Meng YZ, Lu Y, Zhang PF et al. High-frequency enhanced ultrafast compressed active photography. Opto-Electron Adv 8, 240180 (2025). doi: 10.29026/oea.2025.240180
Citation: Meng YZ, Lu Y, Zhang PF et al. High-frequency enhanced ultrafast compressed active photography. Opto-Electron Adv 8, 240180 (2025). doi: 10.29026/oea.2025.240180

Article Open Access

High-frequency enhanced ultrafast compressed active photography

More Information
  • Single-shot ultrafast compressed imaging (UCI) is an effective tool for studying ultrafast dynamics in physics, chemistry, or material science because of its excellent high frame rate and large frame number. However, the random code (R-code) used in traditional UCI will lead to low-frequency noise covering high-frequency information due to its uneven sampling interval, which is a great challenge in the fidelity of large-frame reconstruction. Here, a high-frequency enhanced compressed active photography (H-CAP) is proposed. By uniformizing the sampling interval of R-code, H-CAP capture the ultrafast process with a random uniform sampling mode. This sampling mode makes the high-frequency sampling energy dominant, which greatly suppresses the low-frequency noise blurring caused by R-code and achieves high-frequency information of image enhanced. The superior dynamic performance and large-frame reconstruction ability of H-CAP are verified by imaging optical self-focusing effect and static object, respectively. We applied H-CAP to the spatial-temporal characterization of double-pulse induced silicon surface ablation dynamics, which is performed within 220 frames in a single-shot of 300 ps. H-CAP provides a high-fidelity imaging method for observing ultrafast unrepeatable dynamic processes with large frames.
  • 加载中
  • [1] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media. Phys Rep 441, 47–189 (2007). doi: 10.1016/j.physrep.2006.12.005

    CrossRef Google Scholar

    [2] Balachninaitė O, Skruibis J, Matijošius A et al. Temporal and spatial properties of plasma induced by infrared femtosecond laser pulses in air. Plasma Sources Sci Technol 31, 045001 (2022). doi: 10.1088/1361-6595/ac5c62

    CrossRef Google Scholar

    [3] Liu XL, Lu X, Liu X et al. Tightly focused femtosecond laser pulse in air: from filamentation to breakdown. Opt Express 18, 26007–26017 (2010). doi: 10.1364/OE.18.026007

    CrossRef Google Scholar

    [4] Bhuyan MK, Soleilhac A, Somayaji M et al. High fidelity visualization of multiscale dynamics of laser-induced bubbles in liquids containing gold nanoparticles. Sci Rep 8, 9665 (2018). doi: 10.1038/s41598-018-27663-z

    CrossRef Google Scholar

    [5] Ivanov DS, Zhigilei LV. Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys Rev B 68, 064114 (2003). doi: 10.1103/PhysRevB.68.064114

    CrossRef Google Scholar

    [6] Garcia-Lechuga M, Siegel J, Hernandez-Rueda J et al. Femtosecond laser ablation of dielectric materials in the optical breakdown regime: expansion of a transparent shell. Appl Phys Lett 105, 112902 (2014). doi: 10.1063/1.4895926

    CrossRef Google Scholar

    [7] Kasparian J, Rodriguez M, Méjean G et al. White-light filaments for atmospheric analysis. Science 301, 61–64 (2003). doi: 10.1126/science.1085020

    CrossRef Google Scholar

    [8] Ashiq MGB, Saeed MA, Tahir BA et al. Breast cancer therapy by laser-induced Coulomb explosion of gold nanoparticles. Chin J Cancer Res 25, 756–761 (2013).

    Google Scholar

    [9] Costache F, Reif J. Femtosecond laser induced Coulomb explosion from calcium fluoride. Thin Solid Films 453–454, 334–339 (2004).

    Google Scholar

    [10] Carrasco-García I, Vadillo JM, Javier Laserna J. Visualization of surface transformations during laser ablation of solids by femtosecond pump–probe time-resolved microscopy. Spectrochim Acta Part B At Spectrosc 113, 30–36 (2015). doi: 10.1016/j.sab.2015.08.009

    CrossRef Google Scholar

    [11] Fang R, Vorobyev A, Guo CL. Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals. Light Sci Appl 6, e16256 (2017).

    Google Scholar

    [12] Wang QS, Jiang L, Sun JY et al. Structure-mediated excitation of air plasma and silicon plasma expansion in femtosecond laser pulses ablation. Research 2018, 5709748 (2018).

    Google Scholar

    [13] Zewail AH. Laser femtochemistry. Science 242, 1645–1653 (1988). doi: 10.1126/science.242.4886.1645

    CrossRef Google Scholar

    [14] Ehn A, Bood J, Li ZM et al. FRAME: femtosecond videography for atomic and molecular dynamics. Light Sci Appl 6, e17045 (2017). doi: 10.1038/lsa.2017.45

    CrossRef Google Scholar

    [15] Zeng XK, Zheng SQ, Cai Y et al. High-spatial-resolution ultrafast framing imaging at 15 trillion frames per second by optical parametric amplification. Adv Photonics 2, 056002 (2020).

    Google Scholar

    [16] Ding PP, Qi DL, Yao YH et al. Single-shot polarization-resolved ultrafast mapping photography. Sci Bull 68, 473–476 (2023). doi: 10.1016/j.scib.2023.02.026

    CrossRef Google Scholar

    [17] Nakagawa K, Iwasaki A, Oishi Y et al. Sequentially timed all-optical mapping photography (STAMP). Nat Photonics 8, 695–700 (2014). doi: 10.1038/nphoton.2014.163

    CrossRef Google Scholar

    [18] Donoho DL. Compressed sensing. IEEE Trans Inf Theory 52, 1289–1306 (2006). doi: 10.1109/TIT.2006.871582

    CrossRef Google Scholar

    [19] Yuan X, Brady DJ, Katsaggelos AK. Snapshot compressive imaging: theory, algorithms, and applications. IEEE Signal Process Mag 38, 65–88 (2021).

    Google Scholar

    [20] Yuan X, Wu ZL, Luo T. Coded aperture snapshot spectral imager. In Liang JY. Coded Optical Imaging 533–547 (Springer, Cham, 2024).

    Google Scholar

    [21] Lu Y, Wong TTW, Chen F et al. Compressed ultrafast spectral-temporal photography. Phys Rev Lett 122, 193904 (2019). doi: 10.1103/PhysRevLett.122.193904

    CrossRef Google Scholar

    [22] Liu JD, Marquez M, Lai YM et al. Swept coded aperture real-time femtophotography. Nat Commun 15, 1589 (2024). doi: 10.1038/s41467-024-45820-z

    CrossRef Google Scholar

    [23] Wang P, Wang LV. Single‐shot reconfigurable femtosecond imaging of ultrafast optical dynamics. Adv Sci 10, 2207222 (2023). doi: 10.1002/advs.202207222

    CrossRef Google Scholar

    [24] Liang JY, Zhu LR, Wang LV. Single-shot real-time femtosecond imaging of temporal focusing. Light Sci Appl 7, 42 (2018). doi: 10.1038/s41377-018-0044-7

    CrossRef Google Scholar

    [25] Tang HC, Men T, Liu XL et al. Single-shot compressed optical field topography. Light Sci Appl 11, 244 (2022). doi: 10.1038/s41377-022-00935-0

    CrossRef Google Scholar

    [26] Meng YZ, Liu Y, Yin F et al. High-channel spectral-temporal active recording (H-STAR) for femtosecond scenes observation in a single-shot. ACS Photonics 11, 419–427 (2024).

    Google Scholar

    [27] Yang CS, Qi DL, Liang JY et al. Compressed ultrafast photography by multi-encoding imaging. Laser Phys Lett 15, 116202 (2018). doi: 10.1088/1612-202X/aae198

    CrossRef Google Scholar

    [28] Jing JC, Wei XM, Wang LV. Spatio-temporal-spectral imaging of non-repeatable dissipative soliton dynamics. Nat Commun 11, 2059 (2020). doi: 10.1038/s41467-020-15900-x

    CrossRef Google Scholar

    [29] Liang JY, Ma C, Zhu LR et al. Single-shot real-time video recording of a photonic Mach cone induced by a scattered light pulse. Sci Adv 3, e1601814 (2017). doi: 10.1126/sciadv.1601814

    CrossRef Google Scholar

    [30] Zhu LR, Chen YJ, Liang JY et al. Space- and intensity-constrained reconstruction for compressed ultrafast photography. Optica 3, 694–697 (2016). doi: 10.1364/OPTICA.3.000694

    CrossRef Google Scholar

    [31] Wang P, Liang JY, Wang LV. Single-shot ultrafast imaging attaining 70 trillion frames per second. Nat Commun 11, 2091 (2020). doi: 10.1038/s41467-020-15745-4

    CrossRef Google Scholar

    [32] McCool M, Fiume E. Hierarchical Poisson disk sampling distributions. In Proceedings of the Conference on Graphics Interface '92 94–105 (Morgan Kaufmann Publishers Inc. , 1992

    Google Scholar

    [33] Cook RL. Stochastic sampling in computer graphics. ACM Trans Graph 5, 51–72 (1986). doi: 10.1145/7529.8927

    CrossRef Google Scholar

    [34] Yellott JI. Spectral consequences of photoreceptor sampling in the rhesus retina. Science 221, 382–385 (1983). doi: 10.1126/science.6867716

    CrossRef Google Scholar

    [35] Ulichney RA. Void-and-cluster method for dither array generation. Proc SPIE 1913, 332–343 (1993). doi: 10.1117/12.152707

    CrossRef Google Scholar

    [36] Wang L, Ho PP, Liu C et al. Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate. Science 253, 769–771 (1991). doi: 10.1126/science.253.5021.769

    CrossRef Google Scholar

    [37] Leuthold J, Koos C, Freude W. Nonlinear silicon photonics. Nat Photonics 4, 535–544 (2010). doi: 10.1038/nphoton.2010.185

    CrossRef Google Scholar

    [38] Wang HY, De Mello Donegá C, Meijerink A et al. Ultrafast exciton dynamics in CdSe quantum dots studied from bleaching recovery and fluorescence transients. J Phys Chem B 110, 733–737 (2006). doi: 10.1021/jp055795g

    CrossRef Google Scholar

    [39] Chen ZC, Jiang L, Lian YL et al. Enhancement of ablation and ultrafast electron dynamics observation of nickel-based superalloy under double-pulse ultrashort laser irradiation. J Mater Res Technol 21, 4253–4262 (2022). doi: 10.1016/j.jmrt.2022.11.005

    CrossRef Google Scholar

    [40] Chowdhury IH, Xu XF, Weiner AM. Ultrafast double-pulse ablation of fused silica. Appl Phys Lett 86, 151110 (2005). doi: 10.1063/1.1901806

    CrossRef Google Scholar

    [41] Lian YL, Jiang L, Sun JY et al. Ultrafast quasi-three-dimensional imaging. Int J Extrem Manuf 5, 045601 (2023). doi: 10.1088/2631-7990/ace944

    CrossRef Google Scholar

    [42] Feng T, Chen G, Han HN et al. Femtosecond-laser-ablation dynamics in silicon revealed by transient reflectivity change. Micromachines 13, 14 (2021). doi: 10.3390/mi13010014

    CrossRef Google Scholar

    [43] Zhao X, Shin YC. Ablation enhancement of silicon by ultrashort double-pulse laser ablation. Appl Phys Lett 105, 111907 (2014). doi: 10.1063/1.4896350

    CrossRef Google Scholar

    [44] Kudryashov SI, Samokhvalov AA, Golubev YD et al. Dynamic all-optical control in ultrashort double-pulse laser ablation. Appl Surf Sci 537, 147940 (2021). doi: 10.1016/j.apsusc.2020.147940

    CrossRef Google Scholar

    [45] Yang CS, Qi DL, Wang X et al. Optimizing codes for compressed ultrafast photography by the genetic algorithm. Optica 5, 147–151 (2018). doi: 10.1364/OPTICA.5.000147

    CrossRef Google Scholar

    [46] Marquez M, Balistreri G, Morandotti R et al. Metalens-based compressed ultracompact femtophotography: analytical modeling and simulations. Ultrafast Sci 4, 0052 (2024). doi: 10.34133/ultrafastscience.0052

    CrossRef Google Scholar

    [47] Tang HC, Marquez M, Men T et al. Temporal resolution of ultrafast compressive imaging using a single-chirped optical probe. Opt Lett 48, 6080–6083 (2023). doi: 10.1364/OL.505260

    CrossRef Google Scholar

    [48] Sun FG, Jiang ZP, Zhang XC. Analysis of terahertz pulse measurement with a chirped probe beam. Appl Phys Lett 73, 2233–2235 (1998). doi: 10.1063/1.121685

    CrossRef Google Scholar

  • Supplementary information for High-frequency enhanced ultrafast compressed active photography
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint