Zheng SJ, Tan JR, Liu HJ et al. Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording. Opto-Electron Adv 7, 230180 (2024). doi: 10.29026/oea.2024.230180
Citation: Zheng SJ, Tan JR, Liu HJ et al. Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording. Opto-Electron Adv 7, 230180 (2024). doi: 10.29026/oea.2024.230180

Article Open Access

Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording

More Information
  • Orthogonal matrices have become a vital means for coding and signal processing owing to their unique distributional properties. Although orthogonal matrices based on amplitude or phase combinations have been extensively explored, the orthogonal matrix of polarization combinations (OMPC) is a novel, relatively unexplored concept. Herein, we propose a method for constructing OMPCs of any dimension encompassing 4n (where n is 1, 2, 4, 8, …) mutually orthogonal 2n-component polarization combinations. In the field of holography, the integration of polarization multiplexing techniques with polarization-sensitive materials is expected to emerge as a groundbreaking approach for multichannel hologram multiplexing, offering considerable enhancements in data storage capacity and security. A multidimensional OMPC enables the realization of multichannel multiplexing and dynamical modulation of information in polarization holographic recording. Despite consolidating all information into a single position within the material, we effectively avoided extraneous crosstalk during the reconstruction process. Our results show that achieving four distinct holographic images individually and simultaneously depends on the polarization combination represented by the incident wave. This discovery opens up a new avenue for achieving highly holographic information storage and dynamically displayed information, harnessing the potential of OMPC to expand the heretofore limited dimensionality of orthogonal polarization.
  • 加载中
  • [1] Lu CP, Hager GD, Mjolsness E. Fast and globally convergent pose estimation from video images. IEEE Trans Pattern Anal Mach Intell 22, 610–622 (2000). doi: 10.1109/34.862199

    CrossRef Google Scholar

    [2] Horadam KJ. Hadamard Matrices and Their Applications (Princeton University Press, 2012).

    Google Scholar

    [3] Trefethen LN, Bau III D. Numerical Linear Algebra: Twenty-Fifth Anniversary Edition (SIAM, Philadelphia, 2022).

    Google Scholar

    [4] Feynman RP, Hibbs AR, Styer DF. Quantum Mechanics and Path Integrals (Dover Publications, New York, 2010).

    Google Scholar

    [5] Wang R, Guo JB, Leung H. Orthogonal circulant structure and chaotic phase modulation based analog to information conversion. Signal Process 144, 104–117 (2018). doi: 10.1016/j.sigpro.2017.10.003

    CrossRef Google Scholar

    [6] Li JH, He MZ, Zheng TX, Cao LC, He QS et al. Two-dimensional shift-orthogonal random-interleaving phase-code multiplexing for holographic data storage. Opt Commun 284, 5562–5567 (2011). doi: 10.1016/j.optcom.2011.08.008

    CrossRef Google Scholar

    [7] Figueroa J, Cros J, Viarouge P. Generalized transformations for polyphase phase-modulation motors. IEEE Trans Energy Convers 21, 332–341 (2006). doi: 10.1109/TEC.2005.859965

    CrossRef Google Scholar

    [8] Xin Y, Wang ZD, Giannakis GB. Space-time diversity systems based on linear constellation precoding. IEEE Trans Wirel Commun 2, 294–309 (2003). doi: 10.1109/TWC.2003.808970

    CrossRef Google Scholar

    [9] Li JH, Cao LC, Gu HR, Tan XD, He QS et al. Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage. Opt Lett 37, 936–938 (2012). doi: 10.1364/OL.37.000936

    CrossRef Google Scholar

    [10] Makey G, Yavuz Ö, Kesim DK, Turnalı A, Elahi P et al. Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors. Nat Photonics 13, 251–256 (2019). doi: 10.1038/s41566-019-0393-7

    CrossRef Google Scholar

    [11] Kinoshita N, Muroi T, Ishii N, Kamijo K, Shimidzu N. Control of angular intervals for angle-multiplexed holographic memory. Jpn J Appl Phys 48, 03A029 (2009). doi: 10.1143/JJAP.48.03A029

    CrossRef Google Scholar

    [12] Cao LC, Wang Z, Zhang H, Jin GF, Gu C. Volume holographic printing using unconventional angular multiplexing for three-dimensional display. Appl Opt 55, 6046–6051 (2016). doi: 10.1364/AO.55.006046

    CrossRef Google Scholar

    [13] Sherif H, Naydenova I, Martin S, McGinn C, Toal V. Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing. J Opt A Pure Appl Opt 7, 255–260 (2005). doi: 10.1088/1464-4258/7/5/007

    CrossRef Google Scholar

    [14] Yoneda N, Saita Y, Nomura T. Binary computer-generated-hologram-based holographic data storage. Appl Opt 58, 3083–3090 (2019). doi: 10.1364/AO.58.003083

    CrossRef Google Scholar

    [15] Eto T, Takabayashi M, Okamoto A, Bunsen M, Okamoto T. Numerical simulations on inter-page crosstalk characteristics in three-dimensional shift multiplexed self-referential holographic data storage. Jpn J Appl Phys 55, 08RD01 (2016). doi: 10.7567/JJAP.55.08RD01

    CrossRef Google Scholar

    [16] Jin ZW, Janoschka D, Deng JH, Ge L, Dreher P et al. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight 1, 5 (2021). doi: 10.1186/s43593-021-00005-9

    CrossRef Google Scholar

    [17] Ouyang X, Xu Y, Xian MC, Feng ZW, Zhu LW et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nat Photonics 15, 901–907 (2021). doi: 10.1038/s41566-021-00880-1

    CrossRef Google Scholar

    [18] Fang XY, Ren HR, Gu M. Orbital angular momentum holography for high-security encryption. Nat Photonics 14, 102–108 (2020). doi: 10.1038/s41566-019-0560-x

    CrossRef Google Scholar

    [19] Zang JL, Kang GG, Li P, Liu Y, Fan FL et al. Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography. Opt Lett 42, 1377–1380 (2017). doi: 10.1364/OL.42.001377

    CrossRef Google Scholar

    [20] Zang JL, Fan F, Liu Y, Wei R, Tan XD. Four-channel volume holographic recording with linear polarization holography. Opt Lett 44, 4107–4110 (2019). doi: 10.1364/OL.44.004107

    CrossRef Google Scholar

    [21] Guo JY, Wang T, Quan BG, Zhao H, Gu CZ et al. Polarization multiplexing for double images display. Opto-Electron Adv 2, 180029 (2019).

    Google Scholar

    [22] Koek WD, Bhattacharya N, Braat JJM, Chan VS, Westerweel J. Holographic simultaneous readout polarization multiplexing based on photoinduced anisotropy in bacteriorhodopsin. Opt Lett 29, 101–103 (2004). doi: 10.1364/OL.29.000101

    CrossRef Google Scholar

    [23] Wei HY, Cao LC, Xu ZF, He QS, Jin GF et al. Orthogonal polarization dual-channel holographic memory in cationic ring-opening photopolymer. Opt Express 14, 5135–5142 (2006). doi: 10.1364/OE.14.005135

    CrossRef Google Scholar

    [24] Barada D, Ochiai T, Fukuda T, Kawata S, Kuroda K et al. Dual-channel polarization holography: A technique for recording two complex amplitude components of a vector wave. Opt Lett 37, 4528–4530 (2012). doi: 10.1364/OL.37.004528

    CrossRef Google Scholar

    [25] Zhou SL, Liu L, Chen ZJ, Ansari MA, Chen XZ et al. Polarization-multiplexed metaholograms with erasable functionality. J Phys D Appl Phys 56, 155102 (2023). doi: 10.1088/1361-6463/acbf61

    CrossRef Google Scholar

    [26] Ilieva D, Nedelchev L, Petrova T, Tomova N, Dragostinova V et al. Holographic multiplexing using photoinduced anisotropy and surface relief in azopolymer films. J Opt A Pure Appl Opt 7, 35 (2005). doi: 10.1088/1464-4258/7/1/005

    CrossRef Google Scholar

    [27] Li X, Chen QM, Zhang X, Zhao RZ, Xiao SM et al. Time-sequential color code division multiplexing holographic display with metasurface. Opto-Electron Adv 6, 220060 (2023). doi: 10.29026/oea.2023.220060

    CrossRef Google Scholar

    [28] Xiong B, Liu Y, Xu YH, Deng L, Chen CW et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science 379, 294–299 (2023). doi: 10.1126/science.ade5140

    CrossRef Google Scholar

    [29] Nikolova L, Ramanujam PS. Polarization Holography (Cambridge University Press, Cambridge, 2009).

    Google Scholar

    [30] Kuroda K, Matsuhashi Y, Fujimura R, Shimura T. Theory of polarization holography. Opt Rev 18, 374–382 (2011). doi: 10.1007/s10043-011-0072-5

    CrossRef Google Scholar

    [31] Wang JY, Tan XD, Qi PL, Wu CH, Huang L et al. Linear polarization holography. Opto-Electron Sci 1, 210009 (2022). doi: 10.29026/oes.2022.210009

    CrossRef Google Scholar

    [32] Kuroda K, Matsuhashi Y, Shimura T. Reconstruction characteristics of polarization holograms. In 2012 11th Euro-American Workshop on Information Optics 1–2 (IEEE, 2012);http://doi.org/10.1109/WIO.2012.6488904.

    Google Scholar

    [33] Yarlagadda RKR, Hershey EJ. Hadamard Matrix Analysis and Synthesis (Springer, New York, 1997).

    Google Scholar

    [34] Lin SH, Hsu KY, Chen WZ, Whang WT. Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage. Opt Lett 25, 451–453 (2000). doi: 10.1364/OL.25.000451

    CrossRef Google Scholar

    [35] Chen YX, Hu P, Huang ZY, Wang JY, Song HY et al. Significant enhancement of the polarization holographic performance of photopolymeric materials by introducing graphene oxide. ACS Appl Mater Interfaces 13, 27500–27512 (2021). doi: 10.1021/acsami.1c07390

    CrossRef Google Scholar

    [36] Lin SH, Chen PL, Chuang CI, Chao YF, Hsu KY. Volume polarization holographic recording in thick phenanthrenequinone-doped poly(methyl methacrylate) photopolymer. Opt Lett 36, 3039–3041 (2011). doi: 10.1364/OL.36.003039

    CrossRef Google Scholar

    [37] Hao JY, Lin X, Lin YK, Chen MY, Chen RX et al. Lensless complex amplitude demodulation based on deep learning in holographic data storage. Opto-Electron Adv 6, 220157 (2023). doi: 10.29026/oea.2023.220157

    CrossRef Google Scholar

  • Supplementary information for Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint