Citation: | Wang RZ, Su Y, Fan HJ et al. Tunable vertical cavity microlasers based on MAPbI3 phase change perovskite. Opto-Electron Adv 8, 240220 (2025). doi: 10.29026/oea.2025.240220 |
[1] | Huang C, Zhang C, Xiao SM et al. Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020). doi: 10.1126/science.aba4597 |
[2] | Zhu HM, Fu YP, Meng F et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater 14, 636–642 (2015). doi: 10.1038/nmat4271 |
[3] | Sun WZ, Liu YL, Qu GY et al. Lead halide perovskite vortex microlasers. Nat Commun 11, 4862 (2020). doi: 10.1038/s41467-020-18669-1 |
[4] | Adamo G, Swaha Krishnamoorthy HN, Cortecchia D et al. Metamaterial enhancement of metal-halide perovskite luminescence. Nano Lett 20, 7906–7911 (2020). doi: 10.1021/acs.nanolett.0c02571 |
[5] | Karlsson M, Yi ZY, Reichert S et al. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat Commun 12, 361 (2021). doi: 10.1038/s41467-020-20582-6 |
[6] | Makarov S, Furasova A, Tiguntseva E et al. Halide‐perovskite resonant nanophotonics. Adv Opt Mater 7, 1800784 (2019). doi: 10.1002/adom.201800784 |
[7] | Jeong J, Kim M, Seo J et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021). doi: 10.1038/s41586-021-03406-5 |
[8] | Shen XY, Gallant BM, Holzhey P et al. Chloride‐based additive engineering for efficient and stable wide‐bandgap perovskite solar cells. Adv Mater 35, 2211742 (2023). doi: 10.1002/adma.202211742 |
[9] | Li ZG, Cao Y, Feng JS et al. Stable and high‐efficiency perovskite solar cells using effective additive ytterbium fluoride. Small 19, 2303017 (2023). doi: 10.1002/smll.202303017 |
[10] | Swarnkar A, Marshall AR, Sanehira EM et al. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016). doi: 10.1126/science.aag2700 |
[11] | Chiba T, Hayashi Y, Ebe H et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics 12, 681–687 (2018). doi: 10.1038/s41566-018-0260-y |
[12] | Hao MM, Bai Y, Zeiske S et al. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1− x FA x PbI3 quantum dot solar cells with reduced phase segregation. Nat Energy 5, 79–88 (2020). doi: 10.1038/s41560-019-0535-7 |
[13] | Deschler F, Price M, Pathak S et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J Phys Chem Lett 5, 1421–1426 (2014). doi: 10.1021/jz5005285 |
[14] | Pina JM, Parmar DH, Bappi G et al. Deep‐blue perovskite single‐mode lasing through efficient vapor‐assisted chlorination. Adv Mater 33, 2006697 (2021). doi: 10.1002/adma.202006697 |
[15] | Chen ST, Roh K, Lee J et al. A photonic crystal laser from solution based organo-lead iodide perovskite thin films. ACS Nano 10, 3959–3967 (2016). doi: 10.1021/acsnano.5b08153 |
[16] | Wu XX, Zhang S, Song JP et al. Exciton polariton condensation from bound states in the continuum at room temperature. Nat Commun 15, 3345 (2024). doi: 10.1038/s41467-024-47669-8 |
[17] | Sutherland BR, Hoogland S, Adachi MM et al. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano 8, 10947–10952 (2014). doi: 10.1021/nn504856g |
[18] | Zhang Q, Su R, Liu XF et al. High‐quality whispering‐gallery‐mode lasing from cesium lead halide perovskite nanoplatelets. Adv Funct Mater 26, 6238–6245 (2016). doi: 10.1002/adfm.201601690 |
[19] | Song JP, Shang QY, Deng XY et al. Continuous‐wave pumped perovskite lasers with device area below 1 µm2. Adv Mater 35, 2302170 (2023). doi: 10.1002/adma.202302170 |
[20] | Qin CJ, Sandanayaka ASD, Zhao CY et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53–57 (2020). doi: 10.1038/s41586-020-2621-1 |
[21] | Harwell JR, Whitworth GL, Turnbull GA et al. Green perovskite distributed feedback lasers. Sci Rep 7, 11727 (2017). doi: 10.1038/s41598-017-11569-3 |
[22] | Kurahashi N, Runkel M, Kreusel C et al. Distributed feedback lasing in thermally imprinted phase‐stabilized CsPbI3 thin films. Adv Funct Mater 34, 2405976 (2024). doi: 10.1002/adfm.202405976 |
[23] | Allegro I, Bonal V, Mamleyev ER et al. Distributed feedback lasers by thermal nanoimprint of perovskites using gelatin gratings. ACS Appl Mater Interfaces 15, 8436–8445 (2023). doi: 10.1021/acsami.2c22920 |
[24] | Wang Q, Rogers ETF, Gholipour B et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat Photonics 10, 60–65 (2016). doi: 10.1038/nphoton.2015.247 |
[25] | Zhang SJ, Chen XY, Liu K et al. Nonvolatile reconfigurable terahertz wave modulator. PhotoniX 3, 7 (2022). doi: 10.1186/s43074-022-00053-5 |
[26] | Mao LB, Li Y, Li GX et al. Reversible switching of electromagnetically induced transparency in phase change metasurfaces. Adv Photonics 2, 056004 (2020). |
[27] | Cao T, Lian M, Chen XY et al. Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials. Opto-Electron Sci 1, 210010 (2022). |
[28] | Liu K, Lin ZY, Han B et al. Non-volatile dynamically switchable color display via chalcogenide stepwise cavity resonators. Opto-Electron Adv 7, 230033 (2024). doi: 10.29026/oea.2024.230033 |
[29] | Zhu ZH, Evans PG, Haglund RF Jr et al. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett 17, 4881–4885 (2017). doi: 10.1021/acs.nanolett.7b01767 |
[30] | Yuan R, Tiw PJ, Cai L et al. A neuromorphic physiological signal processing system based on VO2 memristor for next-generation human-machine interface. Nat Commun 14, 3695 (2023). doi: 10.1038/s41467-023-39430-4 |
[31] | Shaltout AM, Shalaev VM, Brongersma ML. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019). doi: 10.1126/science.aat3100 |
[32] | Zhang HB, Hu YZ, Wen W et al. Room-temperature continuous-wave vertical-cavity surface-emitting lasers based on 2D layered organic–inorganic hybrid perovskites. APL Mater 9, 071106 (2021). doi: 10.1063/5.0052458 |
[33] | Zhan Y, Li C, Che ZG et al. Light management using photonic structures towards high-index perovskite optoelectronics: fundamentals, designing, and applications. Energy Environ Sci 16, 4135–4163 (2023). doi: 10.1039/D3EE00646H |
[34] | Chin XY, Cortecchia D, Yin J et al. Lead iodide perovskite light-emitting field-effect transistor. Nat Commun 6, 7383 (2015). doi: 10.1038/ncomms8383 |
[35] | Xing GC, Mathews N, Lim SS et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater 13, 476–480 (2014). doi: 10.1038/nmat3911 |
[36] | Makarov SV, Milichko V, Ushakova EV et al. Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces. ACS Photonics 4, 728–735 (2017). doi: 10.1021/acsphotonics.6b00940 |
[37] | Caligiuri V, Siprova S, Godbert N et al. Enhanced spontaneous emission through high‐k modes in CsPbBr3 perovskite hyperbolic metamaterials. Laser Photonics Rev 18, 2301156 (2024). doi: 10.1002/lpor.202301156 |
[38] | Gholipour B, Adamo G, Cortecchia D et al. Organometallic perovskite metasurfaces. Adv Mater 29, 1604268 (2017). doi: 10.1002/adma.201604268 |
[39] | Gao YS, Huang C, Hao CL et al. Lead halide perovskite nanostructures for dynamic color display. ACS Nano 12, 8847–8854 (2018). doi: 10.1021/acsnano.8b02425 |
[40] | Fan YB, Wang YH, Zhang N et al. Resonance-enhanced three-photon luminesce via lead halide perovskite metasurfaces for optical encoding. Nat Commun 10, 2085 (2019). doi: 10.1038/s41467-019-10090-7 |
[41] | Xing D, Lin CC, Ho YL et al. Ligand engineering and recrystallization of perovskite quantum‐dot thin film for low‐threshold plasmonic lattice laser. Small 18, 2204070 (2022). doi: 10.1002/smll.202204070 |
[42] | Huang SH, Shen ZX, Liao Y et al. Water‐resistant subwavelength perovskite lasing from transparent silica‐based nanocavity. Adv Mater 35, 2306102 (2023). doi: 10.1002/adma.202306102 |
[43] | Liu ZZ, Hu MC, Du J et al. Subwavelength-polarized quasi-two-dimensional perovskite single-mode nanolaser. ACS Nano 15, 6900–6908 (2021). doi: 10.1021/acsnano.0c10647 |
[44] | Ma ZW, Liu Z, Lu SY et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals. Nat Commun 9, 4506 (2018). doi: 10.1038/s41467-018-06840-8 |
[45] | Wang YT, Quintana X, Kim J et al. Phase segregation in inorganic mixed-halide perovskites: from phenomena to mechanisms. Photonics Res 8, A56–A71 (2020). doi: 10.1364/PRJ.402411 |
[46] | Sun B, Liu XF, Li XY et al. Reversible thermochromism and strong ferromagnetism in two‐dimensional hybrid perovskites. Angew Chem Int Ed 59, 203–208 (2020). doi: 10.1002/anie.201910701 |
[47] | Jiang YJ, Soufiani AM, Gentle A et al. Temperature dependent optical properties of CH3NH3PbI3 perovskite by spectroscopic ellipsometry. Appl Phys Lett 108, 061905 (2016). doi: 10.1063/1.4941710 |
[48] | Blancon JC, Even J, Stoumpos CC et al. Semiconductor physics of organic–inorganic 2D halide perovskites. Nat Nanotechnol 15, 969–985 (2020). doi: 10.1038/s41565-020-00811-1 |
[49] | Zhang LX, Mei LY, Wang KY et al. Advances in the application of perovskite materials. Nano-Micro Lett 15, 177 (2023). doi: 10.1007/s40820-023-01140-3 |
[50] | Yonemura M. Wavelength-change characteristics of semiconductor lasers and their application to holographic contouring. Opt Lett 10, 1–3 (1985). doi: 10.1364/OL.10.000001 |
[51] | Kong WG, Ye ZY, Qi Z et al. Characterization of an abnormal photoluminescence behavior upon crystal-phase transition of perovskite CH3NH3PbI3. Phys Chem Chem Phys 17, 16405–16411 (2015). doi: 10.1039/C5CP02605A |
[52] | Yakunin S, Protesescu L, Krieg F et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat Commun 6, 8056 (2015). doi: 10.1038/ncomms9056 |
[53] | Dang C, Lee J, Breen C et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat Nanotechnol 7, 335–339 (2012). doi: 10.1038/nnano.2012.61 |
[54] | Li XH, Liu WW, Song YL et al. Two-photon-pumped high-quality, single-mode vertical cavity lasing based on perovskite monocrystalline films. Nano Energy 68, 104334 (2020). doi: 10.1016/j.nanoen.2019.104334 |
[55] | Cadelano M, Sarritzu V, Sestu N et al. Can trihalide lead perovskites support continuous wave lasing. Adv Opt Mater 3, 1557–1564 (2015). doi: 10.1002/adom.201500229 |
[56] | Jia YF, Kerner RA, Grede AJ et al. Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator. Nano Lett 16, 4624–4629 (2016). doi: 10.1021/acs.nanolett.6b01946 |
[57] | Milot RL, Eperon GE, Snaith HJ et al. Temperature‐dependent charge‐carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv Funct Mater 25, 6218–6227 (2015). doi: 10.1002/adfm.201502340 |
[58] | Whitworth GL, Harwell JR, Miller DN et al. Nanoimprinted distributed feedback lasers of solution processed hybrid perovskites. Opt Express 24, 23677–23684 (2016). doi: 10.1364/OE.24.023677 |
[59] | Fu YP, Zhu HM, Schrader AW et al. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett 16, 1000–1008 (2016). doi: 10.1021/acs.nanolett.5b04053 |
[60] | Shi ZF, Zhang F, Yan JJ et al. Robust frequency-upconversion lasing operated at 400 K from inorganic perovskites microcavity. Nano Res 15, 492–501 (2022). doi: 10.1007/s12274-021-3508-7 |
[61] | Cao XH, Xing SY, Lai RC et al. Low‐threshold, external‐cavity‐free flexible perovskite lasers. Adv Funct Mater 33, 2211841 (2023). doi: 10.1002/adfm.202211841 |
[62] | Zeng X, Liu ZZ, Du HJ et al. Achieving low threshold and high optical gain amplified spontaneous emission in MAPbI3 perovskite films via symmetric waveguide effect. Adv Opt Mater 10, 2201328 (2022). doi: 10.1002/adom.202201328 |
[63] | Li GH, Tao JX, Hou Z et al. Room‐temperature single‐mode plasmonic perovskite nanolasers with sub‐picosecond pulses. Adv Funct Mater 34, 2405559 (2024). doi: 10.1002/adfm.202405559 |
[64] | Li ZT, Moon J, Gharajeh A et al. Room-temperature continuous-wave operation of organometal halide perovskite lasers. ACS Nano 12, 10968–10976 (2018). doi: 10.1021/acsnano.8b04854 |
[65] | Cha H, Bae S, Lee M et al. Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain. Appl Phys Lett 108, 181104 (2016). doi: 10.1063/1.4948681 |
[66] | Chen ST, Zhang C, Lee J et al. High‐Q, low‐threshold monolithic perovskite thin‐film vertical‐cavity lasers. Adv Mater 29, 1604781 (2017). doi: 10.1002/adma.201604781 |
Supplementary information for Tunable vertical cavity microlasers based on MAPbI3 phase change perovskite |
![]() |
Phase-change perovskite vertical microcavity laser. (a) Schematic of a tunable microlaser based on phase-change perovskite gain medium, sandwiched between Au mirror and DBR reflector sitting on a quartz glass substrate, pumped by blue-violet laser (λ = 405 nm) and emitting a tunable beam in the near-IR from 790.7 nm to 799.5 nm. (b) Conceptual depiction of the two crystal structures of MAPbI3, the low-temperature (130 K) orthorhombic state and room-temperature (298 K) tetragonal state. (c) Cross-sectional SEM picture of the VCSEL. The inset shows a zoomed-in image to present the optimized morphology of Ta2O5/ SiO2 films. Scale bar: 1 μm. (d) The SEM image of a ~300 nm-thick MAPbI3 film residing on the DBR reflectors. Scale bar: 500 nm. The inset is a photograph of the vertical microcavity, scale bar: 1 cm.
(a) The absorptance and PL spectra of MAPbI3 nanocrystalline film with tetragonal (130 K, orange line) and orthorhombic (160 K, green line) states, respectively. (b) The ASE spectra of MAPbI3 phase change perovskite with the structural states of tetragonal (130 K, orange line) and orthorhombic (160 K, green line), respectively. (c) Reflectance spectra of top Au flake (orange line) and bottom DBR (green line), the green dashed line is the simulation of the bottom DBR reflectance spectra. (d) The measured PL spectra of the MAPbI3 based microcavity with the different states of tetragonal (29.5 μJ cm−2) and orthorhombic (8.1 μJ cm−2).
Laser performance of the VCSEL microlaser at different perovskite phase states. (a) Performance of the VCSEL microlasers based on the tetragonal MAPbI3: 130 K radiation spectra of the VCSEL against pump fluence (left column); light-light curve of the tetragonal laser at 130 K (right column). (b) Performance of the VCSEL with the orthorhombic MAPbI3: room-temperature radiation spectra of the VCSEL against pump fluence (left column); light-light curve of the orthorhombic laser at 160 K (right column).
(a) The L−L curve for the MAPbI3 VCSEL by increasing the temperature from 130 K to 160 K. (b) Lasing threshold pumping fluence versus temperature for the device. Stability characterizations of the VCSEL under fs pulsed excitation with pumping fluence at 1.1 Fth for both (c) tetragonal and (d) orthorhombic states, respectively.