Chen Y, Zhang SM, Tian Y et al. Focus control of wide-angle metalens based on digitally encoded metasurface. Opto-Electron Adv 7, 240095 (2024). doi: 10.29026/oea.2024.240095
Citation: Chen Y, Zhang SM, Tian Y et al. Focus control of wide-angle metalens based on digitally encoded metasurface. Opto-Electron Adv 7, 240095 (2024). doi: 10.29026/oea.2024.240095

Article Open Access

Focus control of wide-angle metalens based on digitally encoded metasurface

More Information
  • Based on the principle of super-symmetric lens with quadratic phase gradient transformation, combined with the principle of digital coding of metasurface, we propose a wide-angle coded metalens for focusing control in two-dimensional space. This metalens achieves focus shift in the x-direction by changing the oblique incidence angle of the incident wave, and focus control in the y-direction by combining with the convolution principle of the digitally coded metasurface to achieve flexible control of light focusing in the two-dimensional plane. The metasurface unit is mainly composed of three-layer of metal structure and two layers of medium, and the transmission phase is obtained by changing the middle layer of metal structure, which in turn obtains the required phase distribution of the metalens. The design of the metalens realizes the function of the lens with a large viewing angle at the x-polarized incidence, and realizes two-dimensional focus control. Experimentally, we prepared the designed coding metalens and tested the focus control function of the wide-angle coding metalens. The experimental results are in good agreement with the design results.
  • 加载中
  • [1] Zahra S, Ma L, Wang WJ et al. Electromagnetic metasurfaces and reconfigurable metasurfaces: a review. Front Phys 8, 593411 (2021). doi: 10.3389/fphy.2020.593411

    CrossRef Google Scholar

    [2] Hu J, Bandyopadhyay S, Liu YH et al. A review on metasurface: from principle to smart metadevices. Front Phys 8, 586087 (2021). doi: 10.3389/fphy.2020.586087

    CrossRef Google Scholar

    [3] Liu BY, Ren B, Zhao JJ et al. Experimental realization of all-angle negative refraction in acoustic gradient metasurface. Appl Phys Lett 111, 221602 (2017). doi: 10.1063/1.5004005

    CrossRef Google Scholar

    [4] Panov AV. Possibility of negative refraction for visible light in disordered all-dielectric resonant high index metasurfaces. Optik 206, 163739 (2020). doi: 10.1016/j.ijleo.2019.163739

    CrossRef Google Scholar

    [5] Zhang Y, Yang L, Li XK et al. Dual functionality of a single-layer metasurface: polarization rotator and polarizer. J Opt 22, 035101 (2020). doi: 10.1088/2040-8986/ab68ee

    CrossRef Google Scholar

    [6] Pfeiffer C, Zhang C, Ray V et al. Polarization rotation with ultra-thin bianisotropic metasurfaces. Optica 3, 427–432 (2016). doi: 10.1364/OPTICA.3.000427

    CrossRef Google Scholar

    [7] Yue Z, Li JT, Li J, Zheng CL, Liu JY et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion. Opto-Electron Sci 1, 210014 (2022). doi: 10.29026/oes.2022.210014

    CrossRef Google Scholar

    [8] Shen C, Xie YB, Li JF et al. Asymmetric acoustic transmission through near-zero-index and gradient-index metasurfaces. Appl Phys Lett 108, 223502 (2016). doi: 10.1063/1.4953264

    CrossRef Google Scholar

    [9] Boubakri A, Choubeni F, Vuong TH et al. A near zero refractive index metalens to focus electromagnetic waves with phase compensation metasurface. Opt Mater 69, 432–436 (2017). doi: 10.1016/j.optmat.2017.05.001

    CrossRef Google Scholar

    [10] Badloe T, Kim I, Kim Y et al. Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths. Adv Sci 8, 2102646 (2021). doi: 10.1002/advs.202102646

    CrossRef Google Scholar

    [11] Zhang YQ, Zeng XY, Ma L et al. Manipulation for superposition of orbital angular momentum states in surface Plasmon polaritons. Adv Opt Mater 7, 1900372 (2019). doi: 10.1002/adom.201900372

    CrossRef Google Scholar

    [12] Yan C, Li X, Pu MB et al. Generation of polarization-sensitive modulated optical vortices with all-dielectric metasurfaces. ACS Photonics 6, 628–633 (2019). doi: 10.1021/acsphotonics.8b01119

    CrossRef Google Scholar

    [13] Zhu WG, Jiang MJ, Guan HY et al. Tunable spin splitting of Laguerre–Gaussian beams in graphene metamaterials. Photonics Res 5, 684–688 (2017). doi: 10.1364/PRJ.5.000684

    CrossRef Google Scholar

    [14] Zhang XH, Tang DL, Zhou L et al. A quasi-continuous all-dielectric metasurface for broadband and high-efficiency holographic images. J Phys D Appl Phys 53, 465105 (2020). doi: 10.1088/1361-6463/abaa70

    CrossRef Google Scholar

    [15] Song QH, Baroni A, Sawant R et al. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces. Nat Commun 11, 2651 (2020). doi: 10.1038/s41467-020-16437-9

    CrossRef Google Scholar

    [16] Wu Y, Tan SJ, Zhao Y et al. Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Prog Mater Sci 135, 101088 (2023). doi: 10.1016/j.pmatsci.2023.101088

    CrossRef Google Scholar

    [17] Azad AK, Kort-Kamp WJM, Sykora M et al. Metasurface broadband solar absorber. Sci Rep 6, 20347 (2016). doi: 10.1038/srep20347

    CrossRef Google Scholar

    [18] Li NX, Fu YH, Dong Y et al. Large-area pixelated metasurface beam deflector on a 12-inch glass wafer for random point generation. Nanophotonics 8, 1855–1861 (2019). doi: 10.1515/nanoph-2019-0208

    CrossRef Google Scholar

    [19] Tian Y, Jing XF, Gan HY et al. Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces. Front Phys 15, 62502 (2020). doi: 10.1007/s11467-020-1013-1

    CrossRef Google Scholar

    [20] Lv HR, Lu XQ, Han YS et al. Multifocal metalens with a controllable intensity ratio. Opt Lett 44, 2518–2521 (2019). doi: 10.1364/OL.44.002518

    CrossRef Google Scholar

    [21] Zhang CB, Xue TJ, Zhang J et al. Terahertz meta-biosensor based on high-Q electrical resonance enhanced by the interference of toroidal dipole. Biosens Bioelectron 214, 114493 (2022). doi: 10.1016/j.bios.2022.114493

    CrossRef Google Scholar

    [22] Zhang CB, Xue TJ, Zhang J et al. Terahertz toroidal metasurface biosensor for sensitive distinction of lung cancer cells. Nanophotonics 11, 101–109 (2022).

    Google Scholar

    [23] Zhang J, Mu N, Liu LH et al. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency. Biosens Bioelectron 185, 113241 (2021). doi: 10.1016/j.bios.2021.113241

    CrossRef Google Scholar

    [24] Guan HY, Hong JY, Wang XL et al. Broadband, high-sensitivity graphene photodetector based on ferroelectric polarization of lithium niobate. Adv Opt Mater 9, 2100245 (2021). doi: 10.1002/adom.202100245

    CrossRef Google Scholar

    [25] Li ZH, Liu HP, Zhang XM et al. Metasurface of deflection prism phases for generating non-diffracting optical vortex lattices. Opt Express 26, 28228–28237 (2018). doi: 10.1364/OE.26.028228

    CrossRef Google Scholar

    [26] Cheng Y, Cao WH, Wang GQ et al. 3D Dirac semimetal supported thermal tunable terahertz hybrid plasmonic waveguides. Opt Express 31, 17201–17214 (2023). doi: 10.1364/OE.487256

    CrossRef Google Scholar

    [27] Liu SL, Cao WH, Jiang SZ et al. 3D Dirac semimetal supported tunable multi-frequency terahertz metamaterial absorbers. Adv Quantum Technol 7, 2300386 (2024). doi: 10.1002/qute.202300386

    CrossRef Google Scholar

    [28] Lv HR, Lu XQ, Han YS et al. Metasurface cylindrical vector light generators based on nanometer holes. New J Phys 21, 123047 (2019). doi: 10.1088/1367-2630/ab5f44

    CrossRef Google Scholar

    [29] Wang H, Liu LX, Zhou CD et al. Vortex beam generation with variable topological charge based on a spiral slit. Nanophotonics 8, 317–324 (2019). doi: 10.1515/nanoph-2018-0214

    CrossRef Google Scholar

    [30] Jiang MJ, Zhu WG, Guan HY et al. Giant spin splitting induced by orbital angular momentum in an epsilon-near-zero metamaterial slab. Opt Lett 42, 3259–3262 (2017). doi: 10.1364/OL.42.003259

    CrossRef Google Scholar

    [31] Zhang RZ, Guo YH, Li XY et al. Angular superoscillatory metalens empowers single-shot measurement of OAM modes with finer intervals. Adv Opt Mater 12, 2300009 (2024). doi: 10.1002/adom.202300009

    CrossRef Google Scholar

    [32] Li XY, Chen C, Guo YH et al. Monolithic spiral metalens for ultrahigh-capacity and single-shot sorting of full angular momentum state. Adv Funct Mater 34, 2311286 (2024). doi: 10.1002/adfm.202311286

    CrossRef Google Scholar

    [33] Zhang S, Li CX, Ke L et al. All-dielectric terahertz wave metagrating lens based on 3D printing low refractive index material. Infrared Phys Technol 133, 104775 (2023). doi: 10.1016/j.infrared.2023.104775

    CrossRef Google Scholar

    [34] He XY, Lin FT, Liu F et al. 3D Dirac semimetals supported tunable terahertz BIC metamaterials. Nanophotonics 11, 4705–4714 (2022). doi: 10.1515/nanoph-2022-0285

    CrossRef Google Scholar

    [35] Lu XQ, Zeng XY, Lv HR et al. Polarization controllable plasmonic focusing based on nanometer holes. Nanotechnology 31 , 135201 (2020).

    Google Scholar

    [36] Li JT, Li J, Zheng CL et al. Free switch between bound states in the continuum (BIC) and quasi-BIC supported by graphene-metal terahertz metasurfaces. Carbon 182, 506–515 (2021). doi: 10.1016/j.carbon.2021.06.037

    CrossRef Google Scholar

    [37] Li JT, Li J, Zheng CL et al. Dynamic control of reflective chiral terahertz metasurface with a new application developing in full grayscale near field imaging. Carbon 172, 189–199 (2021). doi: 10.1016/j.carbon.2020.09.090

    CrossRef Google Scholar

    [38] Paniagua-Domínguez R, Yu YF, Khaidarov E et al. A metalens with a near-unity numerical aperture. Nano Lett 18, 2124–2132 (2018). doi: 10.1021/acs.nanolett.8b00368

    CrossRef Google Scholar

    [39] Wang SM, Wu PC, Su VC et al. Broadband achromatic optical metasurface devices. Nat Commun 8, 187 (2017). doi: 10.1038/s41467-017-00166-7

    CrossRef Google Scholar

    [40] Gao YF, Gu JQ, Jia RD et al. Polarization independent achromatic meta-lens designed for the terahertz domain. Front Phys 8, 606693 (2020). doi: 10.3389/fphy.2020.606693

    CrossRef Google Scholar

    [41] Pu MB, Li X, Guo YH et al. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt Express 25, 31471–31477 (2017). doi: 10.1364/OE.25.031471

    CrossRef Google Scholar

    [42] Guo YH, Ma XL, Pu MB et al. High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens. Adv Opt Mater 6, 1800592 (2018). doi: 10.1002/adom.201800592

    CrossRef Google Scholar

    [43] Zhang F, Pu MB, Li X et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv Mater 33, 2008157 (2021). doi: 10.1002/adma.202008157

    CrossRef Google Scholar

    [44] Guo YH, Zhang ZJ, Pu MB et al. Spoof plasmonic metasurfaces with catenary dispersion for two-dimensional wide-angle focusing and imaging. iScience 21, 145–156 (2019). doi: 10.1016/j.isci.2019.10.019

    CrossRef Google Scholar

    [45] Guo YH, Zhang SC, Pu MB et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 10, 63 (2021). doi: 10.1038/s41377-021-00497-7

    CrossRef Google Scholar

    [46] Zhang F, Guo YH, Pu MB et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun 14, 1946 (2023). doi: 10.1038/s41467-023-37510-z

    CrossRef Google Scholar

    [47] Liu S, Cui TJ, Zhang L et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams. Adv Sci 3, 1600156 (2016). doi: 10.1002/advs.201600156

    CrossRef Google Scholar

    [48] Yu NF, Genevet P, Kats MA et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [49] Wu RY, Shi CB, Liu S et al. Addition theorem for digital coding metamaterials. Adv Opt Mater 6, 1701236 (2018). doi: 10.1002/adom.201701236

    CrossRef Google Scholar

    [50] Ha YL, Luo Y, Pu MB et al. Physics-data-driven intelligent optimization for large-aperture metalenses. Opto-Electron Adv 6, 230133 (2023). doi: 10.29026/oea.2023.230133

    CrossRef Google Scholar

    [51] Kan YH, Bozhevolnyi SI, Kumar S. Large spontaneous emission enhancement with silver nanocube dimers on silver substrates. Adv Quantum Technol 6, 2300196 (2023). doi: 10.1002/qute.202300196

    CrossRef Google Scholar

    [52] Chen J, Wang DP, Si GY et al. Planar peristrophic multiplexing metasurfaces. Opto-Electron Adv 6, 220141 (2023). doi: 10.29026/oea.2023.220141

    CrossRef Google Scholar

    [53] Howard S, Esslinger J, Wang RHW et al. Hyperspectral compressive wavefront sensing. High Power Laser Sci Eng 11, e32 (2023). doi: 10.1017/hpl.2022.35

    CrossRef Google Scholar

    [54] Achouri K, Tiukuvaara V, Martin OJF. Spatial symmetries in nonlocal multipolar metasurfaces. Adv Photonics 5, 046001 (2023).

    Google Scholar

    [55] Liu ZY, Wang DY, Gao H et al. Metasurface-enabled augmented reality display: a review. Adv Photonics 5, 034001 (2023).

    Google Scholar

    [56] Cui DZ, Yi XX, Yang LP. Quantum imaging exploiting twisted photon pairs. Adv Quantum Technol 6, 2300037 (2023). doi: 10.1002/qute.202300037

    CrossRef Google Scholar

    [57] Wang GQ, Madonini F, Li BN et al. Fast wide-field quantum sensor based on solid-state spins integrated with a SPAD array. Adv Quantum Technol 6, 2300046 (2023). doi: 10.1002/qute.202300046

    CrossRef Google Scholar

    [58] Huang YJ, Xiao TX, Chen S et al. All-optical controlled-NOT logic gate achieving directional asymmetric transmission based on metasurface doublet. Opto-Electron Adv 6, 220073 (2023). doi: 10.29026/oea.2023.220073

    CrossRef Google Scholar

    [59] Du WY, Zhu MP, Shi J et al. Effect of subsurface impurity defects on laser damage resistance of beam splitter coatings. High Power Laser Sci Eng 11, e61 (2023). doi: 10.1017/hpl.2023.37

    CrossRef Google Scholar

    [60] Döpp A, Eberle C, Howard S et al. Data-driven science and machine learning methods in laser–plasma physics. High Power Laser Sci Eng 11, e55 (2023). doi: 10.1017/hpl.2023.47

    CrossRef Google Scholar

    [61] Khazanov E. Reducing laser beam fluence and intensity fluctuations in symmetric and asymmetric compressors. High Power Laser Sci Eng 11, e93 (2023). doi: 10.1017/hpl.2023.83

    CrossRef Google Scholar

    [62] Koshelev KL, Tonkaev P, Kivshar YS. Nonlinear chiral metaphotonics: a perspective. Adv Photonics 5, 064001 (2023).

    Google Scholar

    [63] Zhao BY, Mertz J. Resolution enhancement with deblurring by pixel reassignment. Adv Photonics 5, 066004 (2023).

    Google Scholar

    [64] Li Y, Huang XJ, Liu SX, Liang HW, Ling YY et al. Metasurfaces for near-eye display applications. Opto-Electron Sci 2, 230025 (2023). doi: 10.29026/oes.2023.230025

    CrossRef Google Scholar

    [65] Gao H, Fan XH, Wang YX et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron Sci 2, 220026 (2023). doi: 10.29026/oes.2023.220026

    CrossRef Google Scholar

    [66] Xiao YT, Chen LW, Pu MB et al. Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging. Opto-Electron Sci 2, 230037 (2023). doi: 10.29026/oes.2023.230037

    CrossRef Google Scholar

    [67] Bao B, Hua Y, Wang RD et al. Quantum-based magnetic field sensors for biosensing. Adv Quantum Technol 6, 2200146 (2023). doi: 10.1002/qute.202200146

    CrossRef Google Scholar

    [68] Geller MR. Fast quantum state discrimination with nonlinear positive trace-preserving channels. Adv Quantum Technol 6, 2200156 (2023). doi: 10.1002/qute.202200156

    CrossRef Google Scholar

    [69] Liang Y, Dong YY, Jin YX et al. Terahertz vortex beams generated by the ring-arranged multilayer transmissive metasurfaces. Infrared Phys Technol 127, 104441 (2022). doi: 10.1016/j.infrared.2022.104441

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(1)

Article Metrics

Article views(440) PDF downloads(166) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint