusak E, Straubel J, Gladysz P, Göddel M, Kędziorski A et al. Enhancement of and interference among higher order multipole transitions in molecules near a plasmonic nanoantenna. Nat Commun 10, 5775 (2019). doi: 10.1038/s41467-019-13748-4

    CrossRef Google Scholar

    [44] Zhang CY, Xu Y, Liu J, Li JT, Xiang J et al. Lighting up silicon nanoparticles with Mie resonances. Nat Commun 9, 2964 (2018). doi: 10.1038/s41467-018-05394-z

    CrossRef Google Scholar

    [45] Li JQ, Verellen N, Vercruysse D, Bearda T, Lagae L et al. All-dielectric antenna wavelength router with bidirectional scattering of visible light. Nano Lett 16, 4396–4403 (2016). doi: 10.1021/acs.nanolett.6b01519

    CrossRef Google Scholar

    [46] Purcell EM. Spontaneous emission probabilities at radio frequencies. Phys Rev 69, 681 (1946).

    Google Scholar

    [47] Taminiau TH, Stefani FD, Van Hulst NF. Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency. New J Phys 10, 105005 (2008). doi: 10.1088/1367-2630/10/10/105005

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(7184) PDF downloads(926) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint