Li XZ, Dai ST, et al. Light-induced enhancement of exciton transport in organic molecular crystal. Opto-Electron Adv 8, 240207 (2025). doi: 10.29026/oea.2025.240207
Citation: Li XZ, Dai ST, et al. Light-induced enhancement of exciton transport in organic molecular crystal. Opto-Electron Adv 8, 240207 (2025). doi: 10.29026/oea.2025.240207

Article Open Access

Light-induced enhancement of exciton transport in organic molecular crystal

More Information
  • Efficient exciton transport over long distances is crucial for organic optoelectronics. Despite efforts to improve the transport properties of organic semiconductors, the limited exciton diffusion remains a significant obstacle for light-harvesting applications. In this study, we observe phenomena where exciton transport is significantly enhanced by light irradiation in the organic molecular crystal of 2,2'-(2,5-bis(2,2-diphenylvinyl)-1,4-phenylene) dinaphthalene (BDVPN). The exciton transport in this material is improved, as evidenced by the increased diffusion coefficient from 10−3 cm2·s−1 to over 1 cm2·s−1 and a prolonged diffusion length from less than 50 nm to nearly 700 nm characterized by time-resolved photoluminescence microscopy (TPLM). Additionally, we confirmed the enhancement of charge transport capability under irradiation as additional evidence of improved transport properties of the material. These intriguing phenomena may be associated with the material’s twisted molecular conformation and rotatable single bonds, which facilitate light-induced structural alterations conducive to efficient transport properties. Our work provides a novel insight into developing organic semiconductors with efficient exciton transport.
  • 加载中
  • [1] Menke SM, Luhman WA, Holmes RJ. Tailored exciton diffusion in organic photovoltaic cells for enhanced power conversion efficiency. Nat Mater 12, 152–157 (2013). doi: 10.1038/nmat3467

    CrossRef Google Scholar

    [2] Lu H, Chen K, Bobba RS et al. Simultaneously enhancing exciton/charge transport in organic solar cells by an organoboron additive. Adv Mater 34, 2205926 (2022). doi: 10.1002/adma.202205926

    CrossRef Google Scholar

    [3] Sneyd AJ, Fukui T, Paleček D et al. Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization. Sci Adv 7, eabh4232 (2021). doi: 10.1126/sciadv.abh4232

    CrossRef Google Scholar

    [4] Alvertis AM, Haber JB, Engel EA et al. Phonon-induced localization of excitons in molecular crystals from first principles. Phys Rev Lett 130, 086401 (2023). doi: 10.1103/PhysRevLett.130.086401

    CrossRef Google Scholar

    [5] Mikhnenko OV, Blom PWM, Nguyen TQ. Exciton diffusion in organic semiconductors. Energy Environ Sci 8, 1867–1888 (2015). doi: 10.1039/C5EE00925A

    CrossRef Google Scholar

    [6] Menke SM, Holmes RJ. Exciton diffusion in organic photovoltaic cells. Energy Environ Sci 7, 499–512 (2014). doi: 10.1039/C3EE42444H

    CrossRef Google Scholar

    [7] Mikhnenko OV, Kuik M, Lin J et al. Trap-limited exciton diffusion in organic semiconductors. Adv Mater 26, 1912–1917 (2014). doi: 10.1002/adma.201304162

    CrossRef Google Scholar

    [8] Hedley GJ, Ward AJ, Alekseev A et al. Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells. Nat Commun 4, 2867 (2013). doi: 10.1038/ncomms3867

    CrossRef Google Scholar

    [9] Shaw PE, Ruseckas A, Samuel IDW. Exciton diffusion measurements in poly(3-hexylthiophene). Adv Mater 20, 3516–3520 (2008). doi: 10.1002/adma.200800982

    CrossRef Google Scholar

    [10] Markov DE, Tanase C, Blom PWM et al. Simultaneous enhancement of charge transport and exciton diffusion in poly (p-phenylene vinylene) derivatives. Phys Rev B 72, 045217 (2005). doi: 10.1103/PhysRevB.72.045217

    CrossRef Google Scholar

    [11] Lewis AJ, Ruseckas A, Gaudin OPM et al. Singlet exciton diffusion in MEH-PPV films studied by exciton–exciton annihilation. Org Electron 7, 452–456 (2006). doi: 10.1016/j.orgel.2006.05.009

    CrossRef Google Scholar

    [12] Balasubrahmaniyam M, Simkhovich A, Golombek A et al. From enhanced diffusion to ultrafast ballistic motion of hybrid light–matter excitations. Nat Mater 22, 338–344 (2023). doi: 10.1038/s41563-022-01463-3

    CrossRef Google Scholar

    [13] Liu B, Huang XJ, Hou SC et al. Photocurrent generation following long-range propagation of organic exciton–polaritons. Optica 9, 1029–1036 (2022). doi: 10.1364/OPTICA.461025

    CrossRef Google Scholar

    [14] Tichauer RH, Sokolovskii I, Groenhof G. Tuning the coherent propagation of organic exciton-polaritons through the cavity Q-factor. Adv Sci 10, 2302650 (2023). doi: 10.1002/advs.202302650

    CrossRef Google Scholar

    [15] Haedler AT, Kreger K, Issac A et al. Long-range energy transport in single supramolecular nanofibres at room temperature. Nature 523, 196–199 (2015). doi: 10.1038/nature14570

    CrossRef Google Scholar

    [16] Wittmann B, Wenzel FA, Wiesneth S et al. Enhancing long-range energy transport in supramolecular architectures by tailoring coherence properties. J Am Chem Soc 142, 8323–8330 (2020). doi: 10.1021/jacs.0c01392

    CrossRef Google Scholar

    [17] Jin XH, Price MB, Finnegan JR et al. Long-range exciton transport in conjugated polymer nanofibers prepared by seeded growth. Science 360, 897–900 (2018). doi: 10.1126/science.aar8104

    CrossRef Google Scholar

    [18] Wan Y, Stradomska A, Knoester J et al. Direct imaging of exciton transport in tubular porphyrin aggregates by ultrafast microscopy. J Am Chem Soc 139, 7287–7293 (2017). doi: 10.1021/jacs.7b01550

    CrossRef Google Scholar

    [19] Caram JR, Doria S, Eisele DM et al. Room-temperature micron-scale exciton migration in a stabilized emissive molecular aggregate. Nano Lett 16, 6808–6815 (2016). doi: 10.1021/acs.nanolett.6b02529

    CrossRef Google Scholar

    [20] Akselrod GM, Deotare PB, Thompson NJ et al. Visualization of exciton transport in ordered and disordered molecular solids. Nat Commun 5, 3646 (2014). doi: 10.1038/ncomms4646

    CrossRef Google Scholar

    [21] Najafov H, Lee B, Zhou Q et al. Observation of long-range exciton diffusion in highly ordered organic semiconductors. Nat Mater 9, 938–943 (2010). doi: 10.1038/nmat2872

    CrossRef Google Scholar

    [22] Wan Y, Guo Z, Zhu T et al. Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy. Nat Chem 7, 785–792 (2015). doi: 10.1038/nchem.2348

    CrossRef Google Scholar

    [23] Ziegler JD, Zipfel J, Meisinger B et al. Fast and anomalous exciton diffusion in two-dimensional hybrid perovskites. Nano Lett 20, 6674–6681 (2020). doi: 10.1021/acs.nanolett.0c02472

    CrossRef Google Scholar

    [24] Xiao X, Wu M, Ni ZY et al. Ultrafast exciton transport with a long diffusion length in layered perovskites with organic cation functionalization. Adv Mater 32, 2004080 (2020). doi: 10.1002/adma.202004080

    CrossRef Google Scholar

    [25] Wagner K, Zipfel J, Rosati R et al. Nonclassical exciton diffusion in monolayer WSe2. Phys Rev Lett 127, 076801 (2021). doi: 10.1103/PhysRevLett.127.076801

    CrossRef Google Scholar

    [26] Mazzio KA, Luscombe CK. The future of organic photovoltaics. Chem Soc Rev 44, 78–90 (2015). doi: 10.1039/C4CS00227J

    CrossRef Google Scholar

    [27] Ding DX, Wang ZC, Duan CB et al. White fluorescent organic light-emitting diodes with 100% power conversion. Research 2022, 0009 (2022). doi: 10.34133/research.0009

    CrossRef Google Scholar

    [28] Duan CB, Han CM, Zhang J et al. Manipulating charge-transfer excitons by exciplex matrix: toward thermally activated delayed fluorescence diodes with power efficiency beyond 110 lm W−1. Adv Funct Mater 31, 2102739 (2021). doi: 10.1002/adfm.202102739

    CrossRef Google Scholar

    [29] Chow PCY, Someya T. Organic photodetectors for next‐generation wearable electronics. Adv Mater 32, 1902045 (2020). doi: 10.1002/adma.201902045

    CrossRef Google Scholar

    [30] Liu K, Ouyang B, Guo XL et al. Advances in flexible organic field-effect transistors and their applications for flexible electronics. npj Flex Electron 6, 1 (2022). doi: 10.1038/s41528-022-00133-3

    CrossRef Google Scholar

    [31] Dai ST, Li XZ, Liu JW et al. Conformation‐confined organic butterfly‐molecule with high photoluminescence efficiency, deep‐blue amplified spontaneous emission, and unique piezochromic luminescence. Angew Chem Int Ed 64, e202414960 (2025); doi: 10.1002/anie.202414960

    CrossRef Google Scholar

    [32] Liu HP, Lu ZQ, Zhang ZL et al. Highly elastic organic crystals for flexible optical waveguides. Angew Chem Int Ed Engl 57, 8448–8452 (2018).

    Google Scholar

    [33] Penzo E, Loiudice A, Barnard ES et al. Long-range exciton diffusion in two-dimensional assemblies of cesium lead bromide perovskite nanocrystals. ACS Nano 14, 6999–7007 (2020). doi: 10.1021/acsnano.0c01536

    CrossRef Google Scholar

    [34] Shi ZF, Ni YZ, Huang JS. Direct observation of fast carriers transport along out-of-plane direction in a Dion–Jacobson layered perovskite. ACS Energy Lett 7, 984–987 (2022). doi: 10.1021/acsenergylett.2c00098

    CrossRef Google Scholar

    [35] Li XZ, Aihemaiti N, Fang HH et al. Optical visualization of photoexcitation diffusion in all-inorganic perovskite at high temperature. J Phys Chem Lett 13, 7645–7652 (2022). doi: 10.1021/acs.jpclett.2c01861

    CrossRef Google Scholar

    [36] Li ZD, Lu XB, Cordovilla Leon DF et al. Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano 15, 1539–1547 (2021). doi: 10.1021/acsnano.0c08981

    CrossRef Google Scholar

    [37] Tagarelli F, Lopriore E, Erkensten D et al. Electrical control of hybrid exciton transport in a van der Waals heterostructure. Nat Photonics 17, 615–621 (2023). doi: 10.1038/s41566-023-01198-w

    CrossRef Google Scholar

    [38] Sun Z, Ciarrocchi A, Tagarelli F et al. Excitonic transport driven by repulsive dipolar interaction in a van der Waals heterostructure. Nat Photonics 16, 79–85 (2022). doi: 10.1038/s41566-021-00908-6

    CrossRef Google Scholar

    [39] deQuilettes DW, Brenes R, Laitz M et al. Impact of photon recycling, grain boundaries, and nonlinear recombination on energy transport in semiconductors. ACS Photonics 9, 110–122 (2022).

    Google Scholar

    [40] An B, Li Z, Wang Z et al. Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site. Nat Mater 21, 932–938 (2022). doi: 10.1038/s41563-022-01279-1

    CrossRef Google Scholar

    [41] Wang H, Yong DY, Chen SC et al. Oxygen-vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation. J Am Chem Soc 140, 1760–1766 (2018). doi: 10.1021/jacs.7b10997

    CrossRef Google Scholar

    [42] Mateker WR, McGehee MD. Progress in understanding degradation mechanisms and improving stability in organic photovoltaics. Adv Mater 29, 1603940 (2017). doi: 10.1002/adma.201603940

    CrossRef Google Scholar

    [43] He D, Zeng M, Zhang ZZ et al. Exciton diffusion and dissociation in organic and quantum-dot solar cells. SmartMat 4, e1176 (2023). doi: 10.1002/smm2.1176

    CrossRef Google Scholar

    [44] Sajjad MT, Ruseckas A, Samuel IDW. Enhancing exciton diffusion length provides new opportunities for organic photovoltaics. Matter 3, 341–354 (2020). doi: 10.1016/j.matt.2020.06.028

    CrossRef Google Scholar

    [45] Sneyd AJ, Beljonne D, Rao A. A new frontier in exciton transport: transient delocalization. J Phys Chem Lett 13, 6820–6830 (2022). doi: 10.1021/acs.jpclett.2c01133

    CrossRef Google Scholar

    [46] Lu T, Chen QX. Interaction region indicator: a simple real space function clearly revealing both chemical bonds and weak interactions. Chem–Methods 1, 231–239 (2021).

    Google Scholar

    [47] Spackman PR, Turner MJ, McKinnon JJ et al. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Crystallogr 54, 1006–1011 (2021). doi: 10.1107/S1600576721002910

    CrossRef Google Scholar

    [48] Janiak C. A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J Chem Soc, Dalton Trans 3885–3896 (2000). doi: 10.1039/B003010O

    CrossRef Google Scholar

    [49] Spackman MA. Molecules in crystals. Phys Scr 87, 048103 (2013). doi: 10.1088/0031-8949/87/04/048103

    CrossRef Google Scholar

    [50] Dubin F, Melet R, Barisien T et al. Macroscopic coherence of a single exciton state in an organic quantum wire. Nat Phys 2, 32–35 (2006). doi: 10.1038/nphys196

    CrossRef Google Scholar

    [51] Engel GS, Calhoun TR, Read EL et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007). doi: 10.1038/nature05678

    CrossRef Google Scholar

    [52] Cao JS, Cogdell RJ, Coker DF et al. Quantum biology revisited. Sci Adv 6, eaaz4888 (2020). doi: 10.1126/sciadv.aaz4888

    CrossRef Google Scholar

  • Supplementary information for Light-induced enhancement of exciton transport in organic molecular crystal
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint