Nie QX, Peng YB, Chen QH et al. Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser. Opto-Electron Adv 7, 240077 (2024). doi: 10.29026/oea.2024.240077
Citation: Nie QX, Peng YB, Chen QH et al. Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser. Opto-Electron Adv 7, 240077 (2024). doi: 10.29026/oea.2024.240077

Article Open Access

Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser

More Information
  • Cavity ringdown spectroscopy (CRDS), relying on measuring the decay time of photons inside a high-finesse optical cavity, offers an important analytical tool for chemistry, physics, environmental science, and biology. Through the reflection of a slight amount of phase-coherent light back to the laser source, the resonant optical feedback approach effectively couples the laser beam into the optical cavity and achieves a high signal-to-noise ratio. However, the need for active phase-locking mechanisms complicates the spectroscopic system, limiting its primarily laboratory-based use. Here, we report how passive optical feedback can be implemented in a quantum cascade laser (QCL) based CRDS system to address this issue. Without using any phase-locking loops, we reflect a moderate amount of light (–18.2 dB) to a continuous-wave QCL simply using a fixed flat mirror, narrowing the QCL linewidth from 1.2 MHz to 170 kHz and significantly increasing the laser-cavity coupling efficiency. To validate the method’s feasibility and effectiveness, we measured the absorption line (P(18e), 2207.62 cm−1) of N2O in a Fabry–Perot cavity with a high finesse of ~52000 and an inter-mirror distance of 33 cm. This agile approach paves the way for revolutionizing existing analytical tools by offering compact and high-fidelity mid-infrared CRDS systems.
  • 加载中
  • [1] O’Keefe A, Deacon DAG. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev Sci Instrum 59, 2544–2551 (1988). doi: 10.1063/1.1139895

    CrossRef Google Scholar

    [2] Romanini D, Kachanov AA, Sadeghi N et al. CW cavity ring down spectroscopy. Chem Phys Lett 264, 316–322 (1997). doi: 10.1016/S0009-2614(96)01351-6

    CrossRef Google Scholar

    [3] Berden G, Peeters R, Meijer G. Cavity ring-down spectroscopy: experimental schemes and applications. Int Rev Phys Chem 19, 565–607 (2000). doi: 10.1080/014423500750040627

    CrossRef Google Scholar

    [4] Truong GW, Douglass KO, Maxwell SE et al. Frequency-agile, rapid scanning spectroscopy. Nat Photonics 7, 532–534 (2013). doi: 10.1038/nphoton.2013.98

    CrossRef Google Scholar

    [5] Giusfredi G, Bartalini S, Borri S et al. Saturated-absorption cavity ring-down spectroscopy. Phys Rev Lett 104, 110801 (2010). doi: 10.1103/PhysRevLett.104.110801

    CrossRef Google Scholar

    [6] Gagliardi G, Loock HP. Cavity-Enhanced Spectroscopy and Sensing (Springer, Berlin Heidelberg, 2014).

    Google Scholar

    [7] Goldenstein CS, Spearrin RM, Jeffries JB et al. Infrared laser-absorption sensing for combustion gases. Prog Energy Combust Sci 60, 132–176 (2017). doi: 10.1016/j.pecs.2016.12.002

    CrossRef Google Scholar

    [8] Farooq A, Alquaity ABS, Raza M et al. Laser sensors for energy systems and process industries: perspectives and directions. Prog Energy Combust Sci 91, 100997 (2022). doi: 10.1016/j.pecs.2022.100997

    CrossRef Google Scholar

    [9] Chen Q, Liang L, Zheng QL et al. On-chip readout plasmonic mid-IR gas sensor. Opto-Electron Adv 3, 190040 (2020). doi: 10.29026/oea.2020.190040

    CrossRef Google Scholar

    [10] Liu YH, Qiao SD, Fang C et al. A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency. Opto-Electron Adv 7, 230230 (2024). doi: 10.29026/oea.2024.230230

    CrossRef Google Scholar

    [11] Mondelain D, Vasilchenko S, Čermák P et al. The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 μm. Phys Chem Chem Phys 17, 17762–17770 (2015). doi: 10.1039/C5CP01238D

    CrossRef Google Scholar

    [12] Vogler DE, Sigrist MW. Near-infrared laser based cavity ringdown spectroscopy for applications in petrochemical industry. Appl Phys B 85, 349–354 (2006). doi: 10.1007/s00340-006-2313-z

    CrossRef Google Scholar

    [13] Galli I, Bartalini S, Ballerini R et al. Spectroscopic detection of radiocarbon dioxide at parts-per-quadrillion sensitivity. Optica 3, 385–388 (2016). doi: 10.1364/OPTICA.3.000385

    CrossRef Google Scholar

    [14] McCartt AD, Jiang J. Room-temperature optical detection of 14CO2 below the natural abundance with two-color cavity ring-down spectroscopy. ACS Sens 7, 3258–3264 (2022). doi: 10.1021/acssensors.2c01253

    CrossRef Google Scholar

    [15] Chen Y, Lehmann KK, Kessler J et al. Measurement of the 13C/12C of atmospheric CH4 using near-infrared (NIR) cavity ring-down spectroscopy. Anal Chem 85, 11250–11257 (2013). doi: 10.1021/ac401605s

    CrossRef Google Scholar

    [16] Cone MT, Mason JD, Figueroa E et al. Measuring the absorption coefficient of biological materials using integrating cavity ring-down spectroscopy. Optica 2, 162–168 (2015). doi: 10.1364/OPTICA.2.000162

    CrossRef Google Scholar

    [17] Long DA, Fleisher AJ, Liu Q et al. Ultra-sensitive cavity ring-down spectroscopy in the mid-infrared spectral region. Opt Lett 41, 1612–1615 (2016). doi: 10.1364/OL.41.001612

    CrossRef Google Scholar

    [18] Baran SG, Hancock G, Peverall R et al. Optical feedback cavity enhanced absorption spectroscopy with diode lasers. Analyst 134, 243–249 (2009). doi: 10.1039/B811793D

    CrossRef Google Scholar

    [19] Argence B, Chanteau B, Lopez O et al. Quantum cascade laser frequency stabilization at the sub-Hz level. Nat Photonics 9, 456–460 (2015). doi: 10.1038/nphoton.2015.93

    CrossRef Google Scholar

    [20] Zhao G, Tian JF, Hodges JT et al. Frequency stabilization of a quantum cascade laser by weak resonant feedback from a Fabry-Perot cavity. Opt Lett 46, 3057–3060 (2021). doi: 10.1364/OL.427083

    CrossRef Google Scholar

    [21] Ohtsubo J. Semiconductor Lasers: Stability, Instability and Chaos 3rd ed (Springer, New York, 2013).

    Google Scholar

    [22] Schunk N, Petermann K. Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback. IEEE J Quantum Electron 24, 1242–1247 (1988). doi: 10.1109/3.960

    CrossRef Google Scholar

    [23] Morville J, Kassi S, Chenevier M et al. Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking. Appl Phys B 80, 1027–1038 (2005). doi: 10.1007/s00340-005-1828-z

    CrossRef Google Scholar

    [24] Kassi S, Stoltmann T, Casado M et al. Lamb dip CRDS of highly saturated transitions of water near 1.4 μm. J Chem Phys 148, 054201 (2018). doi: 10.1063/1.5010957

    CrossRef Google Scholar

    [25] Burkart J, Romanini D, Kassi S. Optical feedback frequency stabilized cavity ring-down spectroscopy. Opt Lett 39, 4695–4698 (2014). doi: 10.1364/OL.39.004695

    CrossRef Google Scholar

    [26] Zhao G, Bailey DM, Fleisher AJ et al. Doppler-free two-photon cavity ring-down spectroscopy of a nitrous oxide (N2O) vibrational overtone transition. Phys Rev A 101, 062509 (2020). doi: 10.1103/PhysRevA.101.062509

    CrossRef Google Scholar

    [27] Motto-Ros V, Morville J, Rairoux P. Mode-by-mode optical feedback: cavity ringdown spectroscopy. Appl Phys B 87, 531–538 (2007).

    Google Scholar

    [28] Maity A, Maithani S, Pradhan M. Cavity ring-down spectroscopy: recent technological advancements, techniques, and applications. Anal Chem 93, 388–416 (2021). doi: 10.1021/acs.analchem.0c04329

    CrossRef Google Scholar

    [29] Coldren LA, Corzine SW, Mašanović ML. Dynamic effects. In Coldren LA, Corzine SW, Mašanović ML. Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, Inc. , Hoboken, USA, 2012).

    Google Scholar

    [30] Capasso F, Gmachl C, Sivco DL et al. Quantum cascade lasers. Phys Today 55, 34–40 (2002).

    Google Scholar

    [31] Mezzapesa FP, Columbo LL, Brambilla M et al. Intrinsic stability of quantum cascade lasers against optical feedback. Opt Express 21, 13748–13757 (2013). doi: 10.1364/OE.21.013748

    CrossRef Google Scholar

    [32] Zhao BB, Wang XG, Wang C. Strong optical feedback stabilized quantum cascade laser. ACS Photonics 7, 1255–1261 (2020). doi: 10.1021/acsphotonics.0c00189

    CrossRef Google Scholar

    [33] Orr BJ, He YB. Rapidly swept continuous-wave cavity-ringdown spectroscopy. Chem Phys Lett 512, 1–20 (2011). doi: 10.1016/j.cplett.2011.05.052

    CrossRef Google Scholar

    [34] Truong GW, Perner LW, Bailey DM et al. Mid-infrared supermirrors with finesse exceeding 400000. Nat Commun 14, 7846 (2023). doi: 10.1038/s41467-023-43367-z

    CrossRef Google Scholar

    [35] Li XY, Fan ZF, Deng Y et al. 30-kHz linewidth interband cascade laser with optical feedback. Appl Phys Lett 120, 171109 (2022). doi: 10.1063/5.0090937

    CrossRef Google Scholar

    [36] Yang M, Wang Z, Nie QX et al. Mid-infrared cavity-enhanced absorption sensor for ppb-level N2O detection using an injection-current-modulated quantum cascade laser. Opt Express 29, 41634–41642 (2021). doi: 10.1364/OE.444286

    CrossRef Google Scholar

    [37] Foltynowicz A, Schmidt FM, Ma W et al. Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential. Appl Phys B 92, 313–326 (2008).

    Google Scholar

    [38] Nie QX, Wang Z, Borri S et al. Mid-infrared swept cavity-enhanced photoacoustic spectroscopy using a quartz tuning fork. Appl Phys Lett 123, 054102 (2023). doi: 10.1063/5.0159131

    CrossRef Google Scholar

    [39] Jin W, Cao YC, Yang F et al. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range. Nat Commun 6, 6767 (2015). doi: 10.1038/ncomms7767

    CrossRef Google Scholar

    [40] Liao XY, Wang XG, Zhou K et al. Terahertz quantum cascade laser frequency combs with optical feedback. Opt Express 30, 35937–35950 (2022). doi: 10.1364/OE.467992

    CrossRef Google Scholar

    [41] Guan W, Li ZP, Wu SM et al. Relative phase locking of a terahertz laser system configured with a frequency comb and a single-mode laser. Adv Photonics Nexus 2, 026006 (2023).

    Google Scholar

  • Supplementary information for Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint