Huang YR, Zhang ZM, Tao WL et al. Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome. Opto-Electron Adv 7, 240035 (2024). doi: 10.29026/oea.2024.240035
Citation: Huang YR, Zhang ZM, Tao WL et al. Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome. Opto-Electron Adv 7, 240035 (2024). doi: 10.29026/oea.2024.240035

Article Open Access

Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome

More Information
  • Stimulated emission depletion microscopy (STED) holds great potential in biological science applications, especially in studying nanoscale subcellular structures. However, multi-color STED imaging in live-cell remains challenging due to the limited excitation wavelengths and large amount of laser radiation. Here, we develop a multiplexed live-cell STED method to observe more structures simultaneously with limited photo-bleaching and photo-cytotoxicity. By separating live-cell fluorescent probes with similar spectral properties using phasor analysis, our method enables five-color live-cell STED imaging and reveals long-term interactions between different subcellular structures. The results here provide an avenue for understanding the complex and delicate interactome of subcellular structures in live-cell.
  • 加载中
  • [1] Dong DS, Huang XS, Li LJ et al. Super-resolution fluorescence-assisted diffraction computational tomography reveals the three-dimensional landscape of the cellular organelle interactome. Light Sci Appl 9, 11 (2020). doi: 10.1038/s41377-020-0249-4

    CrossRef Google Scholar

    [2] Valm AM, Cohen S, Legant WR et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546, 162–167 (2017). doi: 10.1038/nature22369

    CrossRef Google Scholar

    [3] Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv Mikrosk Anatom 9, 413–468 (1873). doi: 10.1007/BF02956173

    CrossRef Google Scholar

    [4] Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19, 780–782 (1994). doi: 10.1364/OL.19.000780

    CrossRef Google Scholar

    [5] Gustafsson MGL. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198, 82–87 (2000). doi: 10.1046/j.1365-2818.2000.00710.x

    CrossRef Google Scholar

    [6] Klar TA, Jakobs S, Dyba M et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 97, 8206–8210 (2000). doi: 10.1073/pnas.97.15.8206

    CrossRef Google Scholar

    [7] Betzig E, Patterson GH, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006). doi: 10.1126/science.1127344

    CrossRef Google Scholar

    [8] Rust MJ, Bates M, Zhuang XW. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3, 793–796 (2006). doi: 10.1038/nmeth929

    CrossRef Google Scholar

    [9] Huang B, Wang WQ, Bates M et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008). doi: 10.1126/science.1153529

    CrossRef Google Scholar

    [10] Shroff H, Galbraith CG, Galbraith JA et al. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5, 417–423 (2008). doi: 10.1038/nmeth.1202

    CrossRef Google Scholar

    [11] Müller CB, Enderlein J. Image scanning microscopy. Phys Rev Lett 104, 198101 (2010). doi: 10.1103/PhysRevLett.104.198101

    CrossRef Google Scholar

    [12] Li CK, Le V, Wang XN et al. Resolution enhancement and background suppression in optical super-resolution imaging for biological applications. Laser Photon Rev 15, 1900084 (2021). doi: 10.1002/lpor.201900084

    CrossRef Google Scholar

    [13] Gould TJ, Schroeder LK, Pellett PA et al. STED microscopy. In Kubitscheck U. Fluorescence Microscopy (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2017).

    Google Scholar

    [14] Müller T, Schumann C, Kraegeloh A. STED microscopy and its applications: new insights into cellular processes on the nanoscale. ChemPhysChem 13, 1986–2000 (2012). doi: 10.1002/cphc.201100986

    CrossRef Google Scholar

    [15] Vicidomini G, Bianchini P, Diaspro A. STED super-resolved microscopy. Nat Methods 15, 173–182 (2018). doi: 10.1038/nmeth.4593

    CrossRef Google Scholar

    [16] Hebisch E, Wagner E, Westphal V et al. A protocol for registration and correction of multicolour STED superresolution images. J Microsc 267, 160–175 (2017). doi: 10.1111/jmi.12556

    CrossRef Google Scholar

    [17] Mehedi M, Smelkinson M, Kabat J et al. Multicolor stimulated emission depletion (STED) microscopy to generate high-resolution images of respiratory syncytial virus particles and infected cells. Bio-Protocol 7, e2543 (2017). doi: 10.21769/BioProtoc.2543

    CrossRef Google Scholar

    [18] Winter FR, Loidolt M, Westphal V et al. Multicolour nanoscopy of fixed and living cells with a single STED beam and hyperspectral detection. Sci Rep 7, 46492 (2017). doi: 10.1038/srep46492

    CrossRef Google Scholar

    [19] Pellett PA, Sun XL, Gould TJ et al. Two-color STED microscopy in living cells. Biomed Opt Express 2, 2364–2371 (2011). doi: 10.1364/BOE.2.002364

    CrossRef Google Scholar

    [20] Bottanelli F, Kromann EB, Allgeyer ES et al. Two-colour live-cell nanoscale imaging of intracellular targets. Nat Commun 7, 10778 (2016). doi: 10.1038/ncomms10778

    CrossRef Google Scholar

    [21] Sidenstein SC, D’Este E, Böhm MJ et al. Multicolour multilevel STED nanoscopy of actin/spectrin organization at synapses. Sci Rep 6, 26725 (2016). doi: 10.1038/srep26725

    CrossRef Google Scholar

    [22] Tonnesen J, Nadrigny F, Willig KI et al. Two-color STED microscopy of living synapses using a single laser-beam pair. Biophys J 101, 2545–2552 (2011). doi: 10.1016/j.bpj.2011.10.011

    CrossRef Google Scholar

    [23] Spahn C, Grimm JB, Lavis LD et al. Whole-cell, 3D, and multicolor STED imaging with exchangeable fluorophores. Nano Lett 19, 500–505 (2019). doi: 10.1021/acs.nanolett.8b04385

    CrossRef Google Scholar

    [24] Willig KI, Wegner W, Müller A et al. Multi-label in vivo STED microscopy by parallelized switching of reversibly switchable fluorescent proteins. Cell Rep 35, 109192 (2021). doi: 10.1016/j.celrep.2021.109192

    CrossRef Google Scholar

    [25] Chang CW, Sud D, Mycek MA. Fluorescence lifetime imaging microscopy. Methods Cell Biol 81, 495–524 (2007).

    Google Scholar

    [26] Liu ZY, Pouli D, Alonzo CA et al. Mapping metabolic changes by noninvasive, multiparametric, high-resolution imaging using endogenous contrast. Sci Adv 4, eaap9302 (2018). doi: 10.1126/sciadv.aap9302

    CrossRef Google Scholar

    [27] Datta R, Gillette A, Stefely M et al. Recent innovations in fluorescence lifetime imaging microscopy for biology and medicine. J Biomed Opt 26, 070603 (2021). doi: 10.1117/1.JBO.26.7.070603

    CrossRef Google Scholar

    [28] Bückers J, Wildanger D, Vicidomini G et al. Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt Express 19, 3130–3143 (2011). doi: 10.1364/OE.19.003130

    CrossRef Google Scholar

    [29] Niehörster T, Löschberger A, Gregor I et al. Multi-target spectrally resolved fluorescence lifetime imaging microscopy. Nat Methods 13, 257–262 (2016). doi: 10.1038/nmeth.3740

    CrossRef Google Scholar

    [30] Ranjit S, Malacrida L, Jameson DM et al. Fit-free analysis of fluorescence lifetime imaging data using the phasor approach. Nat Protoc 13, 1979–2004 (2018). doi: 10.1038/s41596-018-0026-5

    CrossRef Google Scholar

    [31] Digman MA, Caiolfa VR, Zamai M et al. The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94, L14–L16 (2008). doi: 10.1529/biophysj.107.120154

    CrossRef Google Scholar

    [32] Torrado B, Malacrida L, Ranjit S. Linear combination properties of the phasor space in fluorescence imaging. Sensors 22, 999 (2022). doi: 10.3390/s22030999

    CrossRef Google Scholar

    [33] Shi W, Koo DES, Kitano M et al. Pre-processing visualization of hyperspectral fluorescent data with spectrally encoded enhanced representations. Nat Commun 11, 726 (2020). doi: 10.1038/s41467-020-14486-8

    CrossRef Google Scholar

    [34] Scipioni L, Rossetta A, Tedeschi G et al. Phasor S-FLIM: a new paradigm for fast and robust spectral fluorescence lifetime imaging. Nat Methods 18, 542–550 (2021). doi: 10.1038/s41592-021-01108-4

    CrossRef Google Scholar

    [35] Frei MS, Koch B, Hiblot J et al. Live-cell fluorescence lifetime multiplexing using synthetic fluorescent probes. ACS Chem Biol 17, 1321–1327 (2022). doi: 10.1021/acschembio.2c00041

    CrossRef Google Scholar

    [36] Frei MS, Tarnawski M, Roberti MJ et al. Engineered HaloTag variants for fluorescence lifetime multiplexing. Nat Methods 19, 65–70 (2022). doi: 10.1038/s41592-021-01341-x

    CrossRef Google Scholar

    [37] Gonzalez Pisfil M, Nadelson I et al. Stimulated emission depletion microscopy with a single depletion laser using five fluorochromes and fluorescence lifetime phasor separation. Sci Rep 12, 14027 (2022). doi: 10.1038/s41598-022-17825-5

    CrossRef Google Scholar

    [38] Battisti A, Digman MA, Gratton E et al. Intracellular pH measurements made simple by fluorescent protein probes and the phasor approach to fluorescence lifetime imaging. Chem Commun 48, 5127–5129 (2012). doi: 10.1039/c2cc30373f

    CrossRef Google Scholar

    [39] Shim SH, Xia CL, Zhong GS et al. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc Natl Acad Sci USA 109, 13978–13983 (2012). doi: 10.1073/pnas.1201882109

    CrossRef Google Scholar

    [40] Vasquez RJ, Howell B, Yvon AM et al. Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro. Mol Biol Cell 8, 973–985 (1997). doi: 10.1091/mbc.8.6.973

    CrossRef Google Scholar

    [41] Zhang YD, Schroeder LK, Lessard MD et al. Nanoscale subcellular architecture revealed by multicolor three-dimensional salvaged fluorescence imaging. Nat Methods 17, 225–231 (2020). doi: 10.1038/s41592-019-0676-4

    CrossRef Google Scholar

  • Supplementary information for Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell longterm imaging of organelle interactome
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(484) PDF downloads(184) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint