Wei XR, Liang YZ, Zhang XH et al. Multi-resonance enhanced photothermal synergistic fiber-optic Tamm plasmon polariton tip for high-sensitivity and rapid hydrogen detection. Opto-Electron Sci 4, 240029 (2025). doi: 10.29026/oes.2025.240029
Citation: Wei XR, Liang YZ, Zhang XH et al. Multi-resonance enhanced photothermal synergistic fiber-optic Tamm plasmon polariton tip for high-sensitivity and rapid hydrogen detection. Opto-Electron Sci 4, 240029 (2025). doi: 10.29026/oes.2025.240029

Article Open Access

Multi-resonance enhanced photothermal synergistic fiber-optic Tamm plasmon polariton tip for high-sensitivity and rapid hydrogen detection

More Information
  • Accurate and real-time detection of hydrogen (H2) is essential for ensuring energy security. Fiber-optic H2 sensors are gaining attention for their integration and remote sensing capabilities. However, they face challenges, including complex fabrication processes and limited response times. Here, we propose a fiber-optic H2 sensing tip based on Tamm plasmon polariton (TPP) resonance, consisting of a multilayer metal/dielectric Bragg reflector deposited directly on the fiber end facet, simplifying the fabrication process. The fiber-optic TPP (FOTPP) tip exhibits both TPP and multiple Fabry-Perot (FP) resonances simultaneously, with the TPP employed for highly sensitive H2 detection. Compared to FP resonance, TPP exhibits more than twice the sensitivity under the same structural dimension without cavity geometry deformation. The excellent performance is attributed to alterations in phase-matching conditions, driven by changes in penetration depth of TPP. Furthermore, the FP mode is utilized to achieve an efficient photothermal effect to catalyze the reaction between H2 and the FOTPP structure. Consequently, the response and recovery speeds of the FOTPP tip under resonance-enhanced photothermal assistance are improved by 6.5 and 2.1 times, respectively. Our work offers a novel strategy for developing TPP-integrated fiber-optic tips, refines the theoretical framework of photothermal-assisted detection systems, and provides clear experimental evidence.
  • 加载中
  • [1] Ould Amrouche S, Rekioua D, Rekioua T et al. Overview of energy storage in renewable energy systems. Int J Hydrogen Energy 41, 20914–20927 (2016). doi: 10.1016/j.ijhydene.2016.06.243

    CrossRef Google Scholar

    [2] Yue ML, Lambert H, Pahon E et al. Hydrogen energy systems: a critical review of technologies, applications, trends and challenges. Renew Sustain Energy Rev 146, 111180 (2021). doi: 10.1016/j.rser.2021.111180

    CrossRef Google Scholar

    [3] Sripriya, Meda US. Market study of hydrogen sensors and sensing systems. ECS Trans 107, 4489–4502 (2022). doi: 10.1149/10701.4489ecst

    CrossRef Google Scholar

    [4] Tittl A, Mai P, Taubert R et al. Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. Nano Lett 11, 4366–4369 (2011). doi: 10.1021/nl202489g

    CrossRef Google Scholar

    [5] Baldi A, Narayan TC, Koh AL et al. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat Mater 13, 1143–1148 (2014). doi: 10.1038/nmat4086

    CrossRef Google Scholar

    [6] Matuschek M, Singh DP, Jeong HH et al. Chiral plasmonic hydrogen sensors. Small 14, 1702990 (2018). doi: 10.1002/smll.201702990

    CrossRef Google Scholar

    [7] Wen L, Sun ZW, Zheng QL et al. On-chip ultrasensitive and rapid hydrogen sensing based on plasmon-induced hot electron–molecule interaction. Light Sci Appl 12, 76 (2023). doi: 10.1038/s41377-023-01123-4

    CrossRef Google Scholar

    [8] Tomeček D, Moberg HK, Nilsson S et al. Neural network enabled nanoplasmonic hydrogen sensors with 100 ppm limit of detection in humid air. Nat Commun 15, 1208 (2024). doi: 10.1038/s41467-024-45484-9

    CrossRef Google Scholar

    [9] Korotcenkov G, Han SD, Stetter JR. Review of electrochemical hydrogen sensors. Chem Rev 109, 1402–1433 (2009). doi: 10.1021/cr800339k

    CrossRef Google Scholar

    [10] Liu Q, Yao JY, Wang YP et al. Temperature dependent response/recovery characteristics of Pd/Ni thin film based hydrogen sensor. Sens Actuators B Chem 290, 544–550 (2019). doi: 10.1016/j.snb.2019.04.024

    CrossRef Google Scholar

    [11] Caucheteur C, Guo T, Albert J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal Bioanal Chem 407, 3883–3897 (2015). doi: 10.1007/s00216-014-8411-6

    CrossRef Google Scholar

    [12] Jing JY, Liu K, Jiang JF et al. Highly sensitive and stable probe refractometer based on configurable plasmonic resonance with nano-modified fiber core. Opto-Electron Adv 6, 220072 (2023). doi: 10.29026/oea.2023.220072

    CrossRef Google Scholar

    [13] Wang Q, Wang L. Lab-on-fiber: plasmonic nano-arrays for sensing. Nanoscale 12, 7485–7499 (2020). doi: 10.1039/D0NR00040J

    CrossRef Google Scholar

    [14] Xiong YF, Xu F. Multifunctional integration on optical fiber tips: challenges and opportunities. Adv Photonics 2, 064001 (2020).

    Google Scholar

    [15] Zhao Y, Tong RJ, Xia F et al. Current status of optical fiber biosensor based on surface plasmon resonance. Biosens Bioelectron 142, 111505 (2019). doi: 10.1016/j.bios.2019.111505

    CrossRef Google Scholar

    [16] Liu HH, Hu DJJ, Sun QZ, Wei L, Li KW et al. Specialty optical fibers for advanced sensing applications. Opto-Electron Sci 2, 220025 (2023). doi: 10.29026/oes.2023.220025

    CrossRef Google Scholar

    [17] Jiang BQ, Hou YG, Wu JX, Ma YX, Gan XT et al. In-fiber photoelectric device based on graphene-coated tilted fiber grating. Opto-Electron Sci 2, 230012 (2023). doi: 10.29026/oes.2023.230012

    CrossRef Google Scholar

    [18] Yin SY, Guo Q, Liu SR et al. Three-dimensional multichannel waveguide grating filters. Opto-Electron Sci 3, 240003 (2024). doi: 10.29026/oes.2024.240003

    CrossRef Google Scholar

    [19] Zhang YN, Liu YX, Shi BF et al. Lateral offset single-mode fiber-based Fabry–Perot interferometers with Vernier effect for hydrogen sensing. Anal Chem 95, 872–880 (2023).

    Google Scholar

    [20] Luo JX, Liu S, Chen PJ et al. Highly sensitive hydrogen sensor based on an optical driven nanofilm resonator. ACS Appl Mater Interfaces 14, 29357–29365 (2022). doi: 10.1021/acsami.2c04105

    CrossRef Google Scholar

    [21] Wang CQ, Han ZW, Wang CX et al. Highly sensitive fiber grating hydrogen sensor based on hydrogen-doped Pt/WO3. Sens Actuators B Chem 404, 135250 (2024). doi: 10.1016/j.snb.2023.135250

    CrossRef Google Scholar

    [22] Ye Z, Ruan HB, Hu XY et al. TBAOH intercalated WO3 for high-performance optical fiber hydrogen sensor. Int J Hydrogen Energy 47, 28204–28211 (2022). doi: 10.1016/j.ijhydene.2022.06.133

    CrossRef Google Scholar

    [23] Cai SS, Liu F, Wang RL et al. Narrow bandwidth fiber-optic spectral combs for renewable hydrogen detection. Sci China Inf Sci 63, 222401 (2020). doi: 10.1007/s11432-020-3058-2

    CrossRef Google Scholar

    [24] Gu FX, Wu GQ, Zeng HP. Hybrid photon–plasmon Mach–Zehnder interferometers for highly sensitive hydrogen sensing. Nanoscale 7, 924–929 (2015). doi: 10.1039/C4NR06642A

    CrossRef Google Scholar

    [25] Perrotton C, Westerwaal RJ, Javahiraly N et al. A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance. Opt Express 21, 382–390 (2013). doi: 10.1364/OE.21.000382

    CrossRef Google Scholar

    [26] Nugroho FAA, Eklund R, Nilsson S et al. A fiber-optic nanoplasmonic hydrogen sensor via pattern-transfer of nanofabricated PdAu alloy nanostructures. Nanoscale 10, 20533–20539 (2018). doi: 10.1039/C8NR03751E

    CrossRef Google Scholar

    [27] Yun S, Oyama ST. Correlations in palladium membranes for hydrogen separation: a review. J Memb Sci 375, 28–45 (2011). doi: 10.1016/j.memsci.2011.03.057

    CrossRef Google Scholar

    [28] Adhikari S, Efremova MV, Spaeth P et al. Single-particle photothermal circular dichroism and photothermal magnetic circular dichroism microscopy. Nano Lett 24, 5093–5103 (2024). doi: 10.1021/acs.nanolett.4c00448

    CrossRef Google Scholar

    [29] Cui XM, Ruan QF, Zhuo XL et al. Photothermal nanomaterials: a powerful light-to-heat converter. Chem Rev 123, 6891–6952 (2023). doi: 10.1021/acs.chemrev.3c00159

    CrossRef Google Scholar

    [30] Luo J, Wu QL, Zhou L et al. Plasmon-induced hot carrier dynamics and utilization. Photonics Insights 2, R08 (2023). doi: 10.3788/PI.2023.R08

    CrossRef Google Scholar

    [31] Polley N, Sardar S, Werner P et al. Photothermomechanical nanopump: a flow-through plasmonic sensor at the fiber tip. ACS Nano 17, 1403–1413 (2023). doi: 10.1021/acsnano.2c09938

    CrossRef Google Scholar

    [32] Stewart JW, Nebabu T, Mikkelsen MH. Control of nanoscale heat generation with lithography-free metasurface absorbers. Nano Lett 22, 5151–5157 (2022). doi: 10.1021/acs.nanolett.2c00761

    CrossRef Google Scholar

    [33] Wu HT, Chen PW, Zhan XD et al. Marriage of a dual-plasmonic interface and optical microfiber for NIR-II cancer theranostics. Adv Mater 36, 2310571 (2024). doi: 10.1002/adma.202310571

    CrossRef Google Scholar

    [34] Ye Z, Li Z, Dai JX et al. Hydrogen sensing performance investigations with optical heating and sensing element surface modification. Int J Hydrogen Energy 46, 1411–1419 (2021). doi: 10.1016/j.ijhydene.2020.09.140

    CrossRef Google Scholar

    [35] Zhang XP, Li XT, Zhang XH et al. Photothermal-assisted hydrogen permeation enhancement. Sens Actuators B Chem 365, 131935 (2022). doi: 10.1016/j.snb.2022.131935

    CrossRef Google Scholar

    [36] Kaliteevski M, Iorsh I, Brand S et al. Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys Rev B 76, 165415 (2007). doi: 10.1103/PhysRevB.76.165415

    CrossRef Google Scholar

    [37] Lundt N, Klembt S, Cherotchenko E et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat Commun 7, 13328 (2016). doi: 10.1038/ncomms13328

    CrossRef Google Scholar

    [38] Hu MY, Zhang Y, Jiang X et al. Double-bowl state in photonic Dirac nodal line semimetal. Light Sci Appl 10, 170 (2021). doi: 10.1038/s41377-021-00614-6

    CrossRef Google Scholar

    [39] Kar C, Jena S, Udupa DV et al. Tamm plasmon polariton in planar structures: a brief overview and applications. Opt Laser Technol 159, 108928 (2023). doi: 10.1016/j.optlastec.2022.108928

    CrossRef Google Scholar

    [40] Normani S, Bertolotti P, Bisio F et al. Tamm plasmon resonance as optical fingerprint of silver/bacteria interaction. ACS Appl Mater Interfaces 15, 27750–27758 (2023). doi: 10.1021/acsami.3c05473

    CrossRef Google Scholar

    [41] Sreekanth KV, Perumal J, Dinish US et al. Tunable Tamm plasmon cavity as a scalable biosensing platform for surface enhanced resonance Raman spectroscopy. Nat Commun 14, 7085 (2023). doi: 10.1038/s41467-023-42854-7

    CrossRef Google Scholar

    [42] He MZ, Nolen JR, Nordlander J et al. Coupled Tamm phonon and plasmon polaritons for designer planar multiresonance absorbers. Adv Mater 35, 2209909 (2023). doi: 10.1002/adma.202209909

    CrossRef Google Scholar

    [43] Wang ZY, Ho YL, Cao T et al. High-Q and tailorable fano resonances in a one-dimensional metal-optical Tamm state structure: from a narrowband perfect absorber to a narrowband perfect reflector. Adv Funct Mater 31, 2102183 (2021). doi: 10.1002/adfm.202102183

    CrossRef Google Scholar

    [44] Lu H, Shi SH, Li DK et al. Strong self-enhancement of optical nonlinearity in a topological insulator with generation of Tamm state. Laser Photonics Rev 17, 2300269 (2023). doi: 10.1002/lpor.202300269

    CrossRef Google Scholar

    [45] Ko JH, Seo DH, Jeong HH et al. Sub-1-volt electrically programmable optical modulator based on active Tamm plasmon. Adv Mater 36, 2310556 (2024). doi: 10.1002/adma.202310556

    CrossRef Google Scholar

    [46] Zhang KH, Chen ZY, Li HJ et al. A dual-band hydrogen sensor based on Tamm plasmon polaritons. Phys Chem Chem Phys 25, 20697–20705 (2023). doi: 10.1039/D3CP02653A

    CrossRef Google Scholar

    [47] Palm KJ, Murray JB, Narayan TC et al. Dynamic optical properties of metal hydrides. ACS Photonics 5, 4677–4686 (2018). doi: 10.1021/acsphotonics.8b01243

    CrossRef Google Scholar

    [48] Brovelli LR, Keller U. Simple analytical expressions for the reflectivity and the penetration depth of a Bragg mirror between arbitrary media. Opt Commun 116, 343–350 (1995). doi: 10.1016/0030-4018(95)00084-L

    CrossRef Google Scholar

    [49] Adams M, Cemlyn B, Henning I et al. Model for confined Tamm plasmon devices. J Opt Soc Am B 36, 125–130 (2019). doi: 10.1364/JOSAB.36.000125

    CrossRef Google Scholar

    [50] Peleg M, Normand MD, Corradini MG. The Arrhenius equation revisited. Crit Rev Food Sci Nutr 52, 830–851 (2012). doi: 10.1080/10408398.2012.667460

    CrossRef Google Scholar

    [51] Chen X, Chen YT, Yan M et al. Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6, 2550–2557 (2012). doi: 10.1021/nn2050032

    CrossRef Google Scholar

  • Supplementary information for Multi-resonance enhanced photothermal synergistic fiber-optic Tamm plasmon polariton tip for high-sensitivity and rapid hydrogen detection
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint