Wang YM, Fan F, Zhao HJ et al. Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice. Opto-Electron Adv 8, 240250 (2025). doi: 10.29026/oea.2025.240250
Citation: Wang YM, Fan F, Zhao HJ et al. Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice. Opto-Electron Adv 8, 240250 (2025). doi: 10.29026/oea.2025.240250

Article Open Access

Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice

More Information
  • Vortex beams carrying orbital angular momentum (OAM) are of great significance for high-capacity communication and super-resolution imaging. However, there is a huge gap between the free-space vortices (FVs) and plasmonic vortices (PVs) on chips, and active manipulation as well as multiplexing in more channels have become a pressing demand. In this work, we demonstrate a terahertz (THz) cascaded metadevice composed of a helical plasmonic metasurface, a liquid crystal (LC) layer, and a helical dielectric metasurface. By spin-orbital angular momentum coupling and photon state superposition, PVs and FVs are generated with mode purity of over 85% on average. Due to the inversion asymmetric design of the helical metasurfaces, the parity symmetry breaking of OAM is realized (the topological charge numbers no longer occur in positive and negative pairs, but all are positive), generating 6 independent channels associated with the decoupled spin states and the near-/far- field positions. Moreover, by the LC integration, dynamic mode switching and energy distribution can be realized, finally obtaining up to 12 modes with a modulation ratio of above 70%. This active tuning and multi-channel multiplexing metadevice establishes a bridge connection between the PVs and FVs, exhibiting promising applications in THz communication, intelligent perception, and information processing.
  • 加载中
  • [1] Guerboukha H, Cao Y, Nallappan K et al. Super-resolution orthogonal deterministic imaging technique for terahertz subwavelength microscopy. ACS Photonics 7, 1866–1875 (2020). doi: 10.1021/acsphotonics.0c00711

    CrossRef Google Scholar

    [2] Nagatsuma T, Ducournau G, Renaud CC. Advances in terahertz communications accelerated by photonics. Nat Photonics 10, 371–379 (2016). doi: 10.1038/nphoton.2016.65

    CrossRef Google Scholar

    [3] Zhang YQ, Min CJ, Dou XJ et al. Plasmonic tweezers: for nanoscale optical trapping and beyond. Light Sci Appl 10, 59 (2021). doi: 10.1038/s41377-021-00474-0

    CrossRef Google Scholar

    [4] Deng WT, Chen L, Zhang HQ et al. On-chip polarization- and frequency-division demultiplexing for multidimensional terahertz communication. Laser Photonics Rev 16, 2200136 (2022). doi: 10.1002/lpor.202200136

    CrossRef Google Scholar

    [5] Yao AM, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics 3, 161–204 (2011). doi: 10.1364/AOP.3.000161

    CrossRef Google Scholar

    [6] Zhang X, Huang LL, Zhao RZ et al. Basis function approach for diffractive pattern generation with Dammann vortex metasurfaces. Sci Adv 8, eabp8073 (2022). doi: 10.1126/sciadv.abp8073

    CrossRef Google Scholar

    [7] Zhang YQ, Zeng XY, Ma L et al. Manipulation for superposition of orbital angular momentum states in surface plasmon polaritons. Adv Opt Mater 7, 1900372 (2019). doi: 10.1002/adom.201900372

    CrossRef Google Scholar

    [8] Zang XF, Zhu YM, Mao CX et al. Manipulating terahertz plasmonic vortex based on geometric and dynamic phase. Adv Opt Mater 7, 1801328 (2019). doi: 10.1002/adom.201801328

    CrossRef Google Scholar

    [9] Mei F, Qu GY, Sha XB et al. Cascaded metasurfaces for high-purity vortex generation. Nat Commun 14, 6410 (2023). doi: 10.1038/s41467-023-42137-1

    CrossRef Google Scholar

    [10] Zhao RZ, Xiao XF, Geng GZ et al. Polarization and holography recording in real-and k-space based on dielectric metasurface. Adv Funct Mater 31, 2100406 (2021). doi: 10.1002/adfm.202100406

    CrossRef Google Scholar

    [11] Cai XD, Tang R, Zhou HY et al. Dynamically controlling terahertz wavefronts with cascaded metasurfaces. Adv Photonics 3, 036003 (2021).

    Google Scholar

    [12] Han J, Xu YH, Zhang HF et al. Tailorable polarization-dependent directional coupling of surface plasmons. Adv Funct Mater 32, 2111000 (2022). doi: 10.1002/adfm.202111000

    CrossRef Google Scholar

    [13] Zhang XQ, Xu Q, Xia LB et al. Terahertz surface plasmonic waves: a review. Adv Photonics 2, 014001 (2020).

    Google Scholar

    [14] Wu T, Xu Q, Zhang XQ et al. Spin-decoupled interference metasurfaces for complete complex-vectorial-field control and five-channel imaging. Adv Sci 9, 2204664 (2022). doi: 10.1002/advs.202204664

    CrossRef Google Scholar

    [15] Li GX, Kang M, Chen SM et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Lett 13, 4148–4151 (2013). doi: 10.1021/nl401734r

    CrossRef Google Scholar

    [16] Li XY, Chen C, Guo YH et al. Monolithic spiral metalens for ultrahigh-capacity and single-shot sorting of full angular momentum state. Adv Funct Mater 34, 2311286 (2024). doi: 10.1002/adfm.202311286

    CrossRef Google Scholar

    [17] Lang YH, Xu Q, Chen XY et al. On-chip plasmonic vortex interferometers. Laser Photonics Rev 16, 2200242 (2022). doi: 10.1002/lpor.202200242

    CrossRef Google Scholar

    [18] Jiang XH, Xu Q, Lang YH et al. Geometric phase control of surface plasmons by dipole sources. Laser Photonics Rev 17, 2200948 (2023). doi: 10.1002/lpor.202200948

    CrossRef Google Scholar

    [19] Spektor G, Kilbane D, Mahro AK et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 1187–1191 (2017). doi: 10.1126/science.aaj1699

    CrossRef Google Scholar

    [20] Kim H, Park J, Cho SW et al. Synthesis and dynamic switching of surface Plasmon vortices with plasmonic vortex lens. Nano Lett 10, 529–536 (2010). doi: 10.1021/nl903380j

    CrossRef Google Scholar

    [21] Guo YH, Zhang SC, Pu MB et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 10, 63 (2021). doi: 10.1038/s41377-021-00497-7

    CrossRef Google Scholar

    [22] Devlin RC, Ambrosio A, Rubin NA et al. Arbitrary spin-to–orbital angular momentum conversion of light. Science 358, 896–901 (2017). doi: 10.1126/science.aao5392

    CrossRef Google Scholar

    [23] Zhang H, Sha XB, Chen QM et al. All-dielectric metasurface-enabled multiple vortex emissions. Adv Mater 34, 2109255 (2022). doi: 10.1002/adma.202109255

    CrossRef Google Scholar

    [24] Prinz E, Spektor G, Hartelt M et al. Functional meta lenses for compound plasmonic vortex field generation and control. Nano Lett 21, 3941–3946 (2021). doi: 10.1021/acs.nanolett.1c00625

    CrossRef Google Scholar

    [25] Yuan XY, Xu Q, Lang YH et al. Temporally deuterogenic plasmonic vortices. Nanophotonics 13, 955–963 (2024). doi: 10.1515/nanoph-2023-0931

    CrossRef Google Scholar

    [26] Yuan XY, Xu Q, Lang YH et al. Tailoring spatiotemporal dynamics of plasmonic vortices. Opto-Electron Adv 6, 220133 (2023). doi: 10.29026/oea.2023.220133

    CrossRef Google Scholar

    [27] Zhao H, Quan BG, Wang XK et al. Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band. ACS Photonics 5, 1726–1732 (2018). doi: 10.1021/acsphotonics.7b01149

    CrossRef Google Scholar

    [28] Liu Y, Chen L, Zhou CX et al. Theoretical study on generation of multidimensional focused and vector vortex beams via all-dielectric spin-multiplexed metasurface. Nanomaterials 12, 580 (2022). doi: 10.3390/nano12040580

    CrossRef Google Scholar

    [29] Zhao H, Wang XK, Liu ST et al. Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band. Opto-Electron Adv 6, 220012 (2023). doi: 10.29026/oea.2023.220012

    CrossRef Google Scholar

    [30] Liu WY, Jiang XH, Xu Q et al. All-dielectric terahertz metasurfaces for multi-dimensional multiplexing and demultiplexing. Laser Photonics Rev 18, 2301061 (2024). doi: 10.1002/lpor.202301061

    CrossRef Google Scholar

    [31] Jiang Q, Bao YJ, Li J et al. Bi-channel near- and far-field optical vortex generator based on a single plasmonic metasurface. Photonics Res 8, 986–994 (2020). doi: 10.1364/PRJ.385099

    CrossRef Google Scholar

    [32] Dai CH, Liu T, Wang DY et al. Multiplexing near- and far-field functionalities with high-efficiency bi-channel metasurfaces. PhotoniX 5, 11 (2024). doi: 10.1186/s43074-024-00128-5

    CrossRef Google Scholar

    [33] Sun PZ, Liu BH, Wang YF et al. Ultrabroadband multichannel vector vortex beams with versatile electrically induced functionality. Laser Photonics Rev 17, 2300098 (2023). doi: 10.1002/lpor.202300098

    CrossRef Google Scholar

    [34] Li CQ, Song ZY. Tailoring terahertz wavefront with state switching in VO2 Pancharatnam–Berry metasurfaces. Opt Laser Technol 157, 108764 (2023). doi: 10.1016/j.optlastec.2022.108764

    CrossRef Google Scholar

    [35] Zhou ZK, Song ZY. Terahertz mode switching of spin reflection and vortex beams based on graphene metasurfaces. Optics Laser Technol 153, 108278 (2022). doi: 10.1016/j.optlastec.2022.108278

    CrossRef Google Scholar

    [36] Zhuang XL, Zhang W, Wang KM et al. Active terahertz beam steering based on mechanical deformation of liquid crystal elastomer metasurface. Light Sci Appl 12, 14 (2023). doi: 10.1038/s41377-022-01046-6

    CrossRef Google Scholar

    [37] Chen BW, Wang XR, Li WL et al. Electrically addressable integrated intelligent terahertz metasurface. Sci Adv 8, eadd1296 (2022). doi: 10.1126/sciadv.add1296

    CrossRef Google Scholar

    [38] Guo JY, Wang T, Zhao H et al. Reconfigurable terahertz metasurface pure phase holograms. Adv Opt Mater 7, 1801696 (2019). doi: 10.1002/adom.201801696

    CrossRef Google Scholar

    [39] Chen KX, Xu CT, Zhou Z et al. Multifunctional liquid crystal device for grayscale pattern display and holography with tunable spectral-response. Laser Photonics Rev 16, 2100591 (2022). doi: 10.1002/lpor.202100591

    CrossRef Google Scholar

    [40] Bosch M, Shcherbakov MR, Won K et al. Electrically actuated varifocal lens based on liquid-crystal-embedded dielectric metasurfaces. Nano Lett 21, 3849–3856 (2021). doi: 10.1021/acs.nanolett.1c00356

    CrossRef Google Scholar

    [41] Shen ZX, Zhou SH, Li XN et al. Liquid crystal integrated metalens with tunable chromatic aberration. Adv Photonics 2, 036002 (2020).

    Google Scholar

    [42] Wang S, Guo HB, Chen BW et al. Electrically active terahertz liquid-crystal metasurface for polarization vortex beam switching. Laser Photonics Rev 18, 2301301 (2024). doi: 10.1002/lpor.202301301

    CrossRef Google Scholar

    [43] Zhao HJ, Fan F, Wang YM et al. Vortex-vector beam conversion and chiral field manipulation based on terahertz liquid crystal cascaded metadevice. Laser Photonics Rev 18, 2400442 (2024). doi: 10.1002/lpor.202400442

    CrossRef Google Scholar

    [44] Wang YM, Fan F, Zhao HJ et al. Active broadband unidirectional focusing of terahertz surface plasmons based on a liquid-crystal-integrated on-chip metadevice. Photonics Res 12, 2148–2157 (2024). doi: 10.1364/PRJ.527697

    CrossRef Google Scholar

  • Supplementary information for Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint