Feng XD, Zhang TQ, Liu XJ et al. Single-layer, cascaded and broadband-heat-dissipation metasurface for multi-wavelength lasers and infrared camouflage. Opto-Electron Adv 8, 240280 (2025). doi: 10.29026/oea.2025.240280
Citation: Feng XD, Zhang TQ, Liu XJ et al. Single-layer, cascaded and broadband-heat-dissipation metasurface for multi-wavelength lasers and infrared camouflage. Opto-Electron Adv 8, 240280 (2025). doi: 10.29026/oea.2025.240280

Article Open Access

Single-layer, cascaded and broadband-heat-dissipation metasurface for multi-wavelength lasers and infrared camouflage

More Information
  • The combination of advanced photoelectric detectors has rendered single-band camouflage materials ineffective, necessitating the development of infrared multispectral camouflage. However, the design and fabrication of existing works remain complex as they usually require the integration of multiscale structures. Here, we introduce phase modulation into the infrared camouflage metasurfaces with metal-dielectric-metal configuration, enabling them to achieve camouflage across more bands. Based on this strategy, a simple but effective single-layer cascaded metasurface is demonstrated for the first time to achieve low reflection at multi-wavelength lasers, low infrared radiation in atmospheric windows, and broadband thermal management. As a proof-of-concept, a 4-inch sample with a minimum linewidth of 1.8 μm is fabricated using photolithography. The excellent infrared multispectral camouflage performance is verified in experiments, showing low reflectance in 0.9–1.6 μm, low infrared emissivity in mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) bands, and high absorptance at the wavelength of 10.6 μm. Meanwhile, broadband high emissivity in 5–8 μm can provide high-performance radiative heat dissipation. When the input power is 1.57 W∙cm-2, the surface/radiation temperature of the metasurface decreases by 5.3 °C/18.7 °C compared to the reference. The proposed metasurface may trigger further innovation in the design and application of compact multispectral optical devices.
  • 加载中
  • [1] Ermatov T, Noskov RE, Machnev AA et al. Multispectral sensing of biological liquids with hollow-core microstructured optical fibres. Light Sci Appl 9, 173 (2020). doi: 10.1038/s41377-020-00410-8

    CrossRef Google Scholar

    [2] Wu RH, Sui CX, Chen TH et al. Spectrally engineered textile for radiative cooling against urban heat islands. Science 384, 1203–1212 (2024). doi: 10.1126/science.adl0653

    CrossRef Google Scholar

    [3] Mu G, Tan YM, Bi C et al. Visible to mid-wave infrared PbS/HgTe colloidal quantum dot imagers. Nat Photonics 18, 1147–1154 (2024). doi: 10.1038/s41566-024-01492-1

    CrossRef Google Scholar

    [4] Zhu HZ, Li Q, Tao CN et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat Commun 12, 1805 (2021). doi: 10.1038/s41467-021-22051-0

    CrossRef Google Scholar

    [5] Xie X, Li X, Pu MB et al. Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv Funct Mater 28, 1706673 (2018). doi: 10.1002/adfm.201706673

    CrossRef Google Scholar

    [6] Feng XD, Pu MB, Zhang F et al. Large-area low-cost multiscale-hierarchical metasurfaces for multispectral compatible camouflage of dual-band lasers, infrared and microwave. Adv Funct Mater 32, 2205547 (2022). doi: 10.1002/adfm.202205547

    CrossRef Google Scholar

    [7] Wu Y, Tan SJ, Zhao Y et al. Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Prog Mater Sci 135, 101088 (2023). doi: 10.1016/j.pmatsci.2023.101088

    CrossRef Google Scholar

    [8] Lu XW, Sun L, Jiang P et al. Progress of photodetectors based on the photothermoelectric effect. Adv Mater 31, 1902044 (2019). doi: 10.1002/adma.201902044

    CrossRef Google Scholar

    [9] Teng F, Hu K, Ouyang WX et al. Photoelectric detectors based on inorganic p-type semiconductor materials. Adv Mater 30, 1706262 (2018). doi: 10.1002/adma.201706262

    CrossRef Google Scholar

    [10] Molebny V, McManamon PF, Steinvall O et al. Laser radar: historical prospective—from the East to the West. Opt Eng 56, 031220 (2016). doi: 10.1117/1.OE.56.3.031220

    CrossRef Google Scholar

    [11] Feng XD, Xie X, Pu MB et al. Hierarchical metamaterials for laser-infrared-microwave compatible camouflage. Opt Express 28, 9445–9453 (2020). doi: 10.1364/OE.388335

    CrossRef Google Scholar

    [12] Yu K, Zhang W, Qian MD et al. Multiband metamaterial emitters for infrared and laser compatible stealth with thermal management based on dissipative dielectrics. Photonics Res 11, 290–298 (2023). doi: 10.1364/PRJ.476109

    CrossRef Google Scholar

    [13] Liu XH, Wang P, Xiao CY et al. A bioinspired bilevel metamaterial for multispectral manipulation toward visible, multi‐wavelength detection lasers and mid‐infrared selective radiation. Adv Mater 35, 2302844 (2023). doi: 10.1002/adma.202302844

    CrossRef Google Scholar

    [14] Dang SC, Ye H. A visible-infrared-compatible camouflage photonic crystal with heat dissipation by radiation in 5–8 μm. Cell Rep Phys Sci 2, 100617 (2021). doi: 10.1016/j.xcrp.2021.100617

    CrossRef Google Scholar

    [15] Jiang XP, Yuan H, He X et al. Implementing of infrared camouflage with thermal management based on inverse design and hierarchical metamaterial. Nanophotonics 12, 1891–1902 (2023). doi: 10.1515/nanoph-2023-0067

    CrossRef Google Scholar

    [16] Qin B, Zhu YN, Zhou YW et al. Whole-infrared-band camouflage with dual-band radiative heat dissipation. Light Sci Appl 12, 246 (2023). doi: 10.1038/s41377-023-01287-z

    CrossRef Google Scholar

    [17] Hu R, Xi W, Liu YD et al. Thermal camouflaging metamaterials. Mater Today 45, 120–141 (2021). doi: 10.1016/j.mattod.2020.11.013

    CrossRef Google Scholar

    [18] Pan MY, Huang Y, Li Q et al. Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures. Nano Energy 69, 104449 (2020). doi: 10.1016/j.nanoen.2020.104449

    CrossRef Google Scholar

    [19] Kim T, Bae JY, Lee N et al. Hierarchical metamaterials for multispectral camouflage of infrared and microwaves. Adv Funct Mater 29, 1807319 (2019). doi: 10.1002/adfm.201807319

    CrossRef Google Scholar

    [20] Greffet JJ, Nieto-Vesperinas M. Field theory for generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law. J Opt Soc Am A 15, 2735–2744 (1998). doi: 10.1364/JOSAA.15.002735

    CrossRef Google Scholar

    [21] Yu NF, Genevet P, Kats MA et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [22] Pu MB, Li X, Ma XL et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [23] Song QH, Odeh M, Zúñiga-Pérez J et al. Plasmonic topological metasurface by encircling an exceptional point. Science 373, 1133–1137 (2021). doi: 10.1126/science.abj3179

    CrossRef Google Scholar

    [24] Chen WT, Zhu AY, Sanjeev V et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol 13, 220–226 (2018). doi: 10.1038/s41565-017-0034-6

    CrossRef Google Scholar

    [25] Wang YL, Fan QB, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv 4, 200008 (2021). doi: 10.29026/oea.2021.200008

    CrossRef Google Scholar

    [26] Li XY, Chen C, Guo YH et al. Monolithic spiral metalens for ultrahigh‐capacity and single‐shot sorting of full angular momentum state. Adv Funct Mater 34, 2311286 (2024). doi: 10.1002/adfm.202311286

    CrossRef Google Scholar

    [27] Li X, Chen LW, Li Y et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [28] Gopakumar M, Lee GY, Choi S et al. Full-colour 3D holographic augmented-reality displays with metasurface waveguides. Nature 629, 791–797 (2024). doi: 10.1038/s41586-024-07386-0

    CrossRef Google Scholar

    [29] Wu H, Huang YA, Xu F et al. Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability. Adv Mater 28, 9881–9919 (2016). doi: 10.1002/adma.201602251

    CrossRef Google Scholar

    [30] Jiang S, Guo DL, Zhang L et al. Electropolishing-enhanced, high-precision 3D printing of metallic pentamode metamaterials. Mater Des 223, 111211 (2022). doi: 10.1016/j.matdes.2022.111211

    CrossRef Google Scholar

    [31] Wang YL, Zhao C, Wang JJ et al. Wearable plasmonic-metasurface sensor for noninvasive and universal molecular fingerprint detection on biointerfaces. Sci Adv 7, eabe4553 (2021). doi: 10.1126/sciadv.abe4553

    CrossRef Google Scholar

    [32] Xiong YX, Lin ZQ, Zhao ZY et al. A template-stripped carbon nanofiber/poly(styrene-butadiene-styrene) compound for high-sensitivity pressure and strain sensing. Soft Sci 2, 14 (2022). doi: 10.20517/ss.2022.12

    CrossRef Google Scholar

    [33] Zhou YL, Wang SL, Yin JY et al. Flexible metasurfaces for multifunctional interfaces. ACS Nano 18, 2685–2707 (2024). doi: 10.1021/acsnano.3c09310

    CrossRef Google Scholar

    [34] Arab Hassani F. Bioreceptor-inspired soft sensor arrays: recent progress towards advancing digital healthcare. Soft Sci 3, 31 (2023).

    Google Scholar

    [35] Xie F, Jin WL, Nolen JR et al. Subambient daytime radiative cooling of vertical surfaces. Science 386, 788–794 (2024). doi: 10.1126/science.adn2524

    CrossRef Google Scholar

    [36] Lee N, Lim JS, Chang I et al. Flexible thermocamouflage materials in supersonic flowfields with selective energy dissipation. ACS Appl Mater Interfaces 13, 43524–43532 (2021). doi: 10.1021/acsami.1c09333

    CrossRef Google Scholar

    [37] Lee N, Kim T, Lim JS et al. Metamaterial-selective emitter for maximizing infrared camouflage performance with energy dissipation. ACS Appl Mater Interfaces 11, 21250–21257 (2019). doi: 10.1021/acsami.9b04478

    CrossRef Google Scholar

    [38] Lee N, Yoon B, Kim T et al. Multiple resonance metamaterial emitter for deception of infrared emission with enhanced energy dissipation. ACS Appl Mater Interfaces 12, 8862–8869 (2020). doi: 10.1021/acsami.9b21030

    CrossRef Google Scholar

    [39] Wu YJ, Luo J, Pu MB et al. Optically transparent infrared selective emitter for visible-infrared compatible camouflage. Opt Express 30, 17259–17269 (2022). doi: 10.1364/OE.457547

    CrossRef Google Scholar

    [40] Guo HT, Yang XL, Zhu D. Easy-to-manufacture in-line 2D nano antenna for enhanced radiation-cooled IR camouflage. ACS Photonics 10, 1405–1415 (2023). doi: 10.1021/acsphotonics.3c00024

    CrossRef Google Scholar

    [41] Li W, Wu SL, Tian CH et al. Multi-resonance coupled metal pattern metamaterial for selective thermal emission. J Nanophoton 18, 016012 (2024).

    Google Scholar

    [42] Lim JS, Lee N, Kim T et al. Multiresonant selective emitter with enhanced thermal management for infrared camouflage. ACS Appl Mater Interfaces 16, 15416–15425 (2024). doi: 10.1021/acsami.3c15504

    CrossRef Google Scholar

    [43] Zhang CL, Huang C, Pu MB et al. Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance. Sci Rep 7, 5652 (2017). doi: 10.1038/s41598-017-06087-1

    CrossRef Google Scholar

    [44] Pu MB, Zhao ZY, Wang YQ et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Sci Rep 5, 9822 (2015). doi: 10.1038/srep09822

    CrossRef Google Scholar

    [45] Xi W, Lee YJ, Yu SL et al. Ultrahigh-efficient material informatics inverse design of thermal metamaterials for visible-infrared-compatible camouflage. Nat Commun 14, 4694 (2023). doi: 10.1038/s41467-023-40350-6

    CrossRef Google Scholar

    [46] Wei H, Gu JX, Zhao T et al. Tunable VO2 cavity enables multispectral manipulation from visible to microwave frequencies. Light Sci Appl 13, 54 (2024). doi: 10.1038/s41377-024-01400-w

    CrossRef Google Scholar

    [47] Huang JK, Wang YT, Yuan LM et al. Large‐area and flexible plasmonic metasurface for laser–infrared compatible camouflage. Laser Photonics Rev 17, 2200616 (2023). doi: 10.1002/lpor.202200616

    CrossRef Google Scholar

    [48] Koechlin C, Bouchon P, Pardo F et al. Total routing and absorption of photons in dual color plasmonic antennas. Appl Phys Lett 99, 241104 (2011). doi: 10.1063/1.3670051

    CrossRef Google Scholar

    [49] Bouchon P, Koechlin C, Pardo F et al. Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas. Opt Lett 37, 1038–1040 (2012). doi: 10.1364/OL.37.001038

    CrossRef Google Scholar

    [50] Chen YB, Chiu FC. Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon near zero mode, and magnetic polaritons. Opt Express 21, 20771–20785 (2013). doi: 10.1364/OE.21.020771

    CrossRef Google Scholar

    [51] Hao JM, Wang J, Liu XL et al. High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96, 251104 (2010). doi: 10.1063/1.3442904

    CrossRef Google Scholar

  • Supplementary information for Single-layer, cascaded and broadband-heatdissipation metasurface for multi-wavelength lasers and infrared camouflage
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint