Rendeiro R, Jargus J, Nedoma J et al. The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications. Opto-Electron Adv 7, 240133 (2024). doi: 10.29026/oea.2024.240133
Citation: Rendeiro R, Jargus J, Nedoma J et al. The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications. Opto-Electron Adv 7, 240133 (2024). doi: 10.29026/oea.2024.240133

Review Open Access

The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications

More Information
  • A mixture of polydimethylsiloxane (PDMS) doped with phosphor particles can be found across diverse industries having different applications. This mixture plays a particularly important role in the field of lighting, white light-emitting diodes (LED's), flexible display devices, anti-counterfeiting (AC) solutions, luminescence thermometers and many types of sensors. The field of mechanoluminescence and biomedical are booming and there is also potential for visible light communication (VLC). In this comprehensive review, the basic characteristics of PDMS and a list of selected phosphors suitable for creating a mixture of PDMS and phosphor are presented. The summary and a detailed overview of the implemented applications of this perspective mixture over the last decade is presented as well.
  • 加载中
  • [1] Schneider F, Fellner T, Wilde J et al. Mechanical properties of silicones for mems. J Micromech Microeng 18, 065008 (2008). doi: 10.1088/0960-1317/18/6/065008

    CrossRef Google Scholar

    [2] Ariati R, Sales F, Souza A et al. Polydimethylsiloxane composites characterization and its applications: a review. Polymers 13, 4258 (2021). doi: 10.3390/polym13234258

    CrossRef Google Scholar

    [3] Carey JA, Collins III WD, Posselt JL. High stability optical encapsulation and packaging for light-emitting diodes in the green, blue, and near UV range, U. S. Patent 6204523B1, March 2001.

    Google Scholar

    [4] Li Y, Tao P, Siegel RW et al. Multifunctional silicone nanocomposites for advanced LED encapsulation. MRS Online Proc Libr 1547, 161–166 (2013). doi: 10.1557/opl.2013.566

    CrossRef Google Scholar

    [5] Miranda I, Souza A, Sousa P et al. Properties and applications of PDMS for biomedical engineering: a review. J Funct Biomater 13, 2 (2022).

    Google Scholar

    [6] Yang LY, Li YP, Fang F, Li LY, Yan ZJ et al. Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography. Opto-Electron Adv 5, 200076 (2022). doi: 10.29026/oea.2022.200076

    CrossRef Google Scholar

    [7] Ko KY, Her EJ, Nichols WT et al. Fabrication of 2D photonic crystal assisted Y2O3: Eu3+ thin-film phosphors by direct nano-imprinting. Microelectron Eng 88, 2930–2933 (2011). doi: 10.1016/j.mee.2011.03.162

    CrossRef Google Scholar

    [8] Zhang B, Wang JW, Hao LY et al. Highly stable red-emitting Sr2Si5N8: Eu2+ phosphor with a hydrophobic surface. J Am Ceram Soc 100, 257–264 (2017). doi: 10.1111/jace.14560

    CrossRef Google Scholar

    [9] Zhang B, Zhang JW, Zhong H et al. Enhancement of the stability of green-emitting Ba2SiO4: Eu2+ phosphor by hydrophobic modification. Mater Res Bull 92, 46–51 (2017). doi: 10.1016/j.materresbull.2017.03.057

    CrossRef Google Scholar

    [10] Yang MT, Cheng S, Yang F et al. Aqueous synthesis of stable Zn alloyed manganese halides for efficient backlit display. J Lumin 253, 119470 (2023). doi: 10.1016/j.jlumin.2022.119470

    CrossRef Google Scholar

    [11] Cai JH, Chen XG, Zhang WY et al. Two-step performance optimization of CsPbBr3 perovskite nanocrystals for wide color gamut displays. Photonics 10, 1113 (2023). doi: 10.3390/photonics10101113

    CrossRef Google Scholar

    [12] Tian M, Wang J, Wang L et al. Blue-emitting orthosilicate phosphor Ba2SiO4: Eu2+ for near ultraviolet excited white light-emitting diodes with high color rendering index. J Alloys Compd 895, 162420 (2022).

    Google Scholar

    [13] Li X, Gao P, Wang J et al. Facile synthesis and luminescence properties of Sr3Al2O6Cl2: Eu2+ for security and display applications. J Mater Sci Mater Electron 33, 7708–7715 (2022). doi: 10.1007/s10854-022-07922-6

    CrossRef Google Scholar

    [14] Yuce H, Guner T, Balci S et al. Phosphor-based white LED by various glassy particles: control over luminous efficiency. Opt Lett 44, 479–482 (2019). doi: 10.1364/OL.44.000479

    CrossRef Google Scholar

    [15] Patnam H, Hussain SK, Yu JS. Luminescence properties of Tb3+/Eu3+ ions activated LiLaSiO4 phosphors for solid-state lighting and flexible display applications. J Lumin 263, 120063 (2023). doi: 10.1016/j.jlumin.2023.120063

    CrossRef Google Scholar

    [16] Perikala M, Bhardwaj A. Excellent color rendering index single system white light emitting carbon dots for next generation lighting devices. Sci Rep 11, 11594 (2021). doi: 10.1038/s41598-021-91074-w

    CrossRef Google Scholar

    [17] Wathook B, Hassan DA, Pang S et al. Phase transformation and photoluminescence properties of MgTiO3: Mn4+ synthesis by modified sol–gel method. Chem Afr 7, 1639–1648 (2024). doi: 10.1007/s42250-023-00845-7

    CrossRef Google Scholar

    [18] Jung JJ, Park JJ, Yang HK. White light-emitting calcium tungstate microspheres synthesized via co-precipitation at room temperature and application to UV-LED chip. J Alloys Compd 969, 172353 (2023). doi: 10.1016/j.jallcom.2023.172353

    CrossRef Google Scholar

    [19] Liu HZ, Zhu XY, Nie L et al. Multimode-responsive luminescence of Er3+ single-activated CaF2 phosphor for advanced information encryption. Inorg Chem 62, 16485–16492 (2023). doi: 10.1021/acs.inorgchem.3c02215

    CrossRef Google Scholar

    [20] Jiang XP, Guo Y, Wang LX et al. Self-reduction induced CaAl12O19: Eu2+/3+: a phosphor with dynamic photoluminescence and photochromism for advanced anti-counterfeiting and encryption. Ceram Int 49, 28729–28740 (2023). doi: 10.1016/j.ceramint.2023.06.132

    CrossRef Google Scholar

    [21] Gao P, Wang JG, Wu J et al. Preparation of SrAl2O4: Eu2+, Dy3+ powder by combustion method and application in anticounterfeiting. Coatings 13, 808 (2023). doi: 10.3390/coatings13040808

    CrossRef Google Scholar

    [22] Hua Y, Yu JS. An anti-counterfeiting strategy of polydimethylsiloxane flexible light-emitting films based on non-rare-earth Mn4+-activated Ba2LaTaO6 phosphors. Mater Today Chem 26, 101109 (2022). doi: 10.1016/j.mtchem.2022.101109

    CrossRef Google Scholar

    [23] Xue Y, Chen YQ, Mao QN et al. Energy transfer in Bi3+-Sm3+ co-doped phosphors for temperature sensing and imaging. Mater Des 234, 112375 (2023). doi: 10.1016/j.matdes.2023.112375

    CrossRef Google Scholar

    [24] Chen YQ, Xue Y, Mao QN et al. Tunable luminescence in Eu3+/Sm3+ single-doped LuNbO4 for optical thermometry and anti-counterfeiting. J Mater Chem C 11, 9974–9983 (2023). doi: 10.1039/D3TC01780J

    CrossRef Google Scholar

    [25] Shi XY, Xue Y, Mao QN et al. Eu3+ single-doped phosphor with antithermal quenching behavior and multicolor-tunable properties for luminescence thermometry. Inorg Chem 62, 893–903 (2023). doi: 10.1021/acs.inorgchem.2c03699

    CrossRef Google Scholar

    [26] Parajuli P, Allison SW, Sabri F. Spincoat-fabricated multilayer PDMS-phosphor composites for thermometry. Meas Sci Technol 28, 065101 (2017). doi: 10.1088/1361-6501/aa63be

    CrossRef Google Scholar

    [27] Li N, Sun JL, Chang SL et al. Ultra-wide range tri-mode flexible pressure sensor. J Phys D Appl Phys 56, 345102 (2023). doi: 10.1088/1361-6463/acd4cd

    CrossRef Google Scholar

    [28] Song H, Zhang ZY, Zhang YJ et al. Occlusal splint with mechanoluminescence properties based on BaSi2O2N2: Eu2+ cyan phosphor prepared by deposition-precipitation method. J Lumin 260, 119876 (2023). doi: 10.1016/j.jlumin.2023.119876

    CrossRef Google Scholar

    [29] Chen HM, Wang L, Zhang P et al. Investigation on photoluminescence and mechanoluminescence of single Tb3+-doped intense green phosphor. Acta Chim Sin 81, 771–776 (2023). doi: 10.6023/A23050209

    CrossRef Google Scholar

    [30] Wathook BA, Hassan DA, Pang S et al. Design of phase transition and improved photoluminescence properties in SrTiO3: Mn4+ using a sol–gel combustion method. J Mater Sci Mater Electron 34, 15673–15684 (2023).

    Google Scholar

    [31] Guan XL, Li HJ, Yu ZY et al. High-performance La0.75K0.25MnO3: xAg2O composites based on electron-lattice and electron-magnetic coupling mechanism. J Alloys Compd 895, 162555 (2022). doi: 10.1016/j.jallcom.2021.162555

    CrossRef Google Scholar

    [32] Zhao XQ, Sun XH, Guo RS et al. Bifunctional tin modified SnO2 nanospheres embedded biomass-derived carbon network for polysulfides adsorption-conversion in lithium-sulfur batteries. J Alloys Compd 895, 162578 (2022). doi: 10.1016/j.jallcom.2021.162578

    CrossRef Google Scholar

    [33] Mitchell KE, Aryal M, Allison S et al. Remote optical detection of geometrical defects in aerogels and elastomers using phosphor thermometry. Opt Mater 119, 111378 (2021). doi: 10.1016/j.optmat.2021.111378

    CrossRef Google Scholar

    [34] Burke CS, Markey A, Nooney RI et al. Development of an optical sensor probe for the detection of dissolved carbon dioxide. Sens Actuators B Chem 119, 288–294 (2006). doi: 10.1016/j.snb.2005.12.022

    CrossRef Google Scholar

    [35] Liao J, Sun JL, Dong FY et al. Self-powered, flexible, and instantly dynamic multi-color electroluminescence device with bi-emissive layers for optical communication. Nano Energy 112, 108488 (2023). doi: 10.1016/j.nanoen.2023.108488

    CrossRef Google Scholar

    [36] Jargus J, Tomis M, Baros J et al. Measurement of the effect of luminescent layer parameters on light and communication properties. IEEE Trans Instrum Meas 72, 5500316 (2022).

    Google Scholar

    [37] Jargus J, Vitasek J, Nedoma J et al. Effect of selected luminescent layers on CCT, CRI, and response times. Materials 12, 2095 (2019). doi: 10.3390/ma12132095

    CrossRef Google Scholar

    [38] Krushna BRR, Sharma SC, Prasad BD et al. Fabrication of highly flexible luminescent films, hydro gels and anti-counterfeiting applications of La2MoO6: Sm3+ phosphors. J Sci Adv Mater Devices 9, 100641 (2024). doi: 10.1016/j.jsamd.2023.100641

    CrossRef Google Scholar

    [39] Mamatha GR, Radha Krushna BR, Malleshappa J et al. Investigating the influence of mono-, di-, and trivalent co-dopants (Li+, Na+, K+, Ca2+, Bi3+) on the photoluminescent properties and their prospective role in data security applications for SrAl2O4: Tb3+ nanophosphors synthesized via an eco-friendly combustion method. Mater Sci Eng B 299, 117008 (2024). doi: 10.1016/j.mseb.2023.117008

    CrossRef Google Scholar

    [40] Girisha HR, Daruka Prasad B, Radha Krushna BR et al. Versatile properties of BaGd2ZnO5: Ho3+ nanomaterial: compatible towards solid state lightening, anti-counterfeiting and biomedical applications. Inorg Chem Commun 159, 111711 (2024). doi: 10.1016/j.inoche.2023.111711

    CrossRef Google Scholar

    [41] Chen LC, Lin W W, Chen JW. Fabrication of GaN-based white light-emitting diodes on yttrium aluminum garnet-polydimethylsiloxane flexible substrates. Adv Mater Sci Eng 2015, 537163 (2015).

    Google Scholar

    [42] Havlák L, Bárta J, Buryi M et al. Eu2+ stabilization in YAG structure: optical and electron paramagnetic resonance study. J Phys Chem C 120, 21751–21761 (2016). doi: 10.1021/acs.jpcc.6b06397

    CrossRef Google Scholar

    [43] Ţucureanu V, Matei A, Avram A. The effect of the polymeric matrix on the emission properties of YAG-based phosphors. J Alloys Compd 844, 156136 (2020). doi: 10.1016/j.jallcom.2020.156136

    CrossRef Google Scholar

    [44] Li JY, Zhang ZW, Luo XX et al. Triboelectric leakage-field-induced electroluminescence based on ZnS: Cu. ACS Appl Mater Interfaces 14, 4775–4782 (2022). doi: 10.1021/acsami.1c23155

    CrossRef Google Scholar

    [45] Fontenot RS, Allison SW, Lynch KJ et al. Mechanical, spectral, and luminescence properties of ZnS: Mn DOPED PDMS. J Lumin 170, 194–199 (2016). doi: 10.1016/j.jlumin.2015.10.047

    CrossRef Google Scholar

    [46] Ma L, Amador E, Belev GS et al. Tuning Ag+ and Mn2+ doping in ZnS: Ag, Mn embedded polymers for flexible white light emitting films. Soft Sci 4, 1 (2024).

    Google Scholar

    [47] Girisha HR, Radha Krushna BR, Manjunatha K et al. Optimized Tb3+-activated highly efficient green-emanating BaLa2ZnO5 nanophosphors in PDMS matrix for flexible display, anti-counterfeiting, and dermatoglyphics applications. Mater Today Sustain 24, 100493 (2023). doi: 10.1016/j.mtsust.2023.100493

    CrossRef Google Scholar

    [48] Ayoub I, Kumar V. Synthesis, photoluminescence, Judd–Ofelt analysis, and thermal stability studies of Dy3+-doped BaLa2ZnO5 phosphors for solid-state lighting applications. RSC Adv 13, 13423–13437 (2023). doi: 10.1039/D3RA02659K

    CrossRef Google Scholar

    [49] Ayoub I, Mushtaq U, Yagoub MYA et al. Structural, optical and photoluminescence properties of BaLa2ZnO5: Eu3+ phosphor: a prospective red-emitting phosphor for led applications. Opt Mater 148, 114797 (2024). doi: 10.1016/j.optmat.2023.114797

    CrossRef Google Scholar

    [50] Yen WM, Shionoya S, Yamamoto H. Phosphor Handbook 2nd ed (CRC Press, Boca Raton, 2007).

    Google Scholar

    [51] Wako AH, Dejene FB, Swart HC. Effect of Ga3+ and Gd3+ ions substitution on the structural and optical properties of Ce3+ -doped yttrium aluminium garnet phosphor nanopowders. Luminescence 31, 1313–1320 (2016). doi: 10.1002/bio.3108

    CrossRef Google Scholar

    [52] Pan YX, Wang W, Liu GX et al. Correlation between structure variation and luminescence red shift in YAG: Ce. J Alloys Compd 488, 638–642 (2009). doi: 10.1016/j.jallcom.2009.04.082

    CrossRef Google Scholar

    [53] DOW. SYLGARD™184 Silicone Elastomer Technical Data Sheet. Form No. 11-3184-01-0224 S2D, Accessed: 2024-07-25.

    Google Scholar

    [54] Jia J, Zhang AQ, Li DX et al. Preparation and properties of the flexible remote phosphor film for blue chip-based white LED. Mater Des 102, 8–13 (2016). doi: 10.1016/j.matdes.2016.04.022

    CrossRef Google Scholar

    [55] Yazdan Mehr M, Bahrami A, Van Driel WD et al. Degradation of optical materials in solid-state lighting systems. Int Mater Rev 65, 102–128 (2020). doi: 10.1080/09506608.2019.1565716

    CrossRef Google Scholar

    [56] Ray S, Tadge P, Dutta S et al. Synthesis, luminescence and application of BaKYSi2O7: Eu2+: a new blue-emitting phosphor for near-UV white-light LED. Ceram Int 44, 8334–8343 (2018). doi: 10.1016/j.ceramint.2018.02.022

    CrossRef Google Scholar

    [57] Zhang CN, Uchikoshi T, Takeda T et al. Research progress on surface modifications for phosphors used in light-emitting diodes (LEDs). Phys Chem Chem Phys 25, 24214–24233 (2023). doi: 10.1039/D3CP01658G

    CrossRef Google Scholar

    [58] Keppens A, Acuña P, Chen HT et al. Efficiency evaluation of phosphor-white high-power light-emitting diodes. J Light Visual Environ 35, 199–206 (2011). doi: 10.2150/jlve.35.199

    CrossRef Google Scholar

    [59] Nair GB, Swart HC, Dhoble SJ. A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): Phosphor synthesis, device fabrication and characterization. Prog Mater Sci 109, 100622 (2020). doi: 10.1016/j.pmatsci.2019.100622

    CrossRef Google Scholar

    [60] Wu YF, Ma JS, Su P et al. Full-color realization of micro-LED displays. Nanomaterials (Basel) 10, 2482 (2020). doi: 10.3390/nano10122482

    CrossRef Google Scholar

    [61] Lu XL, Cheng DM, Dong FY et al. Tailoring the emission of Eu based hybrid materials for light-emitting diodes application. J Lumin 200, 274–279 (2018). doi: 10.1016/j.jlumin.2018.03.080

    CrossRef Google Scholar

    [62] Xu ZH, Xia ZG, Liu QL. Two-step synthesis and surface modification of CaZnOS: Mn2+ phosphors and the fabrication of a luminescent poly(dimethylsiloxane) film. Inorg Chem 57, 1670–1675 (2018). doi: 10.1021/acs.inorgchem.7b03060

    CrossRef Google Scholar

    [63] Jia J, Jia HS, Zhang AQ et al. Highly elastic and flexible phosphor film for flexible LED lighting and display applications. Chin J Lumin 38, 1493–1502 (2017). doi: 10.3788/fgxb20173811.1493

    CrossRef Google Scholar

    [64] Novák M, Fajkus M, Jargus J et al. Analyzing of chromaticity temperature of novel bulb composed of PDMS and phosphor. Proc SPIE 10440, 104400D (2017).

    Google Scholar

    [65] Lin HY, Tu ZY, Ku PC et al. Large area lighting applications with organic dye embedded flexible film. Proc SPIE 9383, 93830N (2015).

    Google Scholar

    [66] Chawla S, Roy T, Majumder K et al. Red enhanced YAG: Ce, Pr nanophosphor for white LEDs. J Expl Nanosci 9, 776–784 (2014). doi: 10.1080/17458080.2012.714481

    CrossRef Google Scholar

    [67] Choudhury AKR. 1 - Characteristics of light sources. In Choudhury AKR. Principles of Colour and Appearance Measurement 1–52 (Elsevier, Amsterdam, 2014).

    Google Scholar

    [68] Jang JW, Kim EY, Kwon OH et al. Polymer-encapsulated UV-curable stacked prismatic layers of all-halide phosphor composites for white luminescence. Mater Des 224, 111307 (2022). doi: 10.1016/j.matdes.2022.111307

    CrossRef Google Scholar

    [69] Hua YB, Xue JP, Yu JS. Design of a novel WLED structure based on the non-rare-earth Ca2Y(Nb, Sb)O6: Mn4+ materials. Ceram Int 47, 24296–24305 (2021). doi: 10.1016/j.ceramint.2021.05.141

    CrossRef Google Scholar

    [70] Hua YB, Ran WG, Yu JS. Advantageous occupation of europium(III) in the B site of double-perovskite Ca2BB’O6 (B = Y, Gd, La; B’ = Sb, Nb) frameworks for white-light-emitting diodes. ACS Sustain Chem Eng 9, 7960–7972 (2021). doi: 10.1021/acssuschemeng.1c02216

    CrossRef Google Scholar

    [71] Wang YM, Guo SS, Yan XL et al. Flexible, ultra-stable and color tunable fluorescent films based on all inorganic perovskite quantum dots embedded in polymer. Nanotechnology 31, 345706 (2020). doi: 10.1088/1361-6528/ab92c9

    CrossRef Google Scholar

    [72] Yuce H, Guner T, Dartar S et al. BODIPY-based organic color conversion layers for WLEDs. Dyes Pigm 173, 107932 (2020). doi: 10.1016/j.dyepig.2019.107932

    CrossRef Google Scholar

    [73] Wang WC, Wang HY, Chen TY et al. CdSe/ZnS core-shell quantum dot assisted color conversion of violet laser diode for white lighting communication. Nanophotonics 8, 2189–2201 (2019). doi: 10.1515/nanoph-2019-0205

    CrossRef Google Scholar

    [74] Hussain SK, Go HS, Han JJ et al. Energy transfer mechanism and tunable emissions from K3La(VO4)2: Dy3+/Eu3+ phosphors and soft-PDMS-based composite films for multifunctional applications. J Alloys Compd 805, 1271–1281 (2019). doi: 10.1016/j.jallcom.2019.07.116

    CrossRef Google Scholar

    [75] Chen CC, Lin HY, Li CH et al. Enabling lambertian-like warm white organic light-emitting diodes with a yellow phosphor embedded flexible film. Int J Photoenergy 2014, 851371 (2014).

    Google Scholar

    [76] Sher CW, Chen KJ, Lin CC et al. Large-area, uniform white light LED source on a flexible substrate. Opt Express 23, A1167–A1178 (2015). doi: 10.1364/OE.23.0A1167

    CrossRef Google Scholar

    [77] Jung JY. White luminescent calcium molybdate phosphor synthesized at room temperature via the co-precipitation method used in a LED flexible composite. Opt Mater 132, 112830 (2022). doi: 10.1016/j.optmat.2022.112830

    CrossRef Google Scholar

    [78] Guner T, Kus A, Ozcan M et al. Green fabrication of lanthanide-doped hydroxide-based phosphors: Y(OH)3: Eu3+ nanoparticles for white light generation. Beilstein J Nanotechnol 10, 1200–1210 (2019). doi: 10.3762/bjnano.10.119

    CrossRef Google Scholar

    [79] Jung JY. Luminescent color-adjustable europium and terbium co-doped strontium molybdate phosphors synthesized at room temperature applied to flexible composite for LED filter. Crystals 12, 552 (2022). doi: 10.3390/cryst12040552

    CrossRef Google Scholar

    [80] Wang ZY, Chen J, Liu YG et al. Enhanced photoluminescence and energy transfer behavior in Ba3Lu4O9: Bi3+, Eu3+ for flexible lighting applications. Spectrochim Acta A Mol Biomol Spectrosc y 258, 119829 (2021). doi: 10.1016/j.saa.2021.119829

    CrossRef Google Scholar

    [81] Su ZP, Zhao B, Gong Z et al. Color-tunable white LEDs with single chip realized through phosphor pattern and thermal-modulating optical film. Micromachines 12, 421 (2021). doi: 10.3390/mi12040421

    CrossRef Google Scholar

    [82] Sreevalsa S, Ranjith P, Ahmad S et al. Host sensitized photoluminescence in Sr2.9–3 x/2Ln xAlO4F: 0.1Eu3+ (Ln = Gd, Y) for innovative flexible lighting applications. Ceram Int 46, 21448–21460 (2020). doi: 10.1016/j.ceramint.2020.05.243

    CrossRef Google Scholar

    [83] Wu ZH, Wang P, Wu J et al. Ultra-stable phosphor of h-BN white graphene-loaded all-inorganic perovskite nanocrystals for white LEDs. J Lumin 219, 116941 (2020). doi: 10.1016/j.jlumin.2019.116941

    CrossRef Google Scholar

    [84] Li ZT, Tang XT, Li M et al. Micro-dimple/pillar array molded by a track-etching mold for improving the optical performance of quantum dot film. In 2019 20th International Conference on Electronic Packaging Technology (ICEPT) 1–4 (IEEE, 2019); http://doi.org/10.1109/ICEPT47577.2019.245161.

    Google Scholar

    [85] Jargus J, Nedoma J, Fajkus M et al. The influence of the variable excitation wavelength on the spectral characteristics of the light generated by the luminescent layer consisting of YAG: Ce phosphor and PDMS. Int J Mech Eng Rob Res 8, 361–367 (2019).

    Google Scholar

    [86] Vitasek J, Jargus J, Stratil T et al. Illumination and communication characteristics of white light created by laser excitation of YAG: Ce phosphor powders. Opt Mater 83, 131–137 (2018). doi: 10.1016/j.optmat.2018.05.084

    CrossRef Google Scholar

    [87] Güner T, Şentürk U, Demir MM. Optical enhancement of phosphor-converted wLEDs using glass beads. Opt Mater 72, 769–774 (2017). doi: 10.1016/j.optmat.2017.07.033

    CrossRef Google Scholar

    [88] Güner T, Köseoğlu D, Demir M. Multilayer design of hybrid phosphor film for application in LEDs. Opt Mater 60, 422–430 (2016). doi: 10.1016/j.optmat.2016.08.023

    CrossRef Google Scholar

    [89] Lin HY, Wang SW, Lin CC et al. Effective optimization and analysis of white LED properties by using nano-honeycomb patterned phosphor film. Opt Express 24, 19032–19047 (2016). doi: 10.1364/OE.24.019032

    CrossRef Google Scholar

    [90] Lin HY, Ye ZT, Lin CC et al. Improvement of light quality by ZrO2 film of chip on glass structure white LED. Opt Express 24, A341–A352 (2016). doi: 10.1364/OE.24.00A341

    CrossRef Google Scholar

    [91] Wang WX, Yang PP, Cheng ZY et al. Patterning of red, green, and blue luminescent films based on CaWO4: Eu3+, CaWO4: Tb3+, and CaWO4 phosphors via microcontact printing route. ACS Appl Mater Interfaces 3, 3921–3928 (2011). doi: 10.1021/am2008008

    CrossRef Google Scholar

    [92] Chandana MR, Krushna BRR, Malleshappa J et al. Simple fabrication of novel Sm3+ doped BaGd2ZnO5 nanophosphors for flexible displays, improved data security applications, and solid-state lighting applications. Mater Today Sustain 22, 100397 (2023).

    Google Scholar

    [93] Ru JJ, Zeng F, Zhao B et al. Development of red phosphor Li8CaLa2Ta2O13: Eu3+ for WLEDs and anti-counterfeiting applications. ChemPhysMater 3, 194–203 (2024). doi: 10.1016/j.chphma.2023.11.002

    CrossRef Google Scholar

    [94] Hua Y, Kim YY, Lee SH et al. Enhanced self-host blue emission of CaSrSb2O7 materials via Bi3+ ion doping for high CRI WLEDs, security inks and flexible displays. Mater Today Chem 22, 100594 (2021). doi: 10.1016/j.mtchem.2021.100594

    CrossRef Google Scholar

    [95] Hua YB, Yu JS. Dual-functional platforms toward field emission displays and novel anti-counterfeiting strategy based on rare-earth activated materials. Ceram Int 47, 18003–18011 (2021). doi: 10.1016/j.ceramint.2021.03.115

    CrossRef Google Scholar

    [96] Lu ZH, Luo LH, Du P et al. Ferroelectric domains and luminescent properties of Pr3+ -doped Ca2Nb2O7 ceramics. J Am Ceram Soc 103, 3748–3756 (2020). doi: 10.1111/jace.17069

    CrossRef Google Scholar

    [97] Lu ZH, Tang J, Du P et al. Multilevel luminescence of Er3+/Pr3+ co-doped Ca2Nb2O7 ceramics and composite films for optical anti-counterfeiting. Ceram Int 47, 8248–8255 (2021). doi: 10.1016/j.ceramint.2020.11.184

    CrossRef Google Scholar

    [98] Sabri F, Allison SW, Aryal M et al. Thermal and optical characterization of up-converting thermographic phosphor polymer composite films. MRS Adv 3, 3489–3494 (2018). doi: 10.1557/adv.2018.486

    CrossRef Google Scholar

    [99] Yi SS, Jung JY. Up-conversion luminescence properties with temperature change of strontium tungstate phosphors. RSC Adv 12, 24752–24759 (2022). doi: 10.1039/D2RA04705E

    CrossRef Google Scholar

    [100] Markose KK, Anjana R, Jayaraj MK. Upconversion nanophosphors: an overview. In Jayaraj MK. Nanostructured Metal Oxides and Devices: Optical and Electrical Properties 47–102 (Springer, Singapore, 2020).

    Google Scholar

    [101] Sukul PP, Swart HC. Synergistic red dominancy over green upconversion studies in PbZrTiO3: Er3+/Yb3+ phosphor synthesized via two different modified technique and flexible thin-film thermometer demonstration on C1: PbZrTiO3 @PDMS substrates. J Alloys Compd 966, 171656 (2023). doi: 10.1016/j.jallcom.2023.171656

    CrossRef Google Scholar

    [102] Li TS, Li X, Chi ZT et al. Stretchable phosphor/boron nitride nanosheet/polydimethylsiloxane films for thermal management and rapid monitoring. ACS Appl Polym Mater 4, 1431–1439 (2022). doi: 10.1021/acsapm.1c01793

    CrossRef Google Scholar

    [103] Sabri F, Lynch K, Wilson R et al. Sensing with phosphor-doped PDMS. In IET & ISA 60th International Instrumentation Symposium 2014 1–6 (IET, 2014); http://doi.org/10.1049/cp.2014.0539.

    Google Scholar

    [104] Allison SW, Sabri F, Parajuli P. Exploration of thin polymer films for phosphor thermometry. In Proceedings of the International Instrumentation Symposium 30–38 (2016).

    Google Scholar

    [105] Zhou XQ, Ning LX, Qiao JW et al. Interplay of defect levels and rare earth emission centers in multimode luminescent phosphors. Nat Commun 13, 7589 (2022). doi: 10.1038/s41467-022-35366-3

    CrossRef Google Scholar

    [106] Sohn KS, Timilsina S, Singh SP et al. Mechanically driven luminescence in a ZnS: Cu-PDMS composite. APL Mater 4, 106102 (2016). doi: 10.1063/1.4964139

    CrossRef Google Scholar

    [107] Wang J, Yao KW, Cui KT et al. Contact electrification induced multicolor self-recoverable mechanoluminescent elastomer for wearable smart light-emitting devices. Adv Opt Mater 11, 2203112 (2023). doi: 10.1002/adom.202203112

    CrossRef Google Scholar

    [108] Wu JW, Xu R, Shao MF et al. Phosphorus-based nanomaterials for biomedical applications: a review. ACS Appl Nano Mater 7, 11022–11036 (2024). doi: 10.1021/acsanm.4c00015

    CrossRef Google Scholar

    [109] Fang MJ, Huang SH, Li D et al. Stretchable and self-healable organometal halide perovskite nanocrystal-embedded polymer gels with enhanced luminescence stability. Nanophotonics 7, 1949–1958 (2018). doi: 10.1515/nanoph-2018-0126

    CrossRef Google Scholar

    [110] Zhang ZY, Zong MR, Liu JR et al. Biosafety evaluation of BaSi2O2N2: Eu2+/PDMS composite elastomers. Front Bioeng Biotechnol 11, 1226065 (2023). doi: 10.3389/fbioe.2023.1226065

    CrossRef Google Scholar

    [111] Shin H, Yoon GW, Choi W et al. Miniaturized multicolor fluorescence imaging system integrated with a PDMS light-guide plate for biomedical investigation. npj Flex Electron 7, 7 (2023). doi: 10.1038/s41528-023-00243-6

    CrossRef Google Scholar

    [112] Mollazadeh-Bajestani M, Bahmanpour A, Ghaffari M et al. Reviewing the bio-applications of SrAl2O4: Eu2+, Dy3+ phosphor. J Biol Med 7, 44–52 (2023). doi: 10.17352/jbm.000040

    CrossRef Google Scholar

    [113] Sharma P, Bhagatji A, Tyagi S et al. Harvesting light from ZnS: Mn: Eu/PVDF mechano-luminescent composite under mechanical impact for energy conversion application. Sens Actuators A Phys 353, 114197 (2023). doi: 10.1016/j.sna.2023.114197

    CrossRef Google Scholar

    [114] Gu Y, Lin PC, Zhang JK et al. Preparation and afterglow mechanoluminescent property of ZrO2: Ti4+/PDMS composite elastic material. J Chin Ceram Soc 50, 3134 (2022).

    Google Scholar

    [115] Wang WX, Wang ZB, Zhang JC et al. Contact electrification induced mechanoluminescence. Nano Energy 94, 106920 (2022). doi: 10.1016/j.nanoen.2022.106920

    CrossRef Google Scholar

    [116] Hua Y, Lee SH, Kim YY et al. Luminescent behavior of Eu2+-doped Ca2YSrAlSiO phosphor materials for −y27 light-emitting diodes and security inks applications. J Alloys Compd 891, 161060 (2022).

    Google Scholar

    [117] Hua Y, Yu JS. Recent progress in luminescent nanomaterials for next-generation displays and lighting applications. Nanoscale 14, 6249–6276 (2022).

    Google Scholar

    [118] Kim MS, Timilsina S, Jang SM et al. A mechanoluminescent ZnS: Cu/PDMS and biocompatible piezoelectric silk fibroin/PDMS hybrid sensor for self-powered sensing and artificial intelligence control. Adv Mater Technol 9, 2400255 (2024). doi: 10.1002/admt.202400255

    CrossRef Google Scholar

    [119] Jha P, Khare A. SrAl2O4: Eu, Dy mechanoluminescent flexible film for impact sensors. J Alloys Compd 847, 156428 (2020). doi: 10.1016/j.jallcom.2020.156428

    CrossRef Google Scholar

    [120] Kong K, Dyer K, Weaver PM et al. Experimental characterisation and micromechanical models for luminescent phosphors incorporated with nonwoven veil-polymer composites. Compos B: Eng 202, 108444 (2020). doi: 10.1016/j.compositesb.2020.108444

    CrossRef Google Scholar

    [121] Wang HJ, Chen XM, Tian Z et al. Efficient color manipulation of zinc sulfide-based mechanoluminescent elastomers for visualized sensing and anti-counterfeiting. J Lumin 228, 117590 (2020). doi: 10.1016/j.jlumin.2020.117590

    CrossRef Google Scholar

    [122] Krishnan S, Katsube N, Sundaresan V. Finite strain elasticity based cohesive zone model for mechanoluminescent composite interface: I. Stiffness of the undamaged interface. Smart Mater Struct 30, 015016 (2020).

    Google Scholar

    [123] Cheng Q, Wang Y, Su L et al. Wide-spectrum manipulation of triboelectrification-induced electroluminescence by long afterglow phosphors in elastomeric zinc sulfide composites. J Mater Chem C 7, 4567–4572 (2019). doi: 10.1039/C9TC00418A

    CrossRef Google Scholar

    [124] Krishnan S, Vijayaraghavan P, Sundaresan V. Characterization of mechanoluminescent composites and their applications for SHM of polymer composites. In ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (ASME, 2015); https://doi.org/10.1115/SMASIS2015-9078.

    Google Scholar

    [125] Chen L, Wong MC, Bai GX et al. White and green light emissions of flexible polymer composites under electric field and multiple strains. Nano Energy 14, 372–381 (2015). doi: 10.1016/j.nanoen.2014.11.039

    CrossRef Google Scholar

    [126] Hao SN, Oi YH, Zhang ZP. Settlement behavior and mechanism of Navicula sp. on WLAP/PDMS composite coating under simulative diurnal alternation, constant light and dark conditions. Surf Interfaces 42, 103527 (2023). doi: 10.1016/j.surfin.2023.103527

    CrossRef Google Scholar

    [127] Xia WX, Cheng H, Mao QN et al. Improving the luminescence performance of far-red-emitting Sr2ScSbO6: Mn4+ phosphor with charge compensation and its application in plant growth LEDs. Ceram Int 49, 13708–13716 (2023). doi: 10.1016/j.ceramint.2022.12.249

    CrossRef Google Scholar

    [128] Kang ZY, Wang SC, Seto T et al. A highly efficient Eu2+ excited phosphor with luminescence tunable in visible range and its applications for plant growth. Adv Opt Mater 9, 2101173 (2021). doi: 10.1002/adom.202101173

    CrossRef Google Scholar

    [129] Yang CX, Liu W, You Q et al. Recent advances in light-conversion phosphors for plant growth and strategies for the modulation of photoluminescence properties. Nanomaterials 13, 1715 (2023). doi: 10.3390/nano13111715

    CrossRef Google Scholar

    [130] Wen L, Liu NS, Wang SL et al. Enhancing light emission in flexible ac electroluminescent devices by tetrapod-like zinc oxide whiskers. Opt Express 24, 23419–23428 (2016). doi: 10.1364/OE.24.023419

    CrossRef Google Scholar

    [131] Kim T, Kim HS. Color change in mixed zinc sulfide composite displays due to a biased AC electric field. New Phys Sae Mulli 73, 658–663 (2023). doi: 10.3938/NPSM.73.658

    CrossRef Google Scholar

    [132] Vitasek J, Jargus J, Hejduk S et al. Phosphor decay measurement and its influence on communication properties. In 2017 19th International Conference on Transparent Optical Networks (ICTON) 1–4 (IEEE, 2017);http://doi.org/10.1109/ICTON.2017.8024951.

    Google Scholar

    [133] Saah FK, Gbawoquiya FL, Chaudhary R et al. Green synthesis of carbon quantum dots for detecting heavy metal ionsin environmental samples. High Technol Lett 29, 174–205 (2023). doi: 10.37896/HTL29.09/9316

    CrossRef Google Scholar

    [134] YUE Y,GUO L C,LIU H Z,et al. Multimode X-ray Detection of Double Perovskite Ba2LuNbO6∶Tb3+Scintillators. Chinese Journal of Luminescence 44, 1597–1605 (2023). doi: 10.1016/j.jlumin.2022.118980

    CrossRef Google Scholar

    [135] Xie LY, Kang J, Han MX et al. pH sensor based on PDMS fiber doped by NaBaScSi2O7: Eu2+. In 2023 21st International Conference on Optical Communications and Networks (ICOCN) 1–3 (IEEE, 2023); http://doi.org/10.1109/ICOCN59242.2023.10236433.

    Google Scholar

    [136] Kałużna-Czaplińska J, Gątarek P, Chirumbolo S et al. How important is tryptophan in human health?. Crit Rev Food Sci Nutr 59, 72–88 (2019). doi: 10.1080/10408398.2017.1357534

    CrossRef Google Scholar

    [137] Carrillo-Betancourt RA, Hernández-Cordero J. Polymer coatings with rare-earth activated phosphors for optical fiber fluorosensors. Proc SPIE 12202, 122020B (2022).

    Google Scholar

    [138] Wang ZJ, Liu JQ, Feng YP et al. Hydrothermal synthesis of hexagonal-like YvO4: Eu3+ microcrystals and their fluorescence properties. J Alloys Compd 580, 500–504 (2013).

    Google Scholar

    [139] Wang F, Chen LF, Zhu JM et al. A phosphorescence quenching-based intelligent dissolved oxygen sensor on an optofluidic platform. Micromachines (Basel) 12, 281 (2021). doi: 10.3390/mi12030281

    CrossRef Google Scholar

    [140] Gouin S, Gouterman M. Ideality of pressure-sensitive paint. II. Effect of annealing on the temperature dependence of the luminescence. J Appl Polym Sci 77, 2805–2814 (2000). doi: 10.1002/1097-4628(20000923)77:13<2805::AID-APP2>3.0.CO;2-N

    CrossRef Google Scholar

    [141] Xiong G, Zhang ZP, Zhang C et al. SLAP@g-C3N4 fluorescent photocatalytic composite powders enhance the anti-bacteria adhesion performance and mechanism of polydimethylsiloxane coatings. Nanomaterials 12, 3005 (2022). doi: 10.3390/nano12173005

    CrossRef Google Scholar

    [142] Hao SN, Qi YH, Zhang ZP. Influence of light conditions on the antibacterial performance and mechanism of waterborne fluorescent coatings based on waterproof long afterglow phosphors/PDMS composites. Polymers 15, 3873 (2023). doi: 10.3390/polym15193873

    CrossRef Google Scholar

    [143] Xiong G, Zhang ZP, Qi YH. Effect of the properties of long afterglow phosphors on the antifouling performance of silicone fouling-release coating. Prog Org Coat 170, 106965 (2022). doi: 10.1016/j.porgcoat.2022.106965

    CrossRef Google Scholar

    [144] Jin HC, Bing W, Jin E et al. Bioinspired PDMS–phosphor–silicone rubber sandwich-structure coatings for combating biofouling. Adv Mater Interfaces 7, 1901577 (2020). doi: 10.1002/admi.201901577

    CrossRef Google Scholar

    [145] Yang LN, Liu B, Wang YH et al. Novel double light-color (blue and red) phosphor Sr9Ca(Li, Na, K)(PO4)7: Eu2+ excited by NUV light for outdoor plant cultivation. Adv Mater Technol 9, 2301751 (2024). doi: 10.1002/admt.202301751

    CrossRef Google Scholar

    [146] Jia MY, Kim TJ, Yang Y et al. Automated multi-parameter high-dose-rate brachytherapy quality assurance via radioluminescence imaging. Phys Med Biol 65, 225005 (2020). doi: 10.1088/1361-6560/abb570

    CrossRef Google Scholar

    [147] Ibru T, Mohan K, Antoniou A. Physical properties of elastomer composites with scintillating additives. Sens Actuators A Phys 280, 383–389 (2018). doi: 10.1016/j.sna.2018.07.059

    CrossRef Google Scholar

    [148] Allison SW, Baker ES, Lynch KJ et al. In vivo x-ray imaging of phosphor-doped PDMS and phosphor-doped aerogel biomaterials. Int J Polym Mater Polym Biomater 64, 823–830 (2015). doi: 10.1080/00914037.2015.1030652

    CrossRef Google Scholar

    [149] Wen Q, Yang JL, Li SR et al. Micropatterning of lanthanide complex species onto self-cracking flexible transparent films and their photophysical properties. Mater Res Bull 88, 98–104 (2017). doi: 10.1016/j.materresbull.2016.12.022

    CrossRef Google Scholar

    [150] Wi JH, Jung JY, Park SG. Synthesis of rare-earth-doped strontium tungstate phosphor at room temperature and applied flexible composite. Materials 15, 8922 (2022). doi: 10.3390/ma15248922

    CrossRef Google Scholar

    [151] Yi SS, Jung JY. Barium molybdate white emitting phosphor synthesized at room temperature by co-precipitation. RSC Adv 12, 21827–21835 (2022). doi: 10.1039/D2RA03897H

    CrossRef Google Scholar

    [152] Murai S, Inoue Y, Tanaka K. Fabrication of flexible sticker of Si metasurfaces by a transfer process. J Jpn Soc Powder Powder Metall 69, 87–90 (2022). doi: 10.2497/jjspm.69.87

    CrossRef Google Scholar

    [153] Zheng JH, Mehrvarz H, Liao C et al. Large-area 23%-efficient monolithic perovskite/homojunction-silicon tandem solar cell with enhanced UV stability using down-shifting material. ACS Energy Lett 4, 2623–2631 (2019). doi: 10.1021/acsenergylett.9b01783

    CrossRef Google Scholar

    [154] Qu BY, Jiao YC, He SW et al. Improved performance of a-Si: H solar cell by using up-conversion phosphors. J Alloys Compd 658, 848–853 (2016). doi: 10.1016/j.jallcom.2015.11.024

    CrossRef Google Scholar

    [155] Li JX, Zuo C, Chen J M et al. Effect of phosphor carriers on fluorescence of ruthenium phenanthroline and performance of oxygen-sensitive fluorescent membranes. Imaging Sci Photochem 33, 211–217 (2015).

    Google Scholar

    [156] Leal-Junior A, Avellar L, Biazi V et al. Multifunctional flexible optical waveguide sensor: on the bioinspiration for ultrasensitive sensors development. Opto-Electron Adv 5, 210098 (2022). doi: 10.29026/oea.2022.210098

    CrossRef Google Scholar

    [157] Zhang L, Pan J, Zhang Z et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electron Adv 3, 190022 (2020).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(7)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint