Liu YL, Dai ST, Zhu YM et al. Full-dimensional complex coherence properties tomography for multi-cipher information security. Opto-Electron Adv 8, 240278 (2025). doi: 10.29026/oea.2025.240278
Citation: Liu YL, Dai ST, Zhu YM et al. Full-dimensional complex coherence properties tomography for multi-cipher information security. Opto-Electron Adv 8, 240278 (2025). doi: 10.29026/oea.2025.240278

Article Open Access

Full-dimensional complex coherence properties tomography for multi-cipher information security

More Information
  • Optical coherence is a fundamental property of light, playing a key role in understanding interference, propagation, and light-matter interactions for both classical and quantum light. Measuring the coherence properties of an optical field is crucial for a wide range of applications. However, despite many proposed measurement schemes, significant challenges still remain. In this work, we present a protocol to measure the full-dimensional coherence properties of a partially coherent beam. The method is based on tomographing the complex coherent modes of the partially coherent field within its coherence time. Once the complex coherent modes are reconstructed, all coherence properties including field correlation and its higher-order correlations (e.g., intensity correlation) can be recovered for beams that are either spatially uniformly or non-uniformly correlated. We perform a proof-of-principle experiment to measure the complex field correlation and intensity correlation of a structured partially coherent beam synthesized by random modes. Additionally, we discuss the application of full-dimensional complex coherence function tomography in coherence-based multi-cipher information security. The robustness of our system in complex environments is also evaluated.
  • 加载中
  • [1] Rubinsztein-Dunlop H, Forbes A, Berry MV et al. Roadmap on structured light. J Opt 19, 013001 (2017). doi: 10.1088/2040-8978/19/1/013001

    CrossRef Google Scholar

    [2] Forbes A, de Oliveira M, Dennis MR. Structured light. Nat Photonics 15, 253–262 (2021). doi: 10.1038/s41566-021-00780-4

    CrossRef Google Scholar

    [3] Shen YJ, Zhan QW, Wright LG et al. Roadmap on spatiotemporal light fields. J Opt 25, 093001 (2023). doi: 10.1088/2040-8986/ace4dc

    CrossRef Google Scholar

    [4] Mandel L, Wolf E. Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995).

    Google Scholar

    [5] Friberg AT, Setälä T. Electromagnetic theory of optical coherence [invited]. J Opt Soc Am A 33, 2431–2442 (2016). doi: 10.1364/JOSAA.33.002431

    CrossRef Google Scholar

    [6] Cai YJ, Chen YH, Wang F. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review [invited]. J Opt Soc Am A 31, 2083–2096 (2014).

    Google Scholar

    [7] Yu JY, Zhu XL, Wang F et al. Research progress on manipulating spatial coherence structure of light beam and its applications. Prog Quantum Electron 91, 100486 (2023).

    Google Scholar

    [8] Batarseh M, Sukhov S, Shen Z et al. Passive sensing around the corner using spatial coherence. Nat Commun 9, 3629 (2018). doi: 10.1038/s41467-018-05985-w

    CrossRef Google Scholar

    [9] Peng YF, Choi S, Kim J et al. Speckle-free holography with partially coherent light sources and camera-in-the-loop calibration. Sci Adv 7, 5040 (2021). doi: 10.1126/sciadv.abg5040

    CrossRef Google Scholar

    [10] Zhu L, Soldevila F, Moretti C et al. Large field-of-view non-invasive imaging through scattering layers using fluctuating random illumination. Nat Commun 13, 1447 (2022). doi: 10.1038/s41467-022-29166-y

    CrossRef Google Scholar

    [11] Dong BW, Brückerhoff-Plückelmann F, Meyer L et al. Partial coherence enhances parallelized photonic computing. Nature 632, 55–62 (2024). doi: 10.1038/s41586-024-07590-y

    CrossRef Google Scholar

    [12] Chen YH, Norrman A, Ponomarenko SA et al. Optical coherence and electromagnetic surface waves. Prog Opt 65, 105–172 (2020).

    Google Scholar

    [13] Jin Y, Wang HY, Liu L et al. Orientation-selective sub-Rayleigh imaging with spatial coherence lattices. Opt Express 30, 9548–9561 (2022). doi: 10.1364/OE.454782

    CrossRef Google Scholar

    [14] Liu YL, Chen YH, Wang F et al. Robust far-field imaging by spatial coherence engineering. Opto-Electron Adv 4, 210027 (2021). doi: 10.29026/oea.2021.210027

    CrossRef Google Scholar

    [15] Liu YL, Zhang X, Dong Z et al. Robust far-field optical image transmission with structured random light beams. Phys Rev Appl 17, 024043 (2022). doi: 10.1103/PhysRevApplied.17.024043

    CrossRef Google Scholar

    [16] Yu JY, Xu Y, Lin SQ et al. Longitudinal optical trapping and manipulating Rayleigh particles by spatial nonuniform coherence engineering. Phys Rev A 106, 033511 (2022). doi: 10.1103/PhysRevA.106.033511

    CrossRef Google Scholar

    [17] Chen YH, Wang F, Cai YJ. Partially coherent light beam shaping via complex spatial coherence structure engineering. Adv Phys: X 7, 2009742 (2022).

    Google Scholar

    [18] Lin R, Chen MY, Liu YL et al. Measuring refractive indices of a uniaxial crystal by structured light with non-uniform correlation. Opt Lett 46, 2268–2271 (2021). doi: 10.1364/OL.424259

    CrossRef Google Scholar

    [19] Li WH, Wu D, Chen YH et al. Sensing azimuthally symmetric objects by a single-pixel detector via COAM matrix. Appl Phys Lett 122, 251106 (2023). doi: 10.1063/5.0153689

    CrossRef Google Scholar

    [20] Zhao XC, Wang ZY, Lu XL et al. Ultrahigh precision angular velocity measurement using frequency shift of partially coherent beams. Laser Photonics Rev 17, 2300318 (2023). doi: 10.1002/lpor.202300318

    CrossRef Google Scholar

    [21] Lu XY, Wang ZY, Zhan QW et al. Coherence entropy during propagation through complex media. Adv Photonics 6, 046002 (2024).

    Google Scholar

    [22] Peng DM, Huang ZF, Liu YL et al. Optical coherence encryption with structured random light. PhotoniX 2, 6 (2021). doi: 10.1186/s43074-021-00027-z

    CrossRef Google Scholar

    [23] Liu YL, Dong Z, Zhu YM et al. Three-channel robust optical encryption via engineering coherence Stokes vector of partially coherent light. PhotoniX 5, 8 (2024). doi: 10.1186/s43074-024-00126-7

    CrossRef Google Scholar

    [24] Turunen J, Halder A, Koivurova M et al. Measurement of spatial coherence of light [invited]. J Opt Soc Am A 39, C214–C239 (2022). doi: 10.1364/JOSAA.475374

    CrossRef Google Scholar

    [25] Arimoto H, Ohtsuka Y. Measurements of the complex degree of spectral coherence by use of a wave-front-folded interferometer. Opt Lett 22, 958–960 (1997). doi: 10.1364/OL.22.000958

    CrossRef Google Scholar

    [26] Santarsiero M, Borghi R. Measuring spatial coherence by using a reversed-wavefront young interferometer. Opt Lett 31, 861–863 (2006). doi: 10.1364/OL.31.000861

    CrossRef Google Scholar

    [27] Naraghi RR, Gemar H, Batarseh M et al. Wide-field interferometric measurement of a nonstationary complex coherence function. Opt Lett 42, 4929–4932 (2017). doi: 10.1364/OL.42.004929

    CrossRef Google Scholar

    [28] Takeda M, Wang W, Naik DN et al. Spatial statistical optics and spatial correlation holography: a review. Opt Rev 21, 849–861 (2014). doi: 10.1007/s10043-014-0138-2

    CrossRef Google Scholar

    [29] Wood JK, Sharma KA, Cho S et al. Using shadows to measure spatial coherence. Opt Lett 39, 4927–4930 (2014). doi: 10.1364/OL.39.004927

    CrossRef Google Scholar

    [30] Sharma KA, Brown TG, Alonso MA. Phase-space approach to lensless measurements of optical field correlations. Opt Express 24, 16099–16110 (2016). doi: 10.1364/OE.24.016099

    CrossRef Google Scholar

    [31] Sharma KA, Costello G, Vélez-Juárez E et al. Measuring vector field correlations using diffraction. Opt Express 26, 8301–8313 (2018). doi: 10.1364/OE.26.008301

    CrossRef Google Scholar

    [32] Liu X, Chen Q, Zeng J et al. Measurement of optical coherence structures of random optical fields using generalized Arago spot experiment. Opto-Electron Sci 2, 220024 (2023). doi: 10.29026/oes.2023.220024

    CrossRef Google Scholar

    [33] Huang ZF, Chen YH, Wang F et al. Measuring complex degree of coherence of random light fields with generalized Hanbury Brown–Twiss experiment. Phys Rev Appl 13, 044042 (2020). doi: 10.1103/PhysRevApplied.13.044042

    CrossRef Google Scholar

    [34] Yoneda N, Quan XY, Matoba O. Single-shot generalized Hanbury Brown–Twiss experiments using a polarization camera for target intensity reconstruction in scattering media. Opt Lett 48, 632–635 (2023). doi: 10.1364/OL.479475

    CrossRef Google Scholar

    [35] Lu XY, Wang ZY, Zhao CL et al. Four-dimensional experimental characterization of partially coherent light using incoherent modal decomposition. Nanophotonics 12, 3463–3470 (2023). doi: 10.1515/nanoph-2023-0288

    CrossRef Google Scholar

    [36] Korotkova O, Gbur G. Unified matrix representation for spin and orbital angular momentum in partially coherent beams. Phys Rev A 103, 023529 (2021). doi: 10.1103/PhysRevA.103.023529

    CrossRef Google Scholar

    [37] Ostrovsky AS. Coherent-Mode Representations in Optics (SPIE, Bellingham, 2006).

    Google Scholar

    [38] Ponomarenko SA. Complex Gaussian representation of statistical pulses. Opt Express 19, 17086–17091 (2011). doi: 10.1364/OE.19.017086

    CrossRef Google Scholar

    [39] Hyde IV MW, Basu S, Voelz DG et al. Experimentally generating any desired partially coherent Schell-model source using phase-only control. J Appl Phys 118, 093102 (2015). doi: 10.1063/1.4929811

    CrossRef Google Scholar

    [40] Hyde MW. Stochastic complex transmittance screens for synthesizing general partially coherent sources. J Opt Soc Am A 37, 257–264 (2020).

    Google Scholar

    [41] Hyde MW. Simulating random optical fields: tutorial. J Opt Soc Am A 39, 2383–2397 (2022). doi: 10.1364/JOSAA.465457

    CrossRef Google Scholar

    [42] Gori F, Santarsiero M. Devising genuine spatial correlation functions. Opt Lett 32, 3531–3533 (2007). doi: 10.1364/OL.32.003531

    CrossRef Google Scholar

    [43] Gori F, Ramírez-Sánchez V, Santarsiero M et al. On genuine cross-spectral density matrices. J Opt A Pure Appl Opt 11, 085706 (2009). doi: 10.1088/1464-4258/11/8/085706

    CrossRef Google Scholar

    [44] Martínez-Herrero R, Mejías PM, Gori F. Genuine cross-spectral densities and pseudo-modal expansions. Opt Lett 34, 1399–1401 (2009). doi: 10.1364/OL.34.001399

    CrossRef Google Scholar

    [45] Martínez-Herrero R, Mejías PM. Elementary-field expansions of genuine cross-spectral density matrices. Opt Lett 34, 2303–2305 (2009). doi: 10.1364/OL.34.002303

    CrossRef Google Scholar

    [46] Wang F, Lv H, Chen YH et al. Three modal decompositions of Gaussian Schell-model sources: comparative analysis. Opt Express 29, 29676–29689 (2021). doi: 10.1364/OE.435767

    CrossRef Google Scholar

    [47] Mir M, Bhaduri B, Wang R et al. Quantitative phase imaging. Prog Opt 57, 133–217 (2012).

    Google Scholar

    [48] Cai YJ, Chen YH, Yu JY et al. Generation of partially coherent beams. Prog Opt 62, 157–223 (2017).

    Google Scholar

    [49] Wang F, Liu XL, Yuan YS et al. Experimental generation of partially coherent beams with different complex degrees of coherence. Opt Lett 38, 1814–1816 (2013). doi: 10.1364/OL.38.001814

    CrossRef Google Scholar

    [50] Liang CH, Wang F, Liu XL et al. Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry. Opt Lett 39, 769–772 (2014). doi: 10.1364/OL.39.000769

    CrossRef Google Scholar

    [51] Goodman JW. Speckle Phenomena in Optics (Roberts & Co, Englewood, 2007).

    Google Scholar

    [52] Yang YQ, Forbes A, Cao LC. A review of liquid crystal spatial light modulators: devices and applications. Opto-Electron Sci 2, 230026 (2023). doi: 10.29026/oes.2023.230026

    CrossRef Google Scholar

    [53] Wang Z, Bovik AC, Sheikh HR et al. Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 13, 600–612 (2004). doi: 10.1109/TIP.2003.819861

    CrossRef Google Scholar

    [54] Kellman P, McVeigh ER. Image reconstruction in SNR units: a general method for SNR measurement. Magn Reson Med 54, 1439–1447 (2005). doi: 10.1002/mrm.20713

    CrossRef Google Scholar

    [55] van Dijk T, Schouten HF, Visser TD. Coherence singularities in the field generated by partially coherent sources. Phys Rev A 79, 033805 (2009). doi: 10.1103/PhysRevA.79.033805

    CrossRef Google Scholar

    [56] Gbur G, Visser TD. The structure of partially coherent fields. Prog Opt 55, 285–341 (2010).

    Google Scholar

    [57] Simula TP, Paganin DM. Coherence simplices. New J Phys 14, 113015 (2012). doi: 10.1088/1367-2630/14/11/113015

    CrossRef Google Scholar

    [58] Tschernig K, Martinez-Niconoff G, Busch K et al. Topological protection of partially coherent light. Photonics Res 10, 1223–1231 (2022). doi: 10.1364/PRJ.453603

    CrossRef Google Scholar

    [59] Ricklin JC, Davidson FM. Atmospheric turbulence effects on a partially coherent Gaussian beam: Implications for free-space laser communication. J Opt Soc Am A 19, 1794–1802 (2002).

    Google Scholar

    [60] Ricklin JC, Davidson FM. Atmospheric optical communication with a Gaussian Schell beam. J Opt Soc Am A 20, 856–866 (2003). doi: 10.1364/JOSAA.20.000856

    CrossRef Google Scholar

    [61] Liu LX, Liu WW, Wang F et al. Spatial coherence manipulation on the disorder-engineered statistical photonic platform. Nano Lett 22, 6342–6349 (2022). doi: 10.1021/acs.nanolett.2c02115

    CrossRef Google Scholar

    [62] Liu LX, Liu WW, Wang F et al. Ultra-robust informational metasurfaces based on spatial coherence structures engineering. Light Sci Appl 13, 131 (2024). doi: 10.1038/s41377-024-01485-3

    CrossRef Google Scholar

    [63] Zhang F, Guo YH, Pu MB et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun 14, 1946 (2023). doi: 10.1038/s41467-023-37510-z

    CrossRef Google Scholar

    [64] Xu X, Qiao SY, Guo YH et al. Optical information encryption based on secret sharing liquid crystal elements with spatial dislocation. Laser Photonics Rev 18, 2400168 (2024). doi: 10.1002/lpor.202400168

    CrossRef Google Scholar

    [65] Nan T, Zhao H, Guo JY et al. Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces. Opto-Electron Sci 3, 230052 (2024). doi: 10.29026/oes.2024.230052

    CrossRef Google Scholar

  • Supplementary information for Full-dimensional complex coherence properties tomography for multi-cipher information security
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint