Chu CY, Liu ZT, Chen ML, Shao XH, Situ GH et al. Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry. Opto-Electron Adv 6, 230017 (2023). doi: 10.29026/oea.2023.230017
Citation: Chu CY, Liu ZT, Chen ML, Shao XH, Situ GH et al. Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry. Opto-Electron Adv 6, 230017 (2023). doi: 10.29026/oea.2023.230017

Article Open Access

Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry

More Information
  • High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths. Optical aperture synthesis is an important high-resolution imaging technology used in astronomy. Conventional long baseline amplitude interferometry is susceptible to uncontrollable phase fluctuations, and the technical difficulty increases rapidly as the wavelength decreases. The intensity interferometry inspired by HBT experiment is essentially insensitive to phase fluctuations, but suffers from a narrow spectral bandwidth which results in a lack of effective photons. In this study, we propose optical synthetic aperture imaging based on spatial intensity interferometry. This not only realizes diffraction-limited optical aperture synthesis in a single shot, but also enables imaging with a wide spectral bandwidth, which greatly improves the optical energy efficiency of intensity interferometry. And this method is insensitive to the optical path difference between the sub-apertures. Simulations and experiments present optical aperture synthesis diffraction-limited imaging through spatial intensity interferometry in a 100 nm spectral width of visible light, whose maximum optical path difference between the sub-apertures reaches 69λ. This technique is expected to provide a solution for optical aperture synthesis over kilometer-long baselines at optical wavelengths.
  • 加载中
  • [1] Brown RH, Twiss RQ. Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956). doi: 10.1038/177027a0

    CrossRef Google Scholar

    [2] Twiss RQ. Applications of intensity interferometry in physics and astronomy. Opt Acta Int J Opt 16, 423–451 (1969). doi: 10.1080/713818198

    CrossRef Google Scholar

    [3] Brown RH, Davis J, Allen LR. The angular diameters of 32 stars. Mon Not Roy Astron Soc 167, 121–136 (1974). doi: 10.1093/mnras/167.1.121

    CrossRef Google Scholar

    [4] Rivet JP, Vakili F, Lai O, Vernet D, Fouché M et al. Optical long baseline intensity interferometry: prospects for stellar physics. Exp Astron 46, 531–542 (2018). doi: 10.1007/s10686-018-9595-0

    CrossRef Google Scholar

    [5] Nuñez PD, Holmes R, Kieda D, LeBohec S. High angular resolution imaging with stellar intensity interferometry using air cherenkov telescope arrays. Mon Not Roy Astron Soc 419, 172–183 (2012). doi: 10.1111/j.1365-2966.2011.19683.x

    CrossRef Google Scholar

    [6] Pilyavsky G, Mauskopf P, Smith N, Schroeder E, Sinclair A et al. Single-photon intensity interferometry (SPIIFy): utilizing available telescopes. Mon Not Roy Astron Soc 467, 3048–3055 (2017). doi: 10.1093/mnras/stx272

    CrossRef Google Scholar

    [7] Gori PM, Vakili F, Rivet JP, Guerin W, Hugbart M et al. I3T: intensity interferometry imaging telescope. Mon Not Roy Astron Soc 505, 2328–2335 (2021). doi: 10.1093/mnras/stab1424

    CrossRef Google Scholar

    [8] Xu BX, Fan XY, Wang S, He ZY. Sub-femtometer-resolution absolute spectroscopy with sweeping electro-optic combs. Opto-Electron Adv 5, 210023 (2022). doi: 10.29026/oea.2022.210023

    CrossRef Google Scholar

    [9] Li CL, Liu JC, Zhang FM Qu XH. Review of nonlinearity correction of frequency modulated continuous wave LiDAR measurement technology. Opto-Electron Eng 49, 210438 (2022). doi: 10.12086/oee.2022.210438

    CrossRef Google Scholar

    [10] Le Bohec S, Daniel M, de Wit WJ, Hinton JA, Jose E et al. Stellar intensity interferometry with air Cherenkov telescope arrays. AIP Conf Proc 984, 205–215 (20008). doi: 10.1063/1.2896931

    CrossRef Google Scholar

    [11] Dravins D, LeBohec S, Jensen H, Nuñez PD. Stellar intensity interferometry: prospects for sub-milliarcsecond optical imaging. New Astron Rev 56, 143–167 (2012). doi: 10.1016/j.newar.2012.06.001

    CrossRef Google Scholar

    [12] Buckley J, Coppi P, Digel S, Funk S, Krawczynski H et al. The Advanced Gamma‐ray Imaging System (AGIS)—Science Highlights. AIP Conf Proc 1085, 902–905 (2008). doi: 10.1063/1.3076823

    CrossRef Google Scholar

    [13] Gong WL, Han SS. High-resolution far-field ghost imaging via sparsity constraint. Sci Rep 5, 9280 (2015). doi: 10.1038/srep09280

    CrossRef Google Scholar

    [14] Bulbul A, Vijayakumar A, Rosen J. Superresolution far-field imaging by coded phase reflectors distributed only along the boundary of synthetic apertures. Optica 5, 1607–1616 (2018). doi: 10.1364/OPTICA.5.001607

    CrossRef Google Scholar

    [15] Liu ZT, Shen X, Liu HL, Yu H, Han SS. Lensless wiener–khinchin telescope based on second-order spatial autocorrelation of thermal light. Chin Opt Lett 17, 091101 (2019). doi: 10.3788/COL201917.091101

    CrossRef Google Scholar

    [16] Bulbul A, Rosen J. Super-resolution imaging by optical incoherent synthetic aperture with one channel at a time. Photonics Res 9, 1172–1181 (2021). doi: 10.1364/PRJ.422381

    CrossRef Google Scholar

    [17] Wang F, Wang CL, Chen ML, Gong WL, Zhang Y et al. Far-field super-resolution ghost imaging with a deep neural network constraint. Light Sci Appl 11, 1–11 (2022). doi: 10.1038/s41377-021-00680-w

    CrossRef Google Scholar

    [18] Liu YL, Chen YH, Wang F, Cai YJ, Liang CH et al. Robust far-field imaging by spatial coherence engineering. Opto-Electron Adv 4, 210027 (2021). doi: 10.29026/oea.2021.210027

    CrossRef Google Scholar

    [19] Hu Y, Xiang HZ, Zhao RY, Tu JK, Zheng G. Mode field diameter measurement of single mode fiber using Bessel function fitting method based on variable aperture in far field. Opto-Electron Eng 48, 200308 (2021). doi: 10.12086/oee.2021.200308

    CrossRef Google Scholar

    [20] Liu ZT, Tan SY, Wu JR, Li ER, Shen X et al. Spectral camera based on ghost imaging via sparsity constraints. Sci Rep 6, 25718 (2016). doi: 10.1038/srep25718

    CrossRef Google Scholar

    [21] Chen SC, Du LH, Zhu LG. THz wave computational ghost imaging: principles and outlooks. Opto-Electron Eng 47, 200024 (2020). doi: 10.12086/oee.2020.200024

    CrossRef Google Scholar

    [22] Fienup JR. Reconstruction of an object from the modulus of its Fourier transform. Opt Lett 3, 27–29 (1978). doi: 10.1364/OL.3.000027

    CrossRef Google Scholar

    [23] Fienup JR. Phase retrieval algorithms: a comparison. Appl Opt 21, 2758–2769 (1982). doi: 10.1364/AO.21.002758

    CrossRef Google Scholar

    [24] Liu XL, Wu JC, He WQ, Liao MH, Zhang CG et al. Vulnerability to ciphertext-only attack of optical encryption scheme based on double random phase encoding. Opt Express 23, 18955–18968 (2015). doi: 10.1364/OE.23.018955

    CrossRef Google Scholar

    [25] Shechtman Y, Eldar YC, Cohen O, Chapman HN, Miao JW et al. Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process Mag 32, 87–109 (2015). doi: 10.1109/MSP.2014.2352673

    CrossRef Google Scholar

    [26] Sun J, Qu Q, Wright J. A geometric analysis of phase retrieval. Found Comput Math 18, 1131–1198 (2018). doi: 10.1007/s10208-017-9365-9

    CrossRef Google Scholar

    [27] Shen C, Liang MS, Pan A, Yang C. Non-iterative complex wave-field reconstruction based on Kramers–Kronig relations. Photonics Res 9, 1003–1012 (2021). doi: 10.1364/PRJ.419886

    CrossRef Google Scholar

    [28] Liao MH, Zheng SS, Pan SX, Lu DJ, He WQ et al. Deep-learning-based ciphertext-only attack on optical double random phase encryption. Opto-Electron Adv 4, 200016 (2021). doi: 10.29026/oea.2021.200016

    CrossRef Google Scholar

    [29] Feng SC, Kane C, Lee PA, Stone AD. Correlations and fluctuations of coherent wave transmission through disordered media. Phys Rev Lett 61, 834–837 (1988). doi: 10.1103/PhysRevLett.61.834

    CrossRef Google Scholar

    [30] Osnabrugge G, Horstmeyer R, Papadopoulos IN, Judkewitz B, Vellekoop IM. Generalized optical memory effect. Optica 4, 886–892 (2017). doi: 10.1364/OPTICA.4.000886

    CrossRef Google Scholar

    [31] Wang XY, Jin X, Li JQ. Blind position detection for large field-of-view scattering imaging. Photonics Res 8, 920–928 (2020). doi: 10.1364/PRJ.388522

    CrossRef Google Scholar

    [32] Goodman JW. Introduction to Fourier Optics 3rd ed 7–9 (Roberts & Company Publishers, Greenwoood Village, 2005).

    Google Scholar

    [33] Cohen L. The generalization of the wiener-khinchin theorem. in Proceedings of 1998 IEEE International Conference on Acoustics, Speech and Signal Processing 1577–1580 (IEEE, 1998).

    Google Scholar

    [34] Saha SK. Aperture Synthesis: Methods and Applications to Optical Astronomy 28 (Springer, New York, 2010).

    Google Scholar

    [35] Zheng GA, Shen C, Jiang SW, Song PM, Yang C. Concept, implementations and applications of Fourier ptychography. Nat Rev Phys 3, 207–223 (2021). doi: 10.1038/s42254-021-00280-y

    CrossRef Google Scholar

    [36] Bashkansky M, Lucke RL, Funk E, Rickard LJ, Reintjes J. Two-dimensional synthetic aperture imaging in the optical domain. Opt Lett 27, 1983–1985 (2002). doi: 10.1364/OL.27.001983

    CrossRef Google Scholar

    [37] Derie F. VLTI delay lines: design, development, and performance requirements. Proc SPIE 40006, 25–40 (2000). doi: 10.1117/12.390216

    CrossRef Google Scholar

    [38] Shannon RR, Wyant JC. Applied Optics and Optical Engineering 156–158 (Academic Press, 1983).

    Google Scholar

    [39] Event Horizon Telescope Collaboration, Akiyama K, Alberdi A, Alef W, Algaba JC et al. First Sagittarius A* event horizon telescope results. I. The shadow of the supermassive black hole in the center of the milky way. Astrophys J Lett 930, L12 (2022). doi: 10.3847/2041-8213/ac6674

    CrossRef Google Scholar

  • Supplementary information for Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint