Citation: | Wang YM, Fan F, Zhao HJ et al. Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice. Opto-Electron Adv 8, 240250 (2025). doi: 10.29026/oea.2025.240250 |
[1] | Guerboukha H, Cao Y, Nallappan K et al. Super-resolution orthogonal deterministic imaging technique for terahertz subwavelength microscopy. ACS Photonics 7, 1866–1875 (2020). doi: 10.1021/acsphotonics.0c00711 |
[2] | Nagatsuma T, Ducournau G, Renaud CC. Advances in terahertz communications accelerated by photonics. Nat Photonics 10, 371–379 (2016). doi: 10.1038/nphoton.2016.65 |
[3] | Zhang YQ, Min CJ, Dou XJ et al. Plasmonic tweezers: for nanoscale optical trapping and beyond. Light Sci Appl 10, 59 (2021). doi: 10.1038/s41377-021-00474-0 |
[4] | Deng WT, Chen L, Zhang HQ et al. On-chip polarization- and frequency-division demultiplexing for multidimensional terahertz communication. Laser Photonics Rev 16, 2200136 (2022). doi: 10.1002/lpor.202200136 |
[5] | Yao AM, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics 3, 161–204 (2011). doi: 10.1364/AOP.3.000161 |
[6] | Zhang X, Huang LL, Zhao RZ et al. Basis function approach for diffractive pattern generation with Dammann vortex metasurfaces. Sci Adv 8, eabp8073 (2022). doi: 10.1126/sciadv.abp8073 |
[7] | Zhang YQ, Zeng XY, Ma L et al. Manipulation for superposition of orbital angular momentum states in surface plasmon polaritons. Adv Opt Mater 7, 1900372 (2019). doi: 10.1002/adom.201900372 |
[8] | Zang XF, Zhu YM, Mao CX et al. Manipulating terahertz plasmonic vortex based on geometric and dynamic phase. Adv Opt Mater 7, 1801328 (2019). doi: 10.1002/adom.201801328 |
[9] | Mei F, Qu GY, Sha XB et al. Cascaded metasurfaces for high-purity vortex generation. Nat Commun 14, 6410 (2023). doi: 10.1038/s41467-023-42137-1 |
[10] | Zhao RZ, Xiao XF, Geng GZ et al. Polarization and holography recording in real-and k-space based on dielectric metasurface. Adv Funct Mater 31, 2100406 (2021). doi: 10.1002/adfm.202100406 |
[11] | Cai XD, Tang R, Zhou HY et al. Dynamically controlling terahertz wavefronts with cascaded metasurfaces. Adv Photonics 3, 036003 (2021). |
[12] | Han J, Xu YH, Zhang HF et al. Tailorable polarization-dependent directional coupling of surface plasmons. Adv Funct Mater 32, 2111000 (2022). doi: 10.1002/adfm.202111000 |
[13] | Zhang XQ, Xu Q, Xia LB et al. Terahertz surface plasmonic waves: a review. Adv Photonics 2, 014001 (2020). |
[14] | Wu T, Xu Q, Zhang XQ et al. Spin-decoupled interference metasurfaces for complete complex-vectorial-field control and five-channel imaging. Adv Sci 9, 2204664 (2022). doi: 10.1002/advs.202204664 |
[15] | Li GX, Kang M, Chen SM et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Lett 13, 4148–4151 (2013). doi: 10.1021/nl401734r |
[16] | Li XY, Chen C, Guo YH et al. Monolithic spiral metalens for ultrahigh-capacity and single-shot sorting of full angular momentum state. Adv Funct Mater 34, 2311286 (2024). doi: 10.1002/adfm.202311286 |
[17] | Lang YH, Xu Q, Chen XY et al. On-chip plasmonic vortex interferometers. Laser Photonics Rev 16, 2200242 (2022). doi: 10.1002/lpor.202200242 |
[18] | Jiang XH, Xu Q, Lang YH et al. Geometric phase control of surface plasmons by dipole sources. Laser Photonics Rev 17, 2200948 (2023). doi: 10.1002/lpor.202200948 |
[19] | Spektor G, Kilbane D, Mahro AK et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 1187–1191 (2017). doi: 10.1126/science.aaj1699 |
[20] | Kim H, Park J, Cho SW et al. Synthesis and dynamic switching of surface Plasmon vortices with plasmonic vortex lens. Nano Lett 10, 529–536 (2010). doi: 10.1021/nl903380j |
[21] | Guo YH, Zhang SC, Pu MB et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 10, 63 (2021). doi: 10.1038/s41377-021-00497-7 |
[22] | Devlin RC, Ambrosio A, Rubin NA et al. Arbitrary spin-to–orbital angular momentum conversion of light. Science 358, 896–901 (2017). doi: 10.1126/science.aao5392 |
[23] | Zhang H, Sha XB, Chen QM et al. All-dielectric metasurface-enabled multiple vortex emissions. Adv Mater 34, 2109255 (2022). doi: 10.1002/adma.202109255 |
[24] | Prinz E, Spektor G, Hartelt M et al. Functional meta lenses for compound plasmonic vortex field generation and control. Nano Lett 21, 3941–3946 (2021). doi: 10.1021/acs.nanolett.1c00625 |
[25] | Yuan XY, Xu Q, Lang YH et al. Temporally deuterogenic plasmonic vortices. Nanophotonics 13, 955–963 (2024). doi: 10.1515/nanoph-2023-0931 |
[26] | Yuan XY, Xu Q, Lang YH et al. Tailoring spatiotemporal dynamics of plasmonic vortices. Opto-Electron Adv 6, 220133 (2023). doi: 10.29026/oea.2023.220133 |
[27] | Zhao H, Quan BG, Wang XK et al. Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band. ACS Photonics 5, 1726–1732 (2018). doi: 10.1021/acsphotonics.7b01149 |
[28] | Liu Y, Chen L, Zhou CX et al. Theoretical study on generation of multidimensional focused and vector vortex beams via all-dielectric spin-multiplexed metasurface. Nanomaterials 12, 580 (2022). doi: 10.3390/nano12040580 |
[29] | Zhao H, Wang XK, Liu ST et al. Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band. Opto-Electron Adv 6, 220012 (2023). doi: 10.29026/oea.2023.220012 |
[30] | Liu WY, Jiang XH, Xu Q et al. All-dielectric terahertz metasurfaces for multi-dimensional multiplexing and demultiplexing. Laser Photonics Rev 18, 2301061 (2024). doi: 10.1002/lpor.202301061 |
[31] | Jiang Q, Bao YJ, Li J et al. Bi-channel near- and far-field optical vortex generator based on a single plasmonic metasurface. Photonics Res 8, 986–994 (2020). doi: 10.1364/PRJ.385099 |
[32] | Dai CH, Liu T, Wang DY et al. Multiplexing near- and far-field functionalities with high-efficiency bi-channel metasurfaces. PhotoniX 5, 11 (2024). doi: 10.1186/s43074-024-00128-5 |
[33] | Sun PZ, Liu BH, Wang YF et al. Ultrabroadband multichannel vector vortex beams with versatile electrically induced functionality. Laser Photonics Rev 17, 2300098 (2023). doi: 10.1002/lpor.202300098 |
[34] | Li CQ, Song ZY. Tailoring terahertz wavefront with state switching in VO2 Pancharatnam–Berry metasurfaces. Opt Laser Technol 157, 108764 (2023). doi: 10.1016/j.optlastec.2022.108764 |
[35] | Zhou ZK, Song ZY. Terahertz mode switching of spin reflection and vortex beams based on graphene metasurfaces. Optics Laser Technol 153, 108278 (2022). doi: 10.1016/j.optlastec.2022.108278 |
[36] | Zhuang XL, Zhang W, Wang KM et al. Active terahertz beam steering based on mechanical deformation of liquid crystal elastomer metasurface. Light Sci Appl 12, 14 (2023). doi: 10.1038/s41377-022-01046-6 |
[37] | Chen BW, Wang XR, Li WL et al. Electrically addressable integrated intelligent terahertz metasurface. Sci Adv 8, eadd1296 (2022). doi: 10.1126/sciadv.add1296 |
[38] | Guo JY, Wang T, Zhao H et al. Reconfigurable terahertz metasurface pure phase holograms. Adv Opt Mater 7, 1801696 (2019). doi: 10.1002/adom.201801696 |
[39] | Chen KX, Xu CT, Zhou Z et al. Multifunctional liquid crystal device for grayscale pattern display and holography with tunable spectral-response. Laser Photonics Rev 16, 2100591 (2022). doi: 10.1002/lpor.202100591 |
[40] | Bosch M, Shcherbakov MR, Won K et al. Electrically actuated varifocal lens based on liquid-crystal-embedded dielectric metasurfaces. Nano Lett 21, 3849–3856 (2021). doi: 10.1021/acs.nanolett.1c00356 |
[41] | Shen ZX, Zhou SH, Li XN et al. Liquid crystal integrated metalens with tunable chromatic aberration. Adv Photonics 2, 036002 (2020). |
[42] | Wang S, Guo HB, Chen BW et al. Electrically active terahertz liquid-crystal metasurface for polarization vortex beam switching. Laser Photonics Rev 18, 2301301 (2024). doi: 10.1002/lpor.202301301 |
[43] | Zhao HJ, Fan F, Wang YM et al. Vortex-vector beam conversion and chiral field manipulation based on terahertz liquid crystal cascaded metadevice. Laser Photonics Rev 18, 2400442 (2024). doi: 10.1002/lpor.202400442 |
[44] | Wang YM, Fan F, Zhao HJ et al. Active broadband unidirectional focusing of terahertz surface plasmons based on a liquid-crystal-integrated on-chip metadevice. Photonics Res 12, 2148–2157 (2024). doi: 10.1364/PRJ.527697 |
Supplementary information for Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice |
![]() |
Schematic diagram of the proposed metadevice and the experimental setup. (a) The functional diagram of the LC-integrated cascaded metadevice with 6 spin-dependent vortex channels. (b) The detailed structure of the metadevice; Micrographs of (c) dielectric metasurface and (d) plasmonic metasurface. (e) Schematic diagram of N/F-STS system, in which the measurement methods of NF and FF are illustrated.
Structure scheme of the single plasmonic metasurface layer and its performances. (a) Simulated and experimental anisotropic transmission spectrum of metal slit array with a=160 μm, b=50 μm. (b) Schematic diagram of the plasmonic metasurface, the right part is the detailed diagrams of paired slits and the kth spiral-arrayed slit pair resonator. (c) The function of a single plasmonic metasurface layer. (d) Simulated and (e) experimental NF/FF intensity and phase distributions at f0=0.475 THz.
Structure scheme of the single dielectric metasurface and its performance results. (a) Schematic diagram of spin-decoupled all-dielectric metasurface containing pillars with 5 geometric sizes. Inset: perspective and top views of meta-atoms. (b) The simulated anisotropic phase delays, (c) phase shifts, and (d) transmission coefficients in the x direction under 45°-LP incidence when the width w and the length q are swept from 60 μm to 280 μm. The selected rectangle pillars are marked with dots. (e) The simulated and experimental FF intensity and phase distribution.
Results and evaluations of designed cascaded metadevice. (a) The simulated and (b) experimental intensity and phase distribution of 12-mode vortices at the central frequency f0. (c) The vortex mode purity matrix and (d) isolation of 6 channels in simulation when the LC orientation is along the y- and z-axis.
Illustrations of the active modulation in the 2 NF channels. With the LC orientation rotating in the y-z plane, (a) the simulated evolution process of the intensity and phase distributions of PVs with P = zL and zR at the frequency f0. (b) the measured evolution process of intensity distributions. (c) The dynamic modulation process of the mode purity for PVs in simulation. (d) Simulated and experimental modulation ratio of the expected PV modes.
Illustrations of the active modulation in the 4 FF channels. With the LC orientation rotating in the y-z plane, the (a) simulated and (b) measured evolution process of the intensity distributions at the frequency f0. (c) The dynamic modulation process of the mode purity for FVs in simulation. (d) Simulated and experimental modulation ratio of the expected FV modes.