Wang RZ, Su Y, Fan HJ et al. Tunable vertical cavity microlasers based on MAPbI3 phase change perovskite. Opto-Electron Adv 8, 240220 (2025). doi: 10.29026/oea.2025.240220
Citation: Wang RZ, Su Y, Fan HJ et al. Tunable vertical cavity microlasers based on MAPbI3 phase change perovskite. Opto-Electron Adv 8, 240220 (2025). doi: 10.29026/oea.2025.240220

Article Open Access

Tunable vertical cavity microlasers based on MAPbI3 phase change perovskite

More Information
  • Perovskite semiconductors show great promise as gain media for all-solution-processed single-mode microlasers. However, despite the recent efforts to improve their lasing performance, achieving tunable single-mode microlasers remains challenging. In this work, we address this challenge by demonstrating a tunable vertical cavity surface emitting laser (VCSEL) employing a tunable gain medium of halide phase-change perovskites-specifically MAPbI3 perovskite, sandwiched between two highly reflective mirrors composed of bottom-distributed Bragg reflectors (DBRs). This VCSEL possesses single-mode lasing emission with a low threshold of 23.5 μJ cm−2 under 160 K, attributed to strong optical confinement in the high-quality (Q) cavity. Upon the phase change of MAPbI3 perovskite, both its gain and dielectric constant changes dramatically, enabling a wide (Δλ >9 nm) and temperature-sensitive (0.30 nm K−1 rate) spectral tunability of lasing mode in the near-infrared (N-IR) region. The laser displays excellent stability, demonstrating an 80% lifetime of >2.4×107 pulses excitation. Our findings may provide a versatile platform for the next generation of tunable coherent light sources.
  • 加载中
  • [1] Huang C, Zhang C, Xiao SM et al. Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020). doi: 10.1126/science.aba4597

    CrossRef Google Scholar

    [2] Zhu HM, Fu YP, Meng F et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater 14, 636–642 (2015). doi: 10.1038/nmat4271

    CrossRef Google Scholar

    [3] Sun WZ, Liu YL, Qu GY et al. Lead halide perovskite vortex microlasers. Nat Commun 11, 4862 (2020). doi: 10.1038/s41467-020-18669-1

    CrossRef Google Scholar

    [4] Adamo G, Swaha Krishnamoorthy HN, Cortecchia D et al. Metamaterial enhancement of metal-halide perovskite luminescence. Nano Lett 20, 7906–7911 (2020). doi: 10.1021/acs.nanolett.0c02571

    CrossRef Google Scholar

    [5] Karlsson M, Yi ZY, Reichert S et al. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat Commun 12, 361 (2021). doi: 10.1038/s41467-020-20582-6

    CrossRef Google Scholar

    [6] Makarov S, Furasova A, Tiguntseva E et al. Halide‐perovskite resonant nanophotonics. Adv Opt Mater 7, 1800784 (2019). doi: 10.1002/adom.201800784

    CrossRef Google Scholar

    [7] Jeong J, Kim M, Seo J et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021). doi: 10.1038/s41586-021-03406-5

    CrossRef Google Scholar

    [8] Shen XY, Gallant BM, Holzhey P et al. Chloride‐based additive engineering for efficient and stable wide‐bandgap perovskite solar cells. Adv Mater 35, 2211742 (2023). doi: 10.1002/adma.202211742

    CrossRef Google Scholar

    [9] Li ZG, Cao Y, Feng JS et al. Stable and high‐efficiency perovskite solar cells using effective additive ytterbium fluoride. Small 19, 2303017 (2023). doi: 10.1002/smll.202303017

    CrossRef Google Scholar

    [10] Swarnkar A, Marshall AR, Sanehira EM et al. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016). doi: 10.1126/science.aag2700

    CrossRef Google Scholar

    [11] Chiba T, Hayashi Y, Ebe H et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics 12, 681–687 (2018). doi: 10.1038/s41566-018-0260-y

    CrossRef Google Scholar

    [12] Hao MM, Bai Y, Zeiske S et al. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1− x FA x PbI3 quantum dot solar cells with reduced phase segregation. Nat Energy 5, 79–88 (2020). doi: 10.1038/s41560-019-0535-7

    CrossRef Google Scholar

    [13] Deschler F, Price M, Pathak S et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J Phys Chem Lett 5, 1421–1426 (2014). doi: 10.1021/jz5005285

    CrossRef Google Scholar

    [14] Pina JM, Parmar DH, Bappi G et al. Deep‐blue perovskite single‐mode lasing through efficient vapor‐assisted chlorination. Adv Mater 33, 2006697 (2021). doi: 10.1002/adma.202006697

    CrossRef Google Scholar

    [15] Chen ST, Roh K, Lee J et al. A photonic crystal laser from solution based organo-lead iodide perovskite thin films. ACS Nano 10, 3959–3967 (2016). doi: 10.1021/acsnano.5b08153

    CrossRef Google Scholar

    [16] Wu XX, Zhang S, Song JP et al. Exciton polariton condensation from bound states in the continuum at room temperature. Nat Commun 15, 3345 (2024). doi: 10.1038/s41467-024-47669-8

    CrossRef Google Scholar

    [17] Sutherland BR, Hoogland S, Adachi MM et al. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano 8, 10947–10952 (2014). doi: 10.1021/nn504856g

    CrossRef Google Scholar

    [18] Zhang Q, Su R, Liu XF et al. High‐quality whispering‐gallery‐mode lasing from cesium lead halide perovskite nanoplatelets. Adv Funct Mater 26, 6238–6245 (2016). doi: 10.1002/adfm.201601690

    CrossRef Google Scholar

    [19] Song JP, Shang QY, Deng XY et al. Continuous‐wave pumped perovskite lasers with device area below 1 µm2. Adv Mater 35, 2302170 (2023). doi: 10.1002/adma.202302170

    CrossRef Google Scholar

    [20] Qin CJ, Sandanayaka ASD, Zhao CY et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53–57 (2020). doi: 10.1038/s41586-020-2621-1

    CrossRef Google Scholar

    [21] Harwell JR, Whitworth GL, Turnbull GA et al. Green perovskite distributed feedback lasers. Sci Rep 7, 11727 (2017). doi: 10.1038/s41598-017-11569-3

    CrossRef Google Scholar

    [22] Kurahashi N, Runkel M, Kreusel C et al. Distributed feedback lasing in thermally imprinted phase‐stabilized CsPbI3 thin films. Adv Funct Mater 34, 2405976 (2024). doi: 10.1002/adfm.202405976

    CrossRef Google Scholar

    [23] Allegro I, Bonal V, Mamleyev ER et al. Distributed feedback lasers by thermal nanoimprint of perovskites using gelatin gratings. ACS Appl Mater Interfaces 15, 8436–8445 (2023). doi: 10.1021/acsami.2c22920

    CrossRef Google Scholar

    [24] Wang Q, Rogers ETF, Gholipour B et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat Photonics 10, 60–65 (2016). doi: 10.1038/nphoton.2015.247

    CrossRef Google Scholar

    [25] Zhang SJ, Chen XY, Liu K et al. Nonvolatile reconfigurable terahertz wave modulator. PhotoniX 3, 7 (2022). doi: 10.1186/s43074-022-00053-5

    CrossRef Google Scholar

    [26] Mao LB, Li Y, Li GX et al. Reversible switching of electromagnetically induced transparency in phase change metasurfaces. Adv Photonics 2, 056004 (2020).

    Google Scholar

    [27] Cao T, Lian M, Chen XY et al. Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials. Opto-Electron Sci 1, 210010 (2022).

    Google Scholar

    [28] Liu K, Lin ZY, Han B et al. Non-volatile dynamically switchable color display via chalcogenide stepwise cavity resonators. Opto-Electron Adv 7, 230033 (2024). doi: 10.29026/oea.2024.230033

    CrossRef Google Scholar

    [29] Zhu ZH, Evans PG, Haglund RF Jr et al. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett 17, 4881–4885 (2017). doi: 10.1021/acs.nanolett.7b01767

    CrossRef Google Scholar

    [30] Yuan R, Tiw PJ, Cai L et al. A neuromorphic physiological signal processing system based on VO2 memristor for next-generation human-machine interface. Nat Commun 14, 3695 (2023). doi: 10.1038/s41467-023-39430-4

    CrossRef Google Scholar

    [31] Shaltout AM, Shalaev VM, Brongersma ML. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019). doi: 10.1126/science.aat3100

    CrossRef Google Scholar

    [32] Zhang HB, Hu YZ, Wen W et al. Room-temperature continuous-wave vertical-cavity surface-emitting lasers based on 2D layered organic–inorganic hybrid perovskites. APL Mater 9, 071106 (2021). doi: 10.1063/5.0052458

    CrossRef Google Scholar

    [33] Zhan Y, Li C, Che ZG et al. Light management using photonic structures towards high-index perovskite optoelectronics: fundamentals, designing, and applications. Energy Environ Sci 16, 4135–4163 (2023). doi: 10.1039/D3EE00646H

    CrossRef Google Scholar

    [34] Chin XY, Cortecchia D, Yin J et al. Lead iodide perovskite light-emitting field-effect transistor. Nat Commun 6, 7383 (2015). doi: 10.1038/ncomms8383

    CrossRef Google Scholar

    [35] Xing GC, Mathews N, Lim SS et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater 13, 476–480 (2014). doi: 10.1038/nmat3911

    CrossRef Google Scholar

    [36] Makarov SV, Milichko V, Ushakova EV et al. Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces. ACS Photonics 4, 728–735 (2017). doi: 10.1021/acsphotonics.6b00940

    CrossRef Google Scholar

    [37] Caligiuri V, Siprova S, Godbert N et al. Enhanced spontaneous emission through high‐k modes in CsPbBr3 perovskite hyperbolic metamaterials. Laser Photonics Rev 18, 2301156 (2024). doi: 10.1002/lpor.202301156

    CrossRef Google Scholar

    [38] Gholipour B, Adamo G, Cortecchia D et al. Organometallic perovskite metasurfaces. Adv Mater 29, 1604268 (2017). doi: 10.1002/adma.201604268

    CrossRef Google Scholar

    [39] Gao YS, Huang C, Hao CL et al. Lead halide perovskite nanostructures for dynamic color display. ACS Nano 12, 8847–8854 (2018). doi: 10.1021/acsnano.8b02425

    CrossRef Google Scholar

    [40] Fan YB, Wang YH, Zhang N et al. Resonance-enhanced three-photon luminesce via lead halide perovskite metasurfaces for optical encoding. Nat Commun 10, 2085 (2019). doi: 10.1038/s41467-019-10090-7

    CrossRef Google Scholar

    [41] Xing D, Lin CC, Ho YL et al. Ligand engineering and recrystallization of perovskite quantum‐dot thin film for low‐threshold plasmonic lattice laser. Small 18, 2204070 (2022). doi: 10.1002/smll.202204070

    CrossRef Google Scholar

    [42] Huang SH, Shen ZX, Liao Y et al. Water‐resistant subwavelength perovskite lasing from transparent silica‐based nanocavity. Adv Mater 35, 2306102 (2023). doi: 10.1002/adma.202306102

    CrossRef Google Scholar

    [43] Liu ZZ, Hu MC, Du J et al. Subwavelength-polarized quasi-two-dimensional perovskite single-mode nanolaser. ACS Nano 15, 6900–6908 (2021). doi: 10.1021/acsnano.0c10647

    CrossRef Google Scholar

    [44] Ma ZW, Liu Z, Lu SY et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals. Nat Commun 9, 4506 (2018). doi: 10.1038/s41467-018-06840-8

    CrossRef Google Scholar

    [45] Wang YT, Quintana X, Kim J et al. Phase segregation in inorganic mixed-halide perovskites: from phenomena to mechanisms. Photonics Res 8, A56–A71 (2020). doi: 10.1364/PRJ.402411

    CrossRef Google Scholar

    [46] Sun B, Liu XF, Li XY et al. Reversible thermochromism and strong ferromagnetism in two‐dimensional hybrid perovskites. Angew Chem Int Ed 59, 203–208 (2020). doi: 10.1002/anie.201910701

    CrossRef Google Scholar

    [47] Jiang YJ, Soufiani AM, Gentle A et al. Temperature dependent optical properties of CH3NH3PbI3 perovskite by spectroscopic ellipsometry. Appl Phys Lett 108, 061905 (2016). doi: 10.1063/1.4941710

    CrossRef Google Scholar

    [48] Blancon JC, Even J, Stoumpos CC et al. Semiconductor physics of organic–inorganic 2D halide perovskites. Nat Nanotechnol 15, 969–985 (2020). doi: 10.1038/s41565-020-00811-1

    CrossRef Google Scholar

    [49] Zhang LX, Mei LY, Wang KY et al. Advances in the application of perovskite materials. Nano-Micro Lett 15, 177 (2023). doi: 10.1007/s40820-023-01140-3

    CrossRef Google Scholar

    [50] Yonemura M. Wavelength-change characteristics of semiconductor lasers and their application to holographic contouring. Opt Lett 10, 1–3 (1985). doi: 10.1364/OL.10.000001

    CrossRef Google Scholar

    [51] Kong WG, Ye ZY, Qi Z et al. Characterization of an abnormal photoluminescence behavior upon crystal-phase transition of perovskite CH3NH3PbI3. Phys Chem Chem Phys 17, 16405–16411 (2015). doi: 10.1039/C5CP02605A

    CrossRef Google Scholar

    [52] Yakunin S, Protesescu L, Krieg F et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat Commun 6, 8056 (2015). doi: 10.1038/ncomms9056

    CrossRef Google Scholar

    [53] Dang C, Lee J, Breen C et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat Nanotechnol 7, 335–339 (2012). doi: 10.1038/nnano.2012.61

    CrossRef Google Scholar

    [54] Li XH, Liu WW, Song YL et al. Two-photon-pumped high-quality, single-mode vertical cavity lasing based on perovskite monocrystalline films. Nano Energy 68, 104334 (2020). doi: 10.1016/j.nanoen.2019.104334

    CrossRef Google Scholar

    [55] Cadelano M, Sarritzu V, Sestu N et al. Can trihalide lead perovskites support continuous wave lasing. Adv Opt Mater 3, 1557–1564 (2015). doi: 10.1002/adom.201500229

    CrossRef Google Scholar

    [56] Jia YF, Kerner RA, Grede AJ et al. Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator. Nano Lett 16, 4624–4629 (2016). doi: 10.1021/acs.nanolett.6b01946

    CrossRef Google Scholar

    [57] Milot RL, Eperon GE, Snaith HJ et al. Temperature‐dependent charge‐carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv Funct Mater 25, 6218–6227 (2015). doi: 10.1002/adfm.201502340

    CrossRef Google Scholar

    [58] Whitworth GL, Harwell JR, Miller DN et al. Nanoimprinted distributed feedback lasers of solution processed hybrid perovskites. Opt Express 24, 23677–23684 (2016). doi: 10.1364/OE.24.023677

    CrossRef Google Scholar

    [59] Fu YP, Zhu HM, Schrader AW et al. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett 16, 1000–1008 (2016). doi: 10.1021/acs.nanolett.5b04053

    CrossRef Google Scholar

    [60] Shi ZF, Zhang F, Yan JJ et al. Robust frequency-upconversion lasing operated at 400 K from inorganic perovskites microcavity. Nano Res 15, 492–501 (2022). doi: 10.1007/s12274-021-3508-7

    CrossRef Google Scholar

    [61] Cao XH, Xing SY, Lai RC et al. Low‐threshold, external‐cavity‐free flexible perovskite lasers. Adv Funct Mater 33, 2211841 (2023). doi: 10.1002/adfm.202211841

    CrossRef Google Scholar

    [62] Zeng X, Liu ZZ, Du HJ et al. Achieving low threshold and high optical gain amplified spontaneous emission in MAPbI3 perovskite films via symmetric waveguide effect. Adv Opt Mater 10, 2201328 (2022). doi: 10.1002/adom.202201328

    CrossRef Google Scholar

    [63] Li GH, Tao JX, Hou Z et al. Room‐temperature single‐mode plasmonic perovskite nanolasers with sub‐picosecond pulses. Adv Funct Mater 34, 2405559 (2024). doi: 10.1002/adfm.202405559

    CrossRef Google Scholar

    [64] Li ZT, Moon J, Gharajeh A et al. Room-temperature continuous-wave operation of organometal halide perovskite lasers. ACS Nano 12, 10968–10976 (2018). doi: 10.1021/acsnano.8b04854

    CrossRef Google Scholar

    [65] Cha H, Bae S, Lee M et al. Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain. Appl Phys Lett 108, 181104 (2016). doi: 10.1063/1.4948681

    CrossRef Google Scholar

    [66] Chen ST, Zhang C, Lee J et al. High‐Q, low‐threshold monolithic perovskite thin‐film vertical‐cavity lasers. Adv Mater 29, 1604781 (2017). doi: 10.1002/adma.201604781

    CrossRef Google Scholar

  • Supplementary information for Tunable vertical cavity microlasers based on MAPbI3 phase change perovskite
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint