Yang X, Zhang XF, Zhang TX et al. Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers. Opto-Electron Adv 7, 240036 (2024). doi: 10.29026/oea.2024.240036
Citation: Yang X, Zhang XF, Zhang TX et al. Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers. Opto-Electron Adv 7, 240036 (2024). doi: 10.29026/oea.2024.240036

Article Open Access

Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers

More Information
  • Thermal management of nanoscale quantum dots (QDs) in light-emitting devices is a long-lasting challenge. The existing heat transfer reinforcement solutions for QDs-polymer composite mainly rely on thermal-conductive fillers. However, this strategy failed to deliver the QDs’ heat generation across a long distance, and the accumulated heat still causes considerable temperature rise of QDs-polymer composite, which eventually menaces the performance and reliability of light-emitting devices. Inspired by the radially aligned fruit fibers in oranges, we proposed to eliminate this heat dissipation challenge by establishing long-range ordered heat transfer pathways within the QDs-polymer composite. Ultrahigh molecular weight polyethylene fibers (UPEF) were radially aligned throughout the polymer matrix, thus facilitating massive efficient heat dissipation of the QDs. Under a UPEF filling fraction of 24.46 vol%, the in-plane thermal conductivity of QDs-radially aligned UPEF composite (QDs-RAPE) could reach 10.45 W m−1 K−1, which is the highest value of QDs-polymer composite reported so far. As a proof of concept, the QDs’ working temperature can be reduced by 342.5 °C when illuminated by a highly concentrated laser diode (LD) under driving current of 1000 mA, thus improving their optical performance. This work may pave a new way for next generation high-power QDs lighting applications.
  • 加载中
  • [1] Maheshwaran A, Bae H, Park J et al. Low-temperature cross-linkable hole transport materials for solution-processed quantum dot and organic light-emitting diodes with high efficiency and color purity. ACS Appl Mater Interfaces 15, 45167–45176 (2023). doi: 10.1021/acsami.3c09106

    CrossRef Google Scholar

    [2] Zhang H Y, Wang B L, Niu Z J et al. Ultrasmall water-stable CsPbBr3 quantum dots with high intensity blue emission enabled by zeolite confinement engineering. Mater Horiz 10, 5079–5086 (2023). doi: 10.1039/D3MH01092A

    CrossRef Google Scholar

    [3] Almeida G, van der Poll L, Evers WH et al. Size-dependent optical properties of InP colloidal quantum dots. Nano Lett 23, 8697–8703 (2023). doi: 10.1021/acs.nanolett.3c02630

    CrossRef Google Scholar

    [4] Liao ZB, Mallem K, Prodanov MF et al. Ultralow roll-off quantum dot light-emitting diodes using engineered carrier injection layer. Adv Mater 35, 2303950 (2023). doi: 10.1002/adma.202303950

    CrossRef Google Scholar

    [5] Ding SS, Steele JA, Chen P et al. Ligand‐mediated homojunction structure for high‐efficiency FAPbI3 quantum dot solar cells. Adv Energy Mater 13, 2301817 (2023). doi: 10.1002/aenm.202301817

    CrossRef Google Scholar

    [6] Kong MQ, Osvet A, Barabash A et al. AgIn5S8/ZnS quantum dots for luminescent down-shifting and antireflective layer in enhancing photovoltaic performance. ACS Appl Mater Interfaces 115, 52746–52753 (2023).

    Google Scholar

    [7] Zhang LX, Mei LY, Wang KY et al. Advances in the application of perovskite materials. Nano-Micro Lett 15, 177 (2023). doi: 10.1007/s40820-023-01140-3

    CrossRef Google Scholar

    [8] Arya S, Jiang YR, Jung BK et al. Understanding colloidal quantum dot device characteristics with a physical model. Nano Lett 23, 9943–9952 (2023). doi: 10.1021/acs.nanolett.3c02899

    CrossRef Google Scholar

    [9] Đorđević N, Schwanninger R, Yarema M et al. Metasurface colloidal quantum dot photodetectors. ACS Photonics 9, 482–492 (2022). doi: 10.1021/acsphotonics.1c01204

    CrossRef Google Scholar

    [10] Tian YY, Luo HQ, Chen MY et al. Mercury chalcogenide colloidal quantum dots for infrared photodetection: from synthesis to device applications. Nanoscale 15, 6476–6504 (2023). doi: 10.1039/D2NR07309A

    CrossRef Google Scholar

    [11] Wang YP, Yang YS, Zhang DK et al. Phosphorescent-dye-sensitized quantum-dot light-emitting diodes with 37% external quantum efficiency. Adv Mater 35, 2306703 (2023). doi: 10.1002/adma.202306703

    CrossRef Google Scholar

    [12] Zhang DQ, Wei CT, Li XS et al. Highly solvent resistant small-molecule hole-transporting materials for efficient perovskite quantum dot light-emitting diodes. ACS Appl Mater Interfaces 15, 44043–44053 (2023). doi: 10.1021/acsami.3c08691

    CrossRef Google Scholar

    [13] Kakuda M, Morais N, Kwoen J et al. Enhanced temperature stability of threshold current of InAs/GaAs quantum dot lasers by AlGaAs lateral potential barrier layers. Opt Express 31, 31243–31252 (2023). doi: 10.1364/OE.498996

    CrossRef Google Scholar

    [14] Yang T, Chen YH, Wang YC et al. Green vertical-cavity surface-emitting lasers based on InGaN quantum dots and short cavity. Nano-Micro Lett 15, 223 (2023). doi: 10.1007/s40820-023-01189-0

    CrossRef Google Scholar

    [15] Jang HS, Yang H, Kim SW et al. White light-emitting diodes with excellent color rendering based on organically capped CdSe quantum dots and Sr3SiO5: Ce3+, Li+ phosphors. Adv Mater 20, 2696–2702 (2008). doi: 10.1002/adma.200702846

    CrossRef Google Scholar

    [16] Yoon C, Yang KP, Kim J et al. Fabrication of highly transparent and luminescent quantum dot/polymer nanocomposite for light emitting diode using amphiphilic polymer-modified quantum dots. Chem Eng J 382, 122792 (2020). doi: 10.1016/j.cej.2019.122792

    CrossRef Google Scholar

    [17] Chen KJ, Chen HC, Shih MH et al. The Influence of the thermal effect on CdSe/ZnS quantum dots in light-emitting diodes. J Lightwave Technol 30, 2256–2261 (2012). doi: 10.1109/JLT.2012.2195158

    CrossRef Google Scholar

    [18] Woo JY, Kim KN, Jeong S et al. Thermal behavior of a quantum dot nanocomposite as a color converting material and its application to white LED. Nanotechnology 21, 495704 (2010). doi: 10.1088/0957-4484/21/49/495704

    CrossRef Google Scholar

    [19] Zhao YM, Riemersma C, Pietra F et al. High-temperature luminescence quenching of colloidal quantum dots. ACS Nano 6, 9058–9067 (2012). doi: 10.1021/nn303217q

    CrossRef Google Scholar

    [20] Xie B, Liu HC, Hu R et al. Targeting cooling for quantum dots in white QDs-LEDs by hexagonal boron nitride platelets with electrostatic bonding. Adv Funct Mater 28, 1801407 (2018). doi: 10.1002/adfm.201801407

    CrossRef Google Scholar

    [21] Chang H, Zhong YC, Dong HX et al. Ultrastable low-cost colloidal quantum dot microlasers of operative temperature up to 450 K. Light Sci Appl 10, 60 (2021). doi: 10.1038/s41377-021-00508-7

    CrossRef Google Scholar

    [22] Moon H, Lee C, Lee W et al. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv Mater 31, 1804294 (2019). doi: 10.1002/adma.201804294

    CrossRef Google Scholar

    [23] Li ZT, Li JX, Li JS et al. Thermal impact of LED chips on quantum dots in remote-chip and on-chip packaging structures. IEEE Trans Electron Dev 66, 4817–4822 (2019). doi: 10.1109/TED.2019.2941911

    CrossRef Google Scholar

    [24] Zheng H, Lei X, Cheng T et al. Enhancing the thermal dissipation of a light-converting composite for quantum dot-based white light-emitting diodes through electrospinning nanofibers. Nanotechnology 28, 265204 (2017). doi: 10.1088/1361-6528/aa72d6

    CrossRef Google Scholar

    [25] Xu J, Hu BF, Xu C et al. A unique color converter geometry for laser-driven white lighting. Opt Mater 86, 286–290 (2018). doi: 10.1016/j.optmat.2018.10.012

    CrossRef Google Scholar

    [26] Zheng F, Yang BB, Cao PY et al. A novel bulk phosphor for white LDs: CsPbBr3/Cs4PbBr6 composite quantum dots-embedded borosilicate glass with high PLQY and excellent stability. J Alloys Compd 818, 153307 (2020). doi: 10.1016/j.jallcom.2019.153307

    CrossRef Google Scholar

    [27] Zhou SL, Ma YP, Zhang XF et al. White-light-emitting diodes from directional heat-conducting hexagonal boron nitride quantum dots. ACS Appl Nano Mater 3, 814–819 (2020). doi: 10.1021/acsanm.9b02321

    CrossRef Google Scholar

    [28] Yang X, Zhou SL, Xie B et al. Enhancing heat dissipation of quantum dots in high-power white LEDs by thermally conductive composites annular fins. IEEE Electron Device Lett 42, 1204–1207 (2021). doi: 10.1109/LED.2021.3088280

    CrossRef Google Scholar

    [29] Zhao WX, Xie B, Peng Y et al. Cooling photoluminescent phosphors in laser-excited white lighting with three-dimensional boron nitride networks. Opt Laser Technol 157, 108689 (2023). doi: 10.1016/j.optlastec.2022.108689

    CrossRef Google Scholar

    [30] Xie B, Wang YJ, Liu HC et al. Targeting cooling for quantum dots by 57.3°C with air-bubbles-assembled three-dimensional hexagonal boron nitride heat dissipation networks. Chem Eng J 427, 130958 (2022). doi: 10.1016/j.cej.2021.130958

    CrossRef Google Scholar

    [31] Xie YY, Yang DD, Zhang LL et al. Highly efficient and thermally stable QD-LEDs based on quantum dots-SiO2-BN nanoplate assemblies. ACS Appl Mater Interfaces 12, 1539–1548 (2020). doi: 10.1021/acsami.9b18500

    CrossRef Google Scholar

    [32] Zhang LL, Xie YY, Tian ZZ et al. Thermal conductive encapsulation enables stable high-power perovskite-converted light-emitting diodes. ACS Appl Mater Interfaces 13, 30076–30085 (2021). doi: 10.1021/acsami.1c07194

    CrossRef Google Scholar

    [33] Wang XW, Wu PY. 3D vertically aligned BNNs network with long-range continuous channels for achieving a highly thermally conductive composite. ACS Appl Mater Interfaces 11, 28943–28952 (2019). doi: 10.1021/acsami.9b09398

    CrossRef Google Scholar

    [34] Xu YF, Kraemer D, Song B et al. Nanostructured polymer films with metal-like thermal conductivity. Nat Commun 10, 1771 (2019). doi: 10.1038/s41467-019-09697-7

    CrossRef Google Scholar

    [35] Wang XJ, Kaviany M, Huang BL. Phonon coupling and transport in individual polyethylene chains: a comparison study with the bulk crystal. Nanoscale 9, 18022–18031 (2017). doi: 10.1039/C7NR06216H

    CrossRef Google Scholar

    [36] Xie B, Zhao WX, Luo XB et al. Alignment engineering in thermal materials. Mater Sci Eng R Rep 154, 100738 (2023). doi: 10.1016/j.mser.2023.100738

    CrossRef Google Scholar

    [37] Henry A, Chen G. Anomalous heat conduction in polyethylene chains: theory and molecular dynamics simulations. Phys Rev B 79, 144305 (2009). doi: 10.1103/PhysRevB.79.144305

    CrossRef Google Scholar

  • Supplementary information for Paving continuous heat dissipation pathways for quantum dots in polymer with orangeinspired radially aligned UHMWPE fibers
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(379) PDF downloads(125) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint