Xu K, Huang PL, Huang LY et al. High-precision multi-focus laser sculpting of microstructured glass. Opto-Electron Adv 7, 240082 (2024). doi: 10.29026/oea.2024.240082
Citation: Xu K, Huang PL, Huang LY et al. High-precision multi-focus laser sculpting of microstructured glass. Opto-Electron Adv 7, 240082 (2024). doi: 10.29026/oea.2024.240082

Article Open Access

High-precision multi-focus laser sculpting of microstructured glass

More Information
  • Precision sculpting of glass with defined surface microstructures is vital due to the miniaturization and integration of glass-based devices, while it is still challenging as the high brittleness of glass. We here create a three-dimensional multi-focus laser for glass micro-sculpting through a beam-shaping technology based on the superposition of lens and grating phase diagrams. The multi-focus laser modification in tandem with chemical etching enables the fabrication of glass microstructures with highly adjustable profiles. Refractive-index-induced deviations are migrated via algorithm correction to ensure multi-focus positional accuracy. Energy un-uniformity due to equidistant laser spots arrangement is eliminated through their coordinate randomization following the target profiles. Finally, uniform laser spots with a proper point-to-point distance create connected cracks inside glass, enabling efficient etching with enhanced rates along the modified profile and the fabrication of surface microstructures. We demonstrate diverse groove arrays with profiles of trapezoid, semicircle, and triangle, revealing low roughness around 1.3 μm, a high depth-width ratio of 3:1, and depth up to 300 μm, which underscore broad applications such as fiber packaging.
  • 加载中
  • [1] Luo Z, Yin K, Dong XR et al. Fabrication of parabolic cylindrical microlens array by shaped femtosecond laser. Opt Mater 78, 465–470 (2018). doi: 10.1016/j.optmat.2018.03.003

    CrossRef Google Scholar

    [2] Yuan W, Li LH, Lee WB et al. Fabrication of microlens array and its application: a review. Chin J Mech Eng 31, 16 (2018). doi: 10.1186/s10033-018-0204-y

    CrossRef Google Scholar

    [3] Ha TW, Heo GS, Choi BH et al. Wafer-level fabrication of a high-silica v-groove for fiber-optic packaging using deep dry-etching with a dual-frequency high-density plasma. J Korean Phys Soc 67, 1179–1186 (2015). doi: 10.3938/jkps.67.1179

    CrossRef Google Scholar

    [4] Gottmann J, Hermans M, Repiev N et al. Selective laser-induced etching of 3D precision quartz glass components for microfluidic applications—up-scaling of complexity and speed. Micromachines 8, 110 (2017). doi: 10.3390/mi8040110

    CrossRef Google Scholar

    [5] Xiong JH, Hsiang EL, He ZQ et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl 10, 216 (2021). doi: 10.1038/s41377-021-00658-8

    CrossRef Google Scholar

    [6] Wen XW, Zhang BY, Wang WP et al. 3D-printed silica with nanoscale resolution. Nat Mater 20, 1506–1511 (2021). doi: 10.1038/s41563-021-01111-2

    CrossRef Google Scholar

    [7] Toombs JT, Luitz M, Cook CC et al. Volumetric additive manufacturing of silica glass with microscale computed axial lithography. Science 376, 308–312 (2022). doi: 10.1126/science.abm6459

    CrossRef Google Scholar

    [8] Zhou TF, Liu XH, Liang ZQ et al. Recent advancements in optical microstructure fabrication through glass molding process. Front Mech Eng 12, 46–65 (2017). doi: 10.1007/s11465-017-0425-2

    CrossRef Google Scholar

    [9] Zhou TF, He YP, Wang TX et al. A review of the techniques for the mold manufacturing of micro/nanostructures for precision glass molding. Int J Extrem Manuf 3, 042002 (2021). doi: 10.1088/2631-7990/ac1159

    CrossRef Google Scholar

    [10] Zhang B, Wang Z, Tan DZ et al. Ultrafast laser-induced self-organized nanostructuring in transparent dielectrics: fundamentals and applications. PhotoniX 4, 24 (2023). doi: 10.1186/s43074-023-00101-8

    CrossRef Google Scholar

    [11] Wang Z, Zhang B, Wang ZQ et al. 3D imprinting of voxel-level structural colors in lithium niobate crystal. Adv Mater 35, 2303256 (2023). doi: 10.1002/adma.202303256

    CrossRef Google Scholar

    [12] Luo Z, Duan J, Guo CL. Femtosecond laser one-step direct-writing cylindrical microlens array on fused silica. Opt Lett 42, 2358–2361 (2017). doi: 10.1364/OL.42.002358

    CrossRef Google Scholar

    [13] Pan A, Chen T, Li CX et al. Parallel fabrication of silicon concave microlens array by femtosecond laser irradiation and mixed acid etching. Chin Opt Lett 14, 052201 (2016). doi: 10.3788/COL201614.052201

    CrossRef Google Scholar

    [14] Liesener J, Reicherter M, Haist T et al. Multi-functional optical tweezers using computer-generated holograms. Opt Commun 185, 77–82 (2000). doi: 10.1016/S0030-4018(00)00990-1

    CrossRef Google Scholar

    [15] Zhou C, Liu L. Numerical study of dammann array illuminators. Appl Opt 34, 5961–5969 (1995). doi: 10.1364/AO.34.005961

    CrossRef Google Scholar

    [16] Yang GZ, Dong BZ, Gu BY et al. Gerchberg–Saxton and Yang–Gu algorithms for phase retrieval in a nonunitary transform system: a comparison. Appl Opt 33, 209–218 (1994). doi: 10.1364/AO.33.000209

    CrossRef Google Scholar

    [17] Takahashi H, Hasegawa S, Hayasaki Y. Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator. Appl Opt 46, 5917–5923 (2007). doi: 10.1364/AO.46.005917

    CrossRef Google Scholar

    [18] Wang L, Gong W, Cao XW et al. Holographic laser fabrication of 3D artificial compound μ-eyes. Light Adv Manuf 4, 26 (2023).

    Google Scholar

    [19] Lesem LB, Hirsch PM, Jordan JA. The kinoform: a new wavefront reconstruction device. IBM J Res Dev 13, 150–155 (1969). doi: 10.1147/rd.132.0150

    CrossRef Google Scholar

    [20] Curtis JE, Schmitz CHJ, Spatz JP. Symmetry dependence of holograms for optical trapping. Opt Lett 30, 2086–2088 (2005). doi: 10.1364/OL.30.002086

    CrossRef Google Scholar

    [21] Jesacher A, Booth MJ. Parallel direct laser writing in three dimensions with spatially dependent aberration correction. Opt Express 18, 21090–21099 (2010). doi: 10.1364/OE.18.021090

    CrossRef Google Scholar

    [22] Chen F, Liu HW, Yang Q et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method. Opt Express 18, 20334–20343 (2010). doi: 10.1364/OE.18.020334

    CrossRef Google Scholar

    [23] Wu PC, Cao XW, Chen ZH et al. Fabrication of cylindrical microlens by femtosecond laser-assisted hydrofluoric acid wet etching of fused silica. Adv Photonics Res 4, 2200227 (2023). doi: 10.1002/adpr.202200227

    CrossRef Google Scholar

    [24] Kim S, Kim J, Joung YH et al. Optimization of selective laser-induced etching (SLE) for fabrication of 3D glass microfluidic device with multi-layer micro channels. Micro Nano Syst Lett 7, 15 (2019). doi: 10.1186/s40486-019-0094-5

    CrossRef Google Scholar

    [25] Bischof D, Kahl M, Michler M. Laser-assisted etching of borosilicate glass in potassium hydroxide. Opt Mater Express 11, 1185–1195 (2021). doi: 10.1364/OME.417871

    CrossRef Google Scholar

    [26] Pedrotti FL, Pedrotti LM, Pedrotti LS. Introduction to Optics 3rd ed (Cambridge University Press, Cambridge, 2017).

    Google Scholar

    [27] Huang LY, Xu K, Yuan DD et al. Sub-wavelength patterned pulse laser lithography for efficient fabrication of large-area metasurfaces. Nat Commun 13, 5823 (2022). doi: 10.1038/s41467-022-33644-8

    CrossRef Google Scholar

  • Supplementary information for High-precision multi-focus laser sculpting of microstructured glass
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint