Citation: | Rane S, Prabhu S, Chowdhury DR. Physics and applications of terahertz metagratings. Opto-Electron Sci 3, 230049 (2024). doi: 10.29026/oes.2024.230049 |
[1] | Cheben P, Halir R, Schmid JH et al. Subwavelength integrated photonics. Nature 560, 565–572 (2018). doi: 10.1038/s41586-018-0421-7 |
[2] | Shvets G, Trendafilov S, Pendry JB et al. Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays. Phys Rev Lett 99, 053903 (2007). doi: 10.1103/PhysRevLett.99.053903 |
[3] | Luo XG. Subwavelength optical engineering with metasurface waves. Adv Opt Mater 6, 1701201 (2018). doi: 10.1002/adom.201701201 |
[4] | Luo XG. Subwavelength artificial structures: opening a new era for engineering optics. Adv Mater 31, 1804680 (2019). doi: 10.1002/adma.201804680 |
[5] | Luo XG, Pu MB, Guo YH et al. Electromagnetic architectures: structures, properties, functions and their intrinsic relationships in subwavelength optics and electromagnetics. Adv Photonics Res 2, 2100023 (2021). doi: 10.1002/adpr.202100023 |
[6] | Canet-Ferrer J. Metamaterials and Metasurfaces (IntechOpen, 2019). http://doi.org/10.5772/intechopen.73359. |
[7] | Iyer AK, Alù A, Epstein A. Metamaterials and metasurfaces—historical context, recent advances, and future directions. IEEE Trans Antennas Propag 68, 1223–1231 (2020). doi: 10.1109/TAP.2020.2969732 |
[8] | Soukoulis CM and Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photonics 5, 523–530 (2011). doi: 10.1038/nphoton.2011.154 |
[9] | Ali A, Mitra A, Aïssa B. Metamaterials and metasurfaces: a review from the perspectives of materials, mechanisms and advanced metadevices. Nanomaterials 12, 1027 (2022). doi: 10.3390/nano12061027 |
[10] | Ding F, Pors A, Bozhevolnyi SI. Gradient metasurfaces: a review of fundamentals and applications. Rep Prog Phys 81, 026401 (2018). doi: 10.1088/1361-6633/aa8732 |
[11] | Xiao SY, Wang T, Liu TT et al. Active metamaterials and metadevices: a review. J Phys D Appl Phys 53, 503002 (2020). doi: 10.1088/1361-6463/abaced |
[12] | Withayachumnankul W, Abbott D. Metamaterials in the terahertz regime. IEEE Photonics J 1, 99–118 (2009). doi: 10.1109/JPHOT.2009.2026288 |
[13] | Chen HT, Padilla WJ, Zide JMO et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006). doi: 10.1038/nature05343 |
[14] | Chen HT, O'Hara JF, Taylor AJ et al. Complementary planar terahertz metamaterials. Opt Express 15, 1084–1095 (2007). doi: 10.1364/OE.15.001084 |
[15] | Singh R, Smirnova E, Taylor AJ et al. Optically thin terahertz metamaterials. Opt Express 16, 6537–6543 (2008). doi: 10.1364/OE.16.006537 |
[16] | Liu YM, Zhang X. Metamaterials: a new frontier of science and technology. Chem Soc Rev 40, 2494–2507 (2011). doi: 10.1039/c0cs00184h |
[17] | Smith DR, Schurig D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys Rev Lett 90, 077405 (2003). doi: 10.1103/PhysRevLett.90.077405 |
[18] | Kumar D, Devi KM, Kumar R et al. Dynamically tunable slow light characteristics in graphene based terahertz metasurfaces. Opt Commun 491, 126949 (2021). doi: 10.1016/j.optcom.2021.126949 |
[19] | Krishna KNI, Devi KM, Chowdhury DR. Graphene and metal hybridized terahertz metasurfaces toward tunable plasmon-induced transparency effects. Curr Appl Phys 39, 158–165 (2022). doi: 10.1016/j.cap.2022.04.011 |
[20] | Gu JQ, Han JG, Lu XC et al. A close-ring pair terahertz metamaterial resonating at normal incidence. Opt Express 17, 20307–20312 (2009). doi: 10.1364/OE.17.020307 |
[21] | Shi YZ, Song QH, Toftul I et al. Optical manipulation with metamaterial structures. Appl Phys Rev 9, 031303 (2022). doi: 10.1063/5.0091280 |
[22] | Lim WX, Manjappa M, Pitchappa P et al. Shaping high‐Q planar fano resonant metamaterials toward futuristic technologies. Adv Opt Mater 6, 1800502 (2018). doi: 10.1002/adom.201800502 |
[23] | Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett 85, 3966–3969 (2000). doi: 10.1103/PhysRevLett.85.3966 |
[24] | Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001). doi: 10.1126/science.1058847 |
[25] | Smith DR, Padilla WJ, Vier DC et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84, 4184–4187 (2000). doi: 10.1103/PhysRevLett.84.4184 |
[26] | Wu QN, Chen HH, Cao YY et al. Broadband optical negative refraction based on dielectric phase gradient metagratings. J Phys D Appl Phys 54, 445101 (2021). doi: 10.1088/1361-6463/ac1aa0 |
[27] | Fang N, Lee H, Sun C et al. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005). doi: 10.1126/science.1108759 |
[28] | Schurig D, Mock JJ, Justice BJ et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006). doi: 10.1126/science.1133628 |
[29] | Glybovski SB, Tretyakov SA, Belov PA et al. Metasurfaces: from microwaves to visible. Phys Rep 634, 1–72 (2016). doi: 10.1016/j.physrep.2016.04.004 |
[30] | Assouar B, Liang B, Wu Y et al. Acoustic metasurfaces. Nat Rev Mater 3, 460–472 (2018). doi: 10.1038/s41578-018-0061-4 |
[31] | Karmakar S, Kumar D, Varshney RK et al. Strong terahertz matter interaction induced ultrasensitive sensing in Fano cavity based stacked metamaterials. J Phys D Appl Phys 53, 415101 (2020). doi: 10.1088/1361-6463/ab94e3 |
[32] | Cao YY, Fu YY, Jiang JH et al. Scattering of light with orbital angular momentum from a metallic meta-cylinder with engineered topological charge. ACS Photonics 8, 2027–2032 (2021). doi: 10.1021/acsphotonics.1c00077 |
[33] | Chen HT, Taylor AJ, Yu NF. A review of metasurfaces: physics and applications. Rep Prog Phys 79, 076401 (2016). doi: 10.1088/0034-4885/79/7/076401 |
[34] | Zang XF, Yao BS, Chen L et al. Metasurfaces for manipulating terahertz waves. Light Adv Manuf 2, 10 (2021). doi: 10.37188/lam.2021.010 |
[35] | Fu YY, Tao JQ, Song AL et al. Controllably asymmetric beam splitting via gap-induced diffraction channel transition in dual-layer binary metagratings. Front Phys 15, 52502 (2020). doi: 10.1007/s11467-020-0968-2 |
[36] | Xu YD, Wang Y, Zhou QJ et al. Unidirectional manipulation of Smith–Purcell radiation by phase-gradient metasurfaces. Opt Lett 48, 4133–4136 (2023). doi: 10.1364/OL.495263 |
[37] | Guo YH, Yan LS, Pan W et al. Scattering engineering in continuously shaped metasurface: an approach for electromagnetic illusion. Sci Rep 6, 30154 (2016). doi: 10.1038/srep30154 |
[38] | Devi KM, Jana A, Punjal A et al. Polarization-independent tunable terahertz slow light with electromagnetically induced transparency metasurface. New J Phys 24, 093004 (2022). doi: 10.1088/1367-2630/ac8ac4 |
[39] | Rana G, Deshmukh P, Palkhivala S et al. Quadrupole-quadrupole interactions to control plasmon-induced transparency. Phys Rev Appl 9, 064015 (2018). doi: 10.1103/PhysRevApplied.9.064015 |
[40] | Rao SJM, Sarkar R, Kumar G et al. Gradual cross polarization conversion of transmitted waves in near field coupled planar terahertz metamaterials. OSA Contin 2, 603–614 (2019). doi: 10.1364/OSAC.2.000603 |
[41] | Zhu HL, Cheung SW, Chung KL et al. Linear-to-circular polarization conversion using metasurface. IEEE Trans Antennas Propag 61, 4615–4623 (2013). doi: 10.1109/TAP.2013.2267712 |
[42] | Bhattacharyya S, Ghosh S, Srivastava KV. A wideband cross polarization conversion using metasurface. Radio Sci 52, 1395–1404 (2017). doi: 10.1002/2017RS006396 |
[43] | Wu PC, Sokhoyan R, Shirmanesh GK et al. Near‐infrared active metasurface for dynamic polarization conversion. Adv Opt Mater 9, 2100230 (2021). doi: 10.1002/adom.202100230 |
[44] | Devi KM, Jana A, Rane S et al. Temperature tunable electromagnetically induced transparency in terahertz metasurface fabricated on ferroelectric platform. J Phys D Appl Phys 55, 495103 (2022). doi: 10.1088/1361-6463/ac9912 |
[45] | Xue YH, Zhao ZY, Liu PL et al. The impact of contact and contactless interactions between the meta-atoms on terahertz bound states in the continuum. J Phys D Appl Phys 57, 055103 (2024). doi: 10.1088/1361-6463/ad0763 |
[46] | Yu NF, Genevet P, Kats MA et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713 |
[47] | Chowdhury DR, O’Hara JF, Taylor AJ et al. Orthogonally twisted planar concentric split ring resonators towards strong near field coupled terahertz metamaterials. Appl Phys Lett 104, 101105 (2014). doi: 10.1063/1.4868122 |
[48] | Jana A, Khot AC, Rane S et al. Room-temperature-grown tungsten oxide hybridized dipole cavities to realize thermally tunable terahertz surface plasmons. Opt Mater 143, 114274 (2023). doi: 10.1016/j.optmat.2023.114274 |
[49] | Karmakar S, Varshney RK, Chowdhury DR. Theoretical investigation of active modulation and enhancement of Fano resonance in THz metamaterials. OSA Contin 2, 531–539 (2019). doi: 10.1364/OSAC.2.000531 |
[50] | Karmakar S, Kumar D, Varshney RK et al. Magnetospectroscopy of terahertz surface plasmons in subwavelength perforated superlattice thin-films. J Appl Phys 131, 223102 (2022). doi: 10.1063/5.0090592 |
[51] | Devi KM, Sarma AK, Chowdhury DR et al. Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial. Opt Express 25, 10484–10493 (2017). doi: 10.1364/OE.25.010484 |
[52] | Mallick S, Chourasia N, Singh R et al. Demonstration of toroidal metasurfaces through near-field coupling of bright-mode resonators. Appl Phys Express 15, 012005 (2022). doi: 10.35848/1882-0786/ac38b0 |
[53] | Singh R, Roy Chowdhury D, Xiong J et al. Influence of film thickness in THz active metamaterial devices: a comparison between superconductor and metal split-ring resonators. Appl Phys Lett 103, 061117 (2013). doi: 10.1063/1.4817814 |
[54] | Rane S, Sharma S, Mallick S et al. Sensing multiwall carbon nanotube film mediated by a Fano resonant terahertz metasurface. ACS Appl Opt Mater 1, 2004–2012 (2023). doi: 10.1021/acsaom.3c00329 |
[55] | Qin J, Jiang SB, Wang ZS et al. Metasurface micro/nano-optical sensors: principles and applications. ACS Nano 16, 11598–11618 (2022). doi: 10.1021/acsnano.2c03310 |
[56] | Gupta M, Singh R. Terahertz sensing with optimized Q/Veff metasurface cavities. Adv Opt Mater 8, 1902025 (2020). doi: 10.1002/adom.201902025 |
[57] | Kumar A, Gupta M, Pitchappa P et al. Topological sensor on a silicon chip. Appl Phys Lett 121, 011101 (2022). doi: 10.1063/5.0097129 |
[58] | Navaratna N, Tan YJ, Kumar A et al. On-chip topological THz biosensors. Appl Phys Lett 123, 033705 (2023). doi: 10.1063/5.0157357 |
[59] | Luo XG. Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron 58, 594201 (2015). doi: 10.1007/s11433-015-5688-1 |
[60] | Li L, Yao K, Wang ZJ et al. Harnessing evanescent waves by bianisotropic metasurfaces. Laser Photonics Rev 14, 1900244 (2020). doi: 10.1002/lpor.201900244 |
[61] | de Fornel F. Evanescent Waves: From Newtonian Optics to Atomic Optics (Springer, Berlin, Heidelberg, 2001). |
[62] | Vetsch E, Reitz D, Sagué G et al. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys Rev Lett 104, 203603 (2010). doi: 10.1103/PhysRevLett.104.203603 |
[63] | Xiang YF, Tang X, Min CJ et al. Optical trapping with focused surface waves. Ann Phys 532, 1900497 (2020). doi: 10.1002/andp.201900497 |
[64] | Eckhouse V, Zalevsky Z, Konforti N et al. Subwavelength structure imaging. Opt Eng 43, 2462–2468 (2004). doi: 10.1117/1.1787833 |
[65] | Lu JQ, Chen ZY, Pang FF et al. Theoretical analysis of fiber-optic evanescent wave sensors. In Proceedings of 2008 China-Japan Joint Microwave Conference 583–587 (IEEE, 2008);http://doi.org/10.1109/CJMW.2008.4772500. |
[66] | Villarruel CA, Dominguez DD, Dandridge A. Evanescent wave fiber optic chemical sensor. In Proceedings of SPIE 0798, Fiber Optic Sensors II 225 (SPIE, 1987);http://doi.org/10.1117/12.941110. |
[67] | Hutchinson AM. Evanescent wave biosensors. Mol Biotechnol 3, 47–54 (1995). doi: 10.1007/BF02821334 |
[68] | Mauranyapin NP, Madsen LS, Taylor MA et al. Evanescent single-molecule biosensing with quantum-limited precision. Nat Photonics 11, 477–481 (2017). doi: 10.1038/nphoton.2017.99 |
[69] | Huertas CS, Calvo-Lozano O, Mitchell A et al. Advanced evanescent-wave optical biosensors for the detection of nucleic acids: an analytic perspective. Front Chem 7, 724 (2019). doi: 10.3389/fchem.2019.00724 |
[70] | Axelrod D, Thompson NL, Burghardt TP. Total internal reflection fluorescent microscopy. J Microsc 129, 19–28 (1983). doi: 10.1111/j.1365-2818.1983.tb04158.x |
[71] | Quidant R, Weeber JC, Dereux A et al. Near-field observation of evanescent light wave coupling in subwavelength optical waveguides. Europhys Lett 57, 191–197 (2002). doi: 10.1209/epl/i2002-00560-3 |
[72] | Handmer CJ, de Sterke CM, McPhedran RC et al. Blazing evanescent grating orders: a spectral approach to beating the Rayleigh limit. Opt Lett 35, 2846–2848 (2010). doi: 10.1364/OL.35.002846 |
[73] | Ovchinnikov YB, Manek I, Grimm R. Surface trap for Cs atoms based on evanescent-wave cooling. Phys Rev Lett 79, 2225–2228 (1997). doi: 10.1103/PhysRevLett.79.2225 |
[74] | Rane SH, Punjal AS, Prabhu SS et al. Fourier transformed terahertz spectroscopy inspired detection of evanescent orders in all dielectric sub-wavelength grating. IEEE J Sel Top Quantum Electron 29, 8500406 (2023). doi: 10.1109/JSTQE.2023.3274418 |
[75] | Leitenstorfer A, Moskalenko AS, Kampfrath T et al. The 2023 terahertz science and technology roadmap. J Phys D Appl Phys 56, 223001 (2023). doi: 10.1088/1361-6463/acbe4c |
[76] | Vanderhoef LR, Azad AK, Bomberger CC et al. Charge carrier relaxation processes in TbAs nanoinclusions in GaAs measured by optical-pump THz-probe transient absorption spectroscopy. Phys Rev B 89, 045418 (2014). doi: 10.1103/PhysRevB.89.045418 |
[77] | Song HJ, Nagatsuma T. Present and future of terahertz communications. IEEE Trans Terahertz Sci Technol 1, 256–263 (2011). doi: 10.1109/TTHZ.2011.2159552 |
[78] | Wu GL, Gao HZ, Wang Y et al. Terahertz technology and its biomedical application. Yangtze Med 3, 157–162 (2019). doi: 10.4236/ym.2019.33016 |
[79] | Nikitkina AI, Bikmulina P, Gafarova ER et al. Terahertz radiation and the skin: a review. J Biomed Opt 26, 043005 (2021). doi: 10.1117/1.JBO.26.4.043005 |
[80] | Abraham E, Younus A, Delagnes JC et al. Non-invasive investigation of art paintings by terahertz imaging. Appl Phys A 100, 585–590 (2010). doi: 10.1007/s00339-010-5642-z |
[81] | Guerboukha H, Nallappan K, Skorobogatiy M. Toward real-time terahertz imaging. Adv Opt Photonics 10, 843–938 (2018). doi: 10.1364/AOP.10.000843 |
[82] | Singh A, Pal S, Surdi H et al. Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection. Opt Express 23, 6656–6661 (2015). doi: 10.1364/OE.23.006656 |
[83] | Gupta A, Rana G, Bhattacharya A et al. Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation. APL Photonics 3, 051706 (2018). doi: 10.1063/1.5021023 |
[84] | Yang XY, Tian Z, Chen XY et al. Terahertz single-pixel near-field imaging based on active tunable subwavelength metallic grating. Appl Phys Lett 116, 241106 (2020). doi: 10.1063/5.0010531 |
[85] | Stantchev RI, Yu X, Blu T et al. Real-time terahertz imaging with a single-pixel detector. Nat Commun 11, 2535 (2020). doi: 10.1038/s41467-020-16370-x |
[86] | McDonnell C, Deng JH, Sideris S et al. Terahertz metagrating emitters with beam steering and full linear polarization control. Nano Lett 22, 2603–2610 (2022). doi: 10.1021/acs.nanolett.1c04135 |
[87] | Cheng JR, Dong XP, Chen S et al. Terahertz metagrating accordion for dynamic beam steering. Adv Opt Mater 10, 2200008 (2022). doi: 10.1002/adom.202200008 |
[88] | Sizov F, Rogalski A. THz detectors. Prog Quantum Electron 34, 278–347 (2010). doi: 10.1016/j.pquantelec.2010.06.002 |
[89] | Lewis RA. A review of terahertz detectors. J Phys D Appl Phys 52, 433001 (2019). doi: 10.1088/1361-6463/ab31d5 |
[90] | Nagatsuma T, Ducournau G, Renaud CC. Advances in terahertz communications accelerated by photonics. Nat Photonics 10, 371–379 (2016). doi: 10.1038/nphoton.2016.65 |
[91] | Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research. J Infrared Millim Terahertz Waves 32, 143–171 (2011). doi: 10.1007/s10762-010-9758-1 |
[92] | Ma ZT, Geng ZX, Fan ZY et al. Modulators for terahertz communication: the current state of the art. Research 2019, 6482975 (2019). doi: 10.34133/2019/6482975 |
[93] | Monika Devi K, Jana S, Roy Chowdhury D. Topological edge states in an all-dielectric terahertz photonic crystal. Opt Mater Express 11, 2445–2458 (2021). doi: 10.1364/OME.427069 |
[94] | Cincotti G. Polarization gratings: design and applications. IEEE J Quantum Electron 39, 1645–1652 (2003). doi: 10.1109/JQE.2003.819526 |
[95] | Vasil’ev SA, Medvedkov OI, Korolev IG et al. Fibre gratings and their applications. Quantum Electron 35, 1085–1103 (2005). doi: 10.1070/QE2005v035n12ABEH013041 |
[96] | Derrick GH, McPhedran RC, Maystre D et al. Crossed gratings: a theory and its applications. Appl Phys 18, 39–52 (1979). doi: 10.1007/BF00935902 |
[97] | Gooch JW. Diffraction grating. In Gooch JW. Encyclopedic Dictionary of Polymers 220–220 (Springer, New York, 2011);http://doi.org/10.1007/978-1-4419-6247-8_3651. |
[98] | Gralak B, Stout B. Gratings: Theory and Numeric Applications. Institut Fresnel, French, 2014. |
[99] | Loewen EG, Popov E. Diffraction Gratings and Applications (CRC Press, Boca Raton, 1997),doi: 10.1201/9781315214849. |
[100] | Lalanne P, Hugonin JP. High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms. J Opt Soc Am A 15, 1843–1851 (1998). doi: 10.1364/JOSAA.15.001843 |
[101] | Lalanne P, Lemercier-Lalanne D. Depth dependence of the effective properties of subwavelength gratings. J Opt Soc Am A 14, 450–459 (1997). doi: 10.1364/JOSAA.14.000450 |
[102] | Tang SW, Zhu BC, Jia M et al. Effective-medium theory for one-dimensional gratings. Phys Rev B 91, 174201 (2015). doi: 10.1103/PhysRevB.91.174201 |
[103] | Cao YY, Fu YY, Zhou QJ et al. Mechanism behind angularly asymmetric diffraction in phase-gradient metasurfaces. Phys Rev Appl 12, 024006 (2019). doi: 10.1103/PhysRevApplied.12.024006 |
[104] | Lee HS, Yoon YT, Lee SS et al. Color filter based on a subwavelength patterned metal grating. Opt Express 15, 15457–15463 (2007). doi: 10.1364/OE.15.015457 |
[105] | Vörös J, Ramsden JJ, Csúcs G et al. Optical grating coupler biosensors. Biomaterials 23, 3699–3710 (2002). doi: 10.1016/S0142-9612(02)00103-5 |
[106] | Aoni RA, Manjunath S, Karawdeniya BI et al. Resonant dielectric metagratings for response intensified optical sensing. Adv Funct Mater 32, 2103143 (2022). doi: 10.1002/adfm.202103143 |
[107] | Li XJ, Wang LY, Cheng G et al. Terahertz spoof surface plasmon sensing based on dielectric metagrating coupling. APL Mater 9, 051118 (2021). doi: 10.1063/5.0048491 |
[108] | Kabashin AV, Kravets VG, Grigorenko AN. Label-free optical biosensing: going beyond the limits. Chem Soc Rev 52, 6554–6585 (2023). doi: 10.1039/D3CS00155E |
[109] | Cheben P, Xu DX, Janz S et al. Subwavelength waveguide grating for mode conversion and light coupling in integrated optics. Opt Express 14, 4695–4702 (2006). doi: 10.1364/OE.14.004695 |
[110] | Barbara A, Quémerais P, Bustarret E et al. Optical transmission through subwavelength metallic gratings. Phys Rev B 66, 161403 (2002). doi: 10.1103/PhysRevB.66.161403 |
[111] | Cho GC, Chen HT, Kraatz S et al. Apertureless terahertz near-field microscopy. Semicond Sci Technol 20, S286–S292 (2005). doi: 10.1088/0268-1242/20/7/020 |
[112] | Taniguchi K, Kanemitsu Y. Development of an apertureless near-field optical microscope for nanoscale optical imaging at low temperatures. Jpn J Appl Phys 44, 575–577 (2005). doi: 10.1143/JJAP.44.575 |
[113] | Ishimori M, Kanamori Y, Sasaki M et al. Subwavelength antireflection gratings for light emitting diodes and photodiodes fabricated by fast atom beam etching. Jpn J Appl Phys 41, 4346–4349 (2002). doi: 10.1143/JJAP.41.4346 |
[114] | Carr DW, Sullivan JP, Friedmann TA. Laterally deformable nanomechanical zeroth-order gratings: anomalous diffraction studied by rigorous coupled-wave analysis. Opt Lett 28, 1636–1638 (2003). doi: 10.1364/OL.28.001636 |
[115] | Ma XY, Li YF, Lu YC et al. Highly–efficient polarization–insensitive antireflection metagrating for terahertz waves. Opt Commun 461, 125188 (2020). doi: 10.1016/j.optcom.2019.125188 |
[116] | Raut HK, Ganesh VA, Nair AS et al. Anti-reflective coatings: a critical, in-depth review. Energy Environ Sci 4, 3779–3804 (2011). doi: 10.1039/c1ee01297e |
[117] | Chen HT, Zhou JF, O’Hara JF et al. Antireflection coating using metamaterials and identification of its mechanism. Phys Rev Lett 105, 073901 (2010). doi: 10.1103/PhysRevLett.105.073901 |
[118] | Han PY, Chen YW, Zhang XC. Application of silicon micropyramid structures for antireflection of terahertz waves. IEEE J Sel Top Quantum Electron 16, 338–343 (2010). doi: 10.1109/JSTQE.2009.2031164 |
[119] | Brückner C, Käsebier T, Pradarutti B et al. Broadband antireflective structures applied to high resistive float zone silicon in the THz spectral range. Opt Express 17, 3063–3077 (2009). doi: 10.1364/OE.17.003063 |
[120] | Clausnitzer T, Kämpfe T, Kley EB et al. Highly-dispersive dielectric transmission gratings with 100% diffraction efficiency. Opt Express 16, 5577–5584 (2008). doi: 10.1364/oe.16.005577 |
[121] | Clausnitzer T, Kämpfe T, Kley EB et al. An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings. Opt Express 13, 10448–10456 (2005). doi: 10.1364/opex.13.010448 |
[122] | Yang F, Li YF. Evaluation and improvement of simplified modal method for designing dielectric gratings. Opt Express 23, 31342–31356 (2015). doi: 10.1364/oe.23.031342 |
[123] | Ding L, Wu QYS, Song JF et al. Perfect broadband Terahertz antireflection by deep-subwavelength, thin, lamellar metallic gratings. Adv Opt Mater 1, 910–914 (2013). doi: 10.1002/adom.201300321 |
[124] | Ma XY, Li YF, Lu YC et al. Metagrating-based terahertz polarization beam splitter designed by simplified modal method. Front Phys 8, 580781 (2020). doi: 10.3389/fphy.2020.580781 |
[125] | Arbabi A, Arbabi E, Horie Y et al. Planar metasurface retroreflector. Nat Photonics 11, 415–420 (2017). doi: 10.1038/nphoton.2017.96 |
[126] | Zhu S, Cao YY, Fu YY et al. Switchable bifunctional metasurfaces: nearly perfect retroreflection and absorption at the terahertz regime. Opt Lett 45, 3989–3992 (2020). doi: 10.1364/OL.394164 |
[127] | Beruete M, Jáuregui‐López I. Terahertz sensing based on metasurfaces. Adv Opt Mater 8, 1900721 (2020). doi: 10.1002/adom.201900721 |
[128] | Banerjee S, Amith CS, Kumar D et al. Ultra-thin subwavelength film sensing through the excitation of dark modes in THz metasurfaces. Opt Commun 453, 124366 (2019). doi: 10.1016/j.optcom.2019.124366 |
[129] | Liu XY, Chen W, Ma YJ et al. Enhancing THz fingerprint detection on the planar surface of an inverted dielectric metagrating. Photonics Res 10, 2836–2845 (2022). |
[130] | Zhu JF, Jiang S, Xie YN et al. Enhancing terahertz molecular fingerprint detection by a dielectric metagrating. Opt Lett 45, 2335–2338 (2020). doi: 10.1364/OL.389045 |
[131] | Xie YN, Liu XY, Li FJ et al. Ultra-wideband enhancement on mid-infrared fingerprint sensing for 2D materials and analytes of monolayers by a metagrating. Nanophotonics 9, 2927–2935 (2020). doi: 10.1515/nanoph-2020-0180 |
[132] | Xie YN, Liu XY, Zhou J et al. Enhancing trace terahertz fingerprint sensing by the lossy silicon metagrating with a gold mirror. IEEE Trans Microw Theory Tech 1–10 (2024); https://doi.org/10.1109/TMTT.2023.3314094. |
[133] | Rane S, Punjal A, Prabhu S et al. Design, optimization, and characterization of deep sub-wavelength evanescent orders in terahertz metagratings. Opt Contin 2, 1996–2006 (2023). doi: 10.1364/OPTCON.498737 |
[134] | Ra’di Y, Alù A. Reconfigurable metagratings. ACS Photonics 5, 1779–1785 (2018). doi: 10.1021/acsphotonics.7b01528 |
[135] | Ra’di Y, Sounas DL, Alù A. Metagratings: beyond the limits of graded metasurfaces for wave front control. Phys Rev Lett 119, 067404 (2017). doi: 10.1103/PhysRevLett.119.067404 |
[136] | Xie YT, Quan JQ, Shi QS et al. Multi-functional high-efficiency light beam splitter based on metagrating. Opt Express 30, 4125–4132 (2022). doi: 10.1364/oe.450853 |
[137] | Feng AS, Yu ZJ, Sun XK. Ultranarrow-band metagrating absorbers for sensing and modulation. In Proceedings of 2019 Conference on Lasers and Electro-Optics 1–2 (IEEE, 2019);http://doi.org/10.1364/CLEO_AT.2019.AF2K.7. |
[138] | Yadav G, Sahu S, Kumar R et al. Bound states in the continuum empower subwavelength gratings for refractometers in visible. Photonics 9, 292 (2022). doi: 10.3390/photonics9050292 |
(a) The phenomenon of diffraction through conventional diffraction grating, where higher diffraction orders are present. (b) The diffraction phenomenon from metagrating where higher orders become evanescent in nature and only the zeroth order mode propagates light in the far-field.
(a) The schematic illustration of grating and the equivalent effective medium structure. When the grating is considered as homogeneous slab having effective refractive index, the grating region acts as a Fabry-Perot resonant cavity exhibiting multiple total internal reflections. The obtained transmittance characteristics of the proposed grating design for (a) TE and (b) TM polarization as a function of frequency. Here, the black solid line represents the transmittance acquired through numerical simulations while the red dotted line represents the transmittance obtained from experiment. The slight variation in the transmittance for both the polarizations (TE and TM) can be attributed to the different effective refractive indices for both the configurations. Figures reproduced from: ref.115, Elsevier B.V.
(a) The THz-TDS transmission signals have been observed under normal incidence. The solid curve represents bare Si, while the dashed and dotted curves depict Si coated with antireflection grating in TE and TM polarizations, respectively. (b) The amplitude and (c) phase shift of the complex reflective coefficient are measured at the Si/grating/air interface at 0.75 THz, with incidence being normal from the Si side. The noise level of the THz-TDS system is currently overlaid. Analytically calculated results for TE and TM waves at Cr thickness d = 30 nm are depicted as solid and dashed curves, respectively. Error bars are utilized to denote the geometric uncertainty arising from grating fabrication. Figures reproduced from: ref.123, Wiley-VCH GmbH.
(a) Schematic representation of a two-mode SMM used to depict the metagrating as a Mach-Zehnder interferometer without taking reflection of grating into account. Two-dimensional maps of the experimentally measured efficiencies of the grating device with frequency and angle for (b) TE and (c) TM configuration. In both the cases the metagrating is illuminated at Littrow angle of 46°. Figures reproduced with permission from: ref.124, under the terms of the Creative Commons Attribution License (CC BY).
(a) Cross-sectional view of the proposed metagrating design and illustration of dynamic angle adaptive retroreflection. Modifying the period of the metagrating facilitates the provision of the desired momentum for various retroreflection angles. (b) The retroreflection efficiency obtained via simulated and experiment over a wide range of incident angles. (c) The reflective intensity distributions are assessed by measuring them from both an aluminium plate (used as a reference) and a retroreflector, considering various incident angles and periods respectively. Figures reproduced from: ref. 87, Wiley-VCH GmbH.
(a) The top left figure denotes the complex refractive index of α-lactose sample, where the red and blue line represents real and imaginary part of the refractive index. The rest three figures denote the three surface coating instances for trace sample of equal volume. (b) The envelope corresponding to the angle-multiplexed reflectance spectra for conformal analyte coating and (c) The envelope associated with the angle-dependent reflectance spectra for evenly coated surface. The insets of the figure represents the normalized electric field distribution. Figures reproduced with permission from: ref. 129, under a Creative Commons Attribution 4.0 International License.
(a) Proposed metagrating design with a gold mirror at the back. The schematic denotes various parameters: θ signifies the incident angle, n denotes the number of angles, w represents the unit cell period, p indicates the grating layer width, h1 pertains to the height of the grating layer width, and h2 denotes the height of the waveguide layer. (b) Absorbance envelop of Ta2O5 thin film (1-µm thickness). (c) The fingerprint signal of the Ta2O5 film. Figures reproduced from: ref.132, IEEE.
The diffraction patterns of the experimentally acquired findings across the frequency spectrum from 0.2 THz to 0.9 THz after utilizing Fast Fourier Transform (FFT). The diffraction profile for TE incidence is shown by (a–c) for difference distances (10 μm, 20 μm, and 50 μm) away from the grating surface (along Z), whereas the diffraction profile for TM incidence is represented by (d–f). (g) and (h) illustrate the exponential decay characteristics of the +1 evanescent order, derived from experimental measurements for TE and TM cases, respectively. Here, the error bars signify variations in the experimental data, potentially arising from deformities during fabrication processes. Figures reproduced with permission from: ref.133, under the terms of the Optica Open Access Publishing Agreement.
(a) Illustrative depiction of graphene based reconfigurable metagrating. Results for two different cases where (b)
(a) Illustration of the polarization beam splitter constructed using a metallic metagrating. (b) Magnetic field configuration observed at an incident angle of θi = −30° for light polarized in the TM configuration. (c) The electric field configuration at an incident angle of θi = −30° for TE-polarized light. Figures reproduced with permission from: ref.136, under the terms of the Optica Open Access Publishing Agreement.
(a) The schematic illustration of the metagrating design. (b) Simulated reflection spectra for metagrating submerged in solutions possessing various refractive indices. (c) The plot of wavelength value at absorption dip as a function of refractive index. Figures reproduced from: ref.137, OSA.
(a) Schematic representation of angle multiplexed metagrating. (b) A sequence of reflectance spectra obtained through angular scanning ranging from 16° to 25°, alongside their associated envelope curve, are presented for the metagrating coated with hBN. (c) The absorbance envelope curve and the reference absorbance spectrum of hBN. Figures reproduced with permission from: ref.131, De Gruyter, under the Creative Commons Attribution 4.0 International License.